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Abstract
With the aid of the three-critical-point theorem due to Brezis and Nirenberg (see
Brezis and Nirenberg in Commun. Pure Appl. Math. 44:939–963, 1991), two existence
results of at least two nontrivial solutions for a class of nonlocal Kirchhoff type
problems are obtained.
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1 Introduction and main results
Consider the existence of weak solutions for the following nonlocal Kirchhoff type prob-
lem:

⎧
⎨

⎩

–(a + b
∫

�
|∇u|2 dx)�u = f (x, u) in �,

u = 0 on ∂�,
(1)

where � is a smooth bounded domain in RN (N ≥ 1), a > 0, b > 0 are real numbers, and
the nonlinearity f ∈ C(�̄ × R, R).

Problem (1) is analogous to the stationary case of equations that arise in the study of
string or membrane vibrations, that is,

utt –
(

a + b
∫

�

|∇u|2 dx
)

�u = f (x, u),

which was first proposed by Kirchhoff (see [3]) in 1883 to describe the transversal oscil-
lations of a stretched string. Especially, in recent years, many solvability conditions with
f (or F) near zero and infinity were considered to study the existence and multiplicity of
weak solutions for problem (1) by using variational methods, for example, the nonlinear-
ity f is asymptotically 3-linear at infinity (see [4, 6, 9]), the nonlinearity f is 3-suplinear
at infinity (see [5, 7, 9]), and the nonlinearity f is 3-sublinear at infinity (see [9]). In this
paper, motivated by [2, 7, 8], we prove the existence of at least two nontrivial solutions for
problem (1) by using the variational method.
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Let H1
0 (�) be the usual Hilbert space with the norm

‖u‖ =
(∫

�

|∇u|2 dx
) 1

2
for any u ∈ H1

0 (�).

From the Rellich embedding theorem, the embedding H1
0 (�) ↪→ Lθ (�) is continuous for

any θ ∈ [1, 2∗] and compact for any θ ∈ [1, 2∗), where 2∗ = +∞ if N = 1, 2 and 2∗ = 2N
N–2 if

N ≥ 3. Moreover, for any θ ∈ [1, 2∗), there is a constant τθ > 0 such that

‖u‖Lθ ≤ τθ‖u‖ for any u ∈ H1
0 (�), (2)

where ‖·‖Lθ denotes the norm of Lθ (�). Let m(x) ∈ C(�̄) be positive on a subset of positive
measure, the following eigenvalue problem

⎧
⎨

⎩

–�u = λm(x)u in �,

u = 0 on ∂�
(3)

has a sequence of variational eigenvalues {λk(m)} such that λ1(m) < λ2(m) < · · · < λk(m) →
∞ as k → ∞. Let M(x) ∈ C(�̄) be positive on �. For the following nonlinear eigenvalue
problem

⎧
⎨

⎩

–‖u‖2�u = μM(x)u3 in �,

u = 0 on ∂�,
(4)

we define

μ1(M) = inf

{

‖u‖4 : u ∈ H1
0 (�),

∫

�

M(x)u4 dx = 1
}

.

Similar to Lemma 2.1 of [9], we can prove that μ1(M) is the first eigenvalue of (4) and
positive. Moreover, there is an eigenvalue 	M

1 such that 	M
1 > 0 in �.

Let m0(x) ∈ C(�̄) be positive on a subset of positive measure and m∞(x) ∈ C(�̄) be
positive on �. Assume that

lim|t|→0

2F(x, t)
at2 = m0(x) uniformly in x ∈ �, (5)

lim|t|→∞
4F(x, t)

bt4 = m∞(x) uniformly in x ∈ �, (6)

lim|t|→∞
(
f (x, t)t – 4F(x, t)

)
= +∞ uniformly in x ∈ �, (7)

where F(x, t) =
∫ t

0 f (x, s) ds. We are ready to state our main results.

