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1 Introduction
In this paper, we study the following initial-boundary value problem for a class of ther-
moelastic plate systems:

⎧
⎨

⎩

utt + �2u – g(‖∇u‖2
L2(Ω))�u – �utt + ν�θ = f (u), (x, t) ∈ Ω ×R

+,

θt – ω�θ – (1 – ω)
∫ ∞

0 k(τ )�θ (t – τ ) dτ – ν�ut = 0, (x, t) ∈ Ω ×R
+,

(1.1)

with boundary conditions

⎧
⎨

⎩

u = �u = 0, (x, t) ∈ ∂Ω × [0,∞),

θ = 0, (x, t) ∈ ∂Ω ×R,
(1.2)

and initial conditions
⎧
⎨

⎩

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω ,

θ (x, t) = θ0(x, t), (x, t) ∈ Ω × (–∞, 0],
(1.3)

where Ω is a bounded domain of RN (N ≥ 1) with a smooth boundary ∂Ω , 0 ≤ ω < 1, and
ν > 0. The function g , external force f and memory kernel k will be specified later.

It is well known that temperature gradients in a plate will contribute to plate deforma-
tion. Problem (1.1)–(1.3) can be used to describe the deformation and the temperature
distribution of a homogeneous, isotropic and thermoelastic thin material with memory,
see [1, 2] for the details. Functions u(x, t) and θ (x, t) represent the displacement and tem-
perature variation field relative to the equilibrium reference value, respectively. The cases
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ω = 0 and 0 < ω < 1 in (1.1)2 are usually referred to as the Gurtin–Pipkin model [3] and the
Coleman–Gurtin model [4], respectively. In the absence of thermal effects, (1.1) reduces
to an extensible plate equation. This class of equations model the vibrations of extensible
elastic beams (when N = 1) and plates (when N = 2), and have been extensively investi-
gated (see, e.g., [5–11] and the references therein).

Wu [12] studied
⎧
⎨

⎩

utt + �2u – �ut + �θ + f (u) = 0, (x, t) ∈ Ω ×R
+,

θt –
∫ ∞

0 k(τ )�θ (t – τ ) dτ – �ut = 0, (x, t) ∈ Ω ×R
+,

subject to (1.2) and (1.3). Under the assumption f ∈ C2, the author obtained the global
existence and uniqueness of solutions, as well as the existence of global attractors. More-
over, when f is assumed real analytic, the convergence of global solutions to a single steady
state, as time goes to infinity, was proved and also an estimate of the convergence rate was
provided. Barbosa and Ma [13] investigated problem (1.1)–(1.3) by adding an extra ex-
ternal force h to (1.1)1. Using the assumptions g, f ∈ C1, the authors derived the global
well-posedness of solutions, the existence of global attractors with finite fractal dimen-
sion, and the existence of exponential attractors.

In the present paper, our purpose is to tackle the global existence of solutions to prob-
lem (1.1)–(1.3) under weaker assumptions on g and f . As in [12, 13], we employ the past
history approach [14, 15], so that problem (1.1)–(1.3) can be transformed into an equiv-
alent system in the history phase space. By means of the potential well theory [16, 17],
we establish the theorems on global existence of solutions by discussing the level of initial
energy.

This paper is organized as follows. In Sect. 2, some assumptions on g , f and k are dis-
played. Moreover, problem (1.1)–(1.3) is transformed into an equivalent system, and the
main results of this paper are stated. In Sect. 3, the global existence of solutions with sub-
critical initial energy is established. In Sect. 4, the global existence of solutions with critical
initial energy is derived.

2 Preliminaries and main results
2.1 Notations and assumptions
Throughout the paper, for simplicity, we denote

‖ · ‖p := ‖ · ‖Lp(Ω), ‖ · ‖ := ‖ · ‖2.

Moreover, (·, ·) denotes either the L2-inner product or a duality pairing between a space
and its dual space.