Theorem 1 Let N = 1, 2, 3, and assume that the function F satisfies (5) with λk(m0) < 1 <
λk+1(m0) for some k ≥ 1 and (6), and there exist 4 < p < 2∗ and c0 > 0 such that

∣
∣f (x, t)

∣
∣ ≤ c0

(
1 + |t|p–1) for any (x, t) ∈ �̄ × R, (8)
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then problem (1) has at least two nontrivial solutions in each of the following cases:
(i) μ1(m∞) > 1 or

(ii) μ1(m∞) = 1 and (7) hold.

Theorem 2 Assume that the nonlinearity F satisfies (5) with λk(m0) < 1 < λk+1(m0) for
some k ≥ 1 and the following condition:

lim|t|→∞
f (x, t)
|t|p–1 = 0 uniformly in x ∈ �, (9)

where p = 4 if N = 1, 2, 3 and p = 2∗ if N ≥ 4, then problem (1) has at least two nontrivial
solutions.

Remark If N = 1, 2, 3 and the nonlinearity f is 3-suplinear at infinity, Sun and Tang in [7]
obtained a nontrivial solution for problem (1) by using the local linking theorem due to
Li and Willem. In [8], when the nonlinearity F is some asymptotically 4-linear at infinity,
Yang and Zhang proved the existence of at least two nontrivial solutions for problem (1)
by means of the Morse theory and local linking. Since p = 2∗ ≤ 4 (N ≥ 4), condition (9)
implies that the nonlinearity f is 3-sublinear at infinity. Hence, our results are the com-
plements for the ones of [7, 8].

2 Proof of the theorems
Define the functional I : H1

0 (�) → R as follows:

I(u) =
b
4
‖u‖4 +

a
2
‖u‖2 –

∫

�

F(x, u) dx. (10)

From (8) (or (9)), by a standard argument, the functional I ∈ C1(H1
0 (�), R), and a weak

solution of problem (1) is a critical point of the functional I in H1
0 (�).

Recall that a sequence {un} ⊂ H1
0 (�) is called a (PS)c sequence for any c ∈ R of the func-

tional I on H1
0 (�) if I(un) → c and I ′(un) → 0 as n → ∞. The functional I is called to satisfy

the (PS)c condition if any (PS)c sequence has a convergent subsequence. We will prove our
theorems by using the following three-critical-point theorem related to local linking due
to Brezis and Nirenberg (see Theorem 4 in [1]).

Theorem A Let X be a Banach space with a direct sum decomposition X = X1 ⊕ X2 with
dim X1 < ∞. Let I be a C1 function on X with I(0) = 0 satisfying the (PS) condition, and
assume that, for some R > 0,

⎧
⎨

⎩

I(u) ≤ 0 for u ∈ X1,‖u‖ ≤ R,

I(u) ≥ 0 for u ∈ X2,‖u‖ ≤ R.

Assume also that I is bounded below and infX I < 0. Then I has at least two nonzero critical
points.

Proof of Theorem 1 (a) The functional I satisfies the local linking at zero with respect to
(Vk , V ⊥

k ), where Vk =
⊕k

i=1 ker(–� – λi(m0)) and V ⊥
k =

⊕+∞
i=k+1 ker(–� – λi(m0)) such that

H1
0 (�) = Vk ⊕ V ⊥

k .
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In fact, from (5), for any ε > 0, there is a positive constant L0 such that

∣
∣2F(x, t) – am0(x)t2∣∣ ≤ aεt2 for any x ∈ � and |t| ≤ L0.

Combining the continuity of F , (8), and the above inequality, there is M0 = M0(ε) > 0 such
that

F(x, t) ≥ a
2

m0(x)t2 –
aε

2
t2 – M0|t|p for any (x, t) ∈ � × R, and (11)

F(x, t) ≤ a
2

m0(x)t2 +
aε

2
t2 + M0|t|p for any (x, t) ∈ � × R. (12)

For any u ∈ Vk , from (2), (10), and (11), it follows that

I(u) ≤ b
4
‖u‖4 +

a
2
‖u‖2 –

a
2

∫

�

m0(x)|u|2 dx +
aε

2

∫

�

|u|2 dx + M0

∫

�

|u|p dx

≤ a
2

(

1 –
1

λk(m0)
+ ετ 2

2

)

‖u‖2 +
b
4
‖u‖4 + M0τ

p
p ‖u‖p. (13)

On the other hand, for any u ∈ V ⊥
k , from (2), (10), and (12), we obtain

I(u) ≥ b
4
‖u‖4 +

a
2
‖u‖2 –

a
2

∫

�

m0(x)|u|2 dx –
aε

2

∫

�

|u|p dx – M0

∫

�

|u|p dx

≥ a
2

(

1 –
1

λk+1(m0)
– ετ 2

2

)

‖u‖2 +
b
4
‖u‖4 – M0τ

p
p ‖u‖p. (14)

Noting that λk(m0) < 1 < λk+1(m0) and 4 < p < 2∗, (13) and (14), let ε = min{(1 –
λk(m0))/λk(m0), (λk+1(m0) – 1)/λk+1(m0)}/2τ 2

2 , there is a constant r0 > 0 such that

I(u) < 0 for any u ∈ Vk with 0 < ‖u‖ ≤ r0,

I(u) > 0 for any u ∈ V ⊥
k with 0 < ‖u‖ ≤ r0.

(b) The functional I satisfies the (PS) condition. To the end, it suffices to say the func-
tional I is coercive on H1

0 (�), i.e., I(u) → +∞ as ‖u‖ → ∞.
If μ1(m∞) > 1, by (6), for any ε > 0, there is L1 > 0 such that

∣
∣4F(x, t) – bm∞(x)t4∣∣ ≤ bεt4 for any x ∈ � and |t| ≥ L1.

Hence, from the continuity of F , there exists M1 = M1(ε) > 0 such that

F(x, t) ≤ b
4

m∞(x)t4 +
bε

4
t4 + M1 for any (x, t) ∈ � × R. (15)

From (2), (10), and (15), we obtain

I(u) ≥ b
4
‖u‖4 +

a
2
‖u‖2 –

b
4

∫

�

m∞(x)|u|4 dx –
bε

4

∫

�

|u|4 dx – M1|�|

≥ b
4

(

1 –
1

μ1(m∞)
– ετ 4

4

)

‖u‖4 – M1|�|,
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where |�| denotes the Lebesgue measure of �. Hence, for ε > 0 small enough, it follows
that the functional I is coercive on H1

0 (�).
If μ1(m∞) = 1 and (7) hold, let

H(x, t) = F(x, t) –
b
4

m∞(x)t4.

By a simple computation, it follows that

H ′(x, t)t – 4H(x, t) = f (x, t)t – 4F(x, t).

From (7), for any M2 > 0, there is L2 > 0 such that

H ′(x, t)t – 4H(x, t) ≥ M2 for any x ∈ � and |t| ≥ L2.

Hence, we have

d
ds

(
H(x, s)

s4

)

=
H ′(x, s)s – 4H(x, s)

s5 ≥ M2

s5 for any x ∈ � and |s| ≥ L2.

Integrating the above expression over the interval [t, T] ⊂ [L2,∞), we obtain

H(x, t)
t4 ≤ H(x, T)

T4 +
M2

4

(
1

T4 –
1
t4

)

.

Noting that lim|T |→∞ H(x, T)/T4 = 0, let T → +∞, we obtain H(x, t) ≤ –M2/4 for t ≥ L2

and x ∈ �. Similarly, H(x, t) ≤ –M2/4 for t ≤ –L2 and x ∈ �. Hence, from the arbitrariness
of M2(> 0), we have

lim|t|→∞ H(x, t) = –∞ uniformly in x ∈ �.