We make the following assumptions on g , f and k, respectively.
(A1) g ∈ C(R), g(z) > 0, and there exists a constant α > 0 such that αG(z) ≥ zg(z), where

G(z) =
∫ z

0
g(s) ds.

(A2) f ∈ C(R). There exists a constant β > 0 such that |f (u)| ≤ β|u|p–1, where

2 ≤ p < ∞ if N ≤ 4, 2 ≤ p <
2N

N – 4
if N > 4.
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Moreover, there exists a constant γ > 2α̃ such that uf (u) ≥ γ F(u), where α̃ :=
max{1,α} and

F(u) =
∫ u

0
f (s) ds.

(A3) k ∈ C2(R+), k(τ ) ≥ 0, k′(τ ) ≤ 0 and k′′(τ ) ≥ 0 for all τ ∈ R
+. In addition, μ(τ ) :=

–(1 – ω)k′(τ ).

2.2 Reformulation of the problem
We define the auxiliary variable

ψ t(x, τ ) =
∫ τ

0
θ (x, t – s) ds, (x, τ ) ∈ Ω ×R

+, t ≥ 0.

Thus

–(1 – ω)
∫ ∞

0
k(τ )�θ (t – τ ) dτ = –

∫ ∞

0
μ(τ )�ψ t(τ ) dτ .

Consequently, in view of [15, p. 165], problem (1.1)–(1.3) is transformed into the following
equivalent system:

⎧
⎪⎪⎨

⎪⎪⎩

utt + �2u – g(‖∇u‖2)�u – �utt + ν�θ = f (u), (x, t) ∈ Ω ×R
+,

θt – ω�θ –
∫ ∞

0 μ(τ )�ψ t(τ ) dτ – ν�ut = 0, (x, t) ∈ Ω ×R
+,

ψ t
t (x, τ ) = θ (x, t) – ψ t

τ (x, τ ), (x, τ ) ∈ Ω ×R
+, t > 0,

(2.1)

with boundary conditions

⎧
⎪⎪⎨

⎪⎪⎩

u = �u = 0, (x, t) ∈ ∂Ω × [0,∞),

θ = 0, (x, t) ∈ ∂Ω × [0,∞),

ψ t(x, τ ) = 0, (x, τ ) ∈ ∂Ω ×R
+, t ≥ 0,

(2.2)

and initial conditions

⎧
⎪⎪⎨

⎪⎪⎩

u(x, 0) = u0(x), ut(x, 0) = u1(x),

θ (x, 0) = θ0(x),

ψ0(x, τ ) = ψ0(x, τ ),

(2.3)

where

θ0(x) = θ0(x, 0), x ∈ Ω ,

ψ0(x, τ ) =
∫ τ

0
θ (x, –s) ds, (x, τ ) ∈ Ω ×R

+.
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2.3 Statement of main results
We introduce a weighted L2-space

L := L2
μ

(
R

+; H1
0 (Ω)

)
=

{

ψ : R+ → H1
0 (Ω)|

∫ ∞

0
μ(τ )

∥
∥∇ψ(τ )

∥
∥2 dτ < ∞

}

,

which is a Hilbert space equipped with the inner product

(ψ ,ϕ)L =
∫ ∞

0
μ(τ )(∇ψ ,∇ϕ) dτ ,

and the norm

‖ψ‖2
L =

∫ ∞

0
μ(τ )‖∇ψ‖2 dτ .

Definition 2.1 (u(t), θ (t), vt) is called a weak solution to problem (2.1)–(2.3) if u ∈
L∞(0, T ; H2(Ω) ∩ H1

0 (Ω)), ut ∈ L∞(0, T ; H1
0 (Ω)), θ ∈ L∞(0, T ; L2(Ω)), ψ t ∈ L∞(0, T ;L),

u(x, 0) = u0(x), ut(x, 0) = u1(x), θ (x, 0) = θ0(x), ψ0(x, τ ) = ψ0(x, τ ), and

(utt ,ϕ1) + (�u,�ϕ1) +
(
g
(‖∇u‖2)∇u,∇ϕ1

)
+ (∇utt ,∇ϕ1) – ν(∇θ ,∇ϕ1) =

(
f (u),ϕ1

)
,

(θt ,ϕ2) + ω(∇θ ,∇ϕ2) +
(
ψ t ,ϕ2

)