Moreover, from the continuity of F , there is a positive constant M3 such that

H(x, t) < M3 for any (x, t) ∈ � × R. (16)

If the functional I is not coercive on H1
0 (�), there are a sequence {un} ⊂ H1

0 (�) and a
positive constant M4 such that ‖un‖ → ∞ as n → ∞ and I(un) ≤ M4. By the definition
of μ1(m∞) and μ1(m∞) = 1, we have that

∫

�
m∞(x)|un|4 dx ≤ ‖un‖4. Hence, from (16), it

follows that

M4 ≥ I(un) =
b
4
‖un‖4 +

a
2
‖un‖2 –

b
4

∫

�

m∞(x)|un|4 dx –
∫

�

H(x, un) dx

≥ b
4
‖un‖4 +

a
2
‖un‖2 –

b
4

∫

�

m∞(x)|un|4 dx – M3|�|

≥ a
2
‖un‖2 – M3|�|

→ +∞ as n → ∞,

which is a contradiction, and the conclusion is proved.
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(c) From (b), we have that the functional I is bounded from below. From the fact that
I(u) < 0 for any u ∈ Vk with 0 < ‖u‖ ≤ r0, we have infu∈H1

0 (�) I(u) < 0. Moreover, I(0) = 0.
Therefore, Theorem 1 is proved by Theorem A. �

Proof of Theorem 2 First of all, from (a) of the proof of Theorem 1, we have that the func-
tional I satisfies the local linking at zero with respect to (Vk , V ⊥

k ). And then, we know from
(9) that f (x, t) is 3-sublinear at infinity, which implies that the functional I is coercive on
H1

0 (�) by a standard argument. We obtain that the functional I is bounded from below
and satisfies the (PS) condition for N = 1, 2, 3. In the following, we only prove that the
functional I also satisfies the (PS) condition for p = 2∗ (N ≥ 4), where f (x, t) is not only
3-sublinear at infinity, but also is asymptotically critical growth at infinity.

In fact, let {un} be a (PS) sequence of I , that is,

I(un) → c, I ′(un) → 0 as n → ∞. (17)

Noting that the functional I is coercive on H1
0 (�), we obtain that {un} is bounded in H1

0 (�).
Going if necessary to a subsequence, we can assume un ⇀ u in H1

0 (�), and by the Rellich
theorem, un → u in Lr(�) (1 ≤ r < 2∗). From (17) and the boundedness of {un}, we have

〈
I ′(un), un – u

〉
=

(
a + b‖un‖2)

∫

�

∇un(∇un – ∇u) dx +
∫

�

f (x, un)(un – u) dx → 0 (18)

as n → ∞. From (9), for any ε > 0, there is M5 > 0 such that

∣
∣f (x, t)

∣
∣ ≤ ε|t|p–1 + M5 for any (x, t) ∈ � × R.

Hence, from Hölder’s inequality, (2), the boundedness of {un}, and the arbitrariness of ε,
we have

∣
∣
∣
∣

∫

�

f (x, un)(un – u) dx
∣
∣
∣
∣ ≤

∫

�

(
ε|un|p–1 + M5

)|un – u|dx

≤ ε

∫

�

(|un|p + |un|p–1|u|)dx + M5‖un – u‖L1

≤ ε‖un‖p–1
Lp

(‖un‖Lp + ‖u‖Lp
)

+ M5‖un – u‖L1

→ 0 as n → ∞.

Combining with (18), we have

∫

�

∇un(∇un – ∇u) dx → 0 as n → ∞.

Since un ⇀ u weakly in H1
0 (�), we have

∫

�

∇u(∇un – ∇u) dx → 0 as n → ∞.

Then un → u strongly in H1
0 (�) as n → ∞.

At last, similar to (c) of the proof of Theorem 1, Theorem 2 is proved. �
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