L + ν(∇ut ,∇ϕ2) = 0,
(
ψ t

t ,ϕ3
)

L = (θ ,ϕ3)L –
(
ψ t

τ ,ϕ3
)

L,

for any ϕ1 ∈ H2(Ω) ∩ H1
0 (Ω), ϕ2 ∈ H1

0 (Ω), ϕ3 ∈L and a.e. t ∈ (0, T].

The energy associated with problem (2.1)–(2.3) is given by

E(t) =
1
2
‖ut‖2 +

1
2
‖∇ut‖2 +

1
2
‖�u‖2 +

1
2

G
(‖∇u‖2)

+
1
2
‖θ‖2 +

1
2
∥
∥ψ t∥∥2

L –
∫

Ω

F(u) dx.

Furthermore, we define the energy functional

J
(
u, θ ,ψ t) =

1
2
‖�u‖2 +

1
2

G
(‖∇u‖2) +

1
2
‖θ‖2 +

1
2
∥
∥ψ t∥∥2

L –
∫

Ω

F(u) dx,

and the Nehari functional

I
(
u, θ ,ψ t) = ‖�u‖2 + g

(‖∇u‖2)‖∇u‖2 + ‖θ‖2 +
∥
∥ψ t∥∥2

L –
∫

Ω

uf (u) dx.

Thus, all nontrivial stationary solutions belong to the Nehari manifold defined by

N =
{(

u, θ ,ψ t) ∈H \ {
(0, 0, 0)

}|I(u, θ ,ψ t) = 0
}

,

where H := H2(Ω) ∩ H1
0 (Ω) × L2(Ω) ×L. Then the mountain pass level of J can be char-

acterized as

d = inf
(u,θ ,ψ t )∈N

J
(
u, θ ,ψ t).
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We introduce the potential well

W =
{(

u, θ ,ψ t) ∈H|I(u, θ ,ψ t) > 0, J
(
u, θ ,ψ t) < d

} ∪ {
(0, 0, 0)

}
,

and let

W := W ∪ ∂W =
{(

u, θ ,ψ t) ∈H|I(u, θ ,ψ t) ≥ 0, J
(
u, θ ,ψ t) ≤ d

}
.

The main results of this paper are stated as follows.

Theorem 2.1 Let assumptions (A1)–(A3) be fulfilled, u0 ∈ H2(Ω) ∩ H1
0 (Ω), u1 ∈ H1

0 (Ω),
θ0 ∈ L2(Ω), ψ0 ∈ L. Assume that 0 < E(0) < d, and I(u0, θ0,ψ0) > 0 or (u0, θ0,ψ0) = (0, 0, 0).
Then problem (2.1)–(2.3) admits a global solution (u, θ ,ψ t) ∈W . Moreover,

E(t) + ω

∫ t

0
‖∇θ‖2 dτ ≤ E(0). (2.4)

Theorem 2.2 Let assumptions (A1)–(A3) be fulfilled, u0 ∈ H2(Ω) ∩ H1
0 (Ω), u1 ∈ H1

0 (Ω),
θ0 ∈ L2(Ω), ψ0 ∈ L. Assume that E(0) = d and I(u0, θ0,ψ0) ≥ 0. Then problem (2.1)–(2.3)
admits a global solution (u, θ ,ψ t) ∈W .

3 Proof of Theorem 2.1
Let {wj}∞j=1 be an orthogonal basis of H2(Ω)∩H1

0 (Ω) and let an orthonormal basis of L2(Ω)
be given by eigenfunctions of

⎧
⎨

⎩

�2w = λw, in Ω ,

w = �w = 0, on ∂Ω .

Then {vj}∞j=1 is an orthonormal basis of H1
0 (Ω), where vj = wj

λ
1
4
j

. We select {ej}∞j=1 as {lkvj}∞k,j=1,

where {lk}∞k=1 is an orthonormal basis of L2
μ(R+). Then {ej}∞j=1 is an orthonormal basis of L.

We construct the approximate solutions to problem (2.1)–(2.3) as

un(x, t) =
n∑

j=1

ξjn(t)wj(x), θn(x, t) =
n∑

j=1

ηjn(t)vj(x),

ψ t
n(x, τ ) =

n∑

j=1

ζjn(t)ej(x, τ ), n = 1, 2, . . . ,

which satisfy

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(untt , wj) + (�un,�wj) + (g(‖∇un‖2)∇un,∇wj)

+ (∇untt ,∇wj) – ν(∇θn,∇wj) = (f (un), wj),

(θnt , vj) + ω(∇θn,∇vj) + (ψ t
n, vj)L + ν(∇unt ,∇vj) = 0,

(ψ t
nt , ej)L = (θn, ej)L – (ψ t

nτ , ej)L, j = 1, 2, . . . , n,

(3.1)
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with

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

un(x, 0) =
∑n

j=1 ξjn(0)wj(x) → u0(x) in H2(Ω) ∩ H1
0 (Ω),

unt(x, 0) =
∑n

j=1 ξ ′
jn(0)wj(x) → u1(x) in H1

0 (Ω),

θn(x, 0) =
∑n

j=1 ηjn(0)vj(x) → θ0(x) in L2(Ω),

ψ0
n (x, τ ) =

∑n
j=1 ζjn(0)ej(x, τ ) → ψ0(x, τ ) in L.

(3.2)

The approximate problem (3.1)–(3.2) can be reduced to an ordinary differential system
in the variables ξjn(t), ηjn(t) and ζjn(t). In terms of standard theory for ODEs, there exists
a solution (un(t), θn(t),ψ t

n) on some interval [0, Tn) with Tn ≤ T . The following estimates
will allow us to extend the local solutions to [0, T] for all T > 0.

Multiplying (3.1)1 by ξ ′
jn(t), (3.1)2 by ηjn(t), and (3.1)3 by ζjn(t), summing over j, and

adding the two results, we obtain

d
dt

En(t) + ω‖∇θn‖2 = –
(
ψ t

nτ ,ψ t
n
)

L, (3.3)

where

En(t) =
1
2
‖unt‖2 +

1
2
‖∇unt‖2 +

1
2
‖�un‖2 +

1
2

G
(‖∇un‖2)

+
1
2
‖θn‖2 +

1
2
∥
∥ψ t

n
∥
∥2
L –

∫

Ω

F(un) dx. (3.4)

Since ψ t
n(x, 0) = 0, we deduce from (A3) that

(
ψ t

nτ ,ψ t
n
)

L =
1
2

∫ ∞

0

∂

∂τ

(
μ(τ )

∥
∥∇ψ t

n(τ )
∥
∥2)dτ –

1
2

∫ ∞

0
μ′(τ )

∥
∥∇ψ t

n(τ )
∥
∥2 dτ

≥ 0.

Hence, by integrating (3.3) with respect to t from 0 to t, we get

En(t) + ω

∫ t

0
‖∇θn‖2 dτ ≤ En(0). (3.5)

We now claim that

(
un(t), θn(t),ψ t

n
) ∈W , (3.6)

for all t ∈ [0, T] and sufficiently large n.
Indeed, if (u0, θ0,ψ0) = (0, 0, 0), then (u0, θ0,ψ0) ∈W . If I(u0, θ0,ψ0) > 0, then, from E(0) <

d, i.e.,

1
2
‖u1‖2 +

1
2
‖∇u1‖2 + J(u0, θ0,ψ0) < d,

it follows that J(u0, θ0,ψ0) < d. Hence (u0, θ0,ψ0) ∈ W . Thus (un(0), θn(0),ψ0
n ) ∈ W for

sufficiently large n due to (3.2). As a result, assertion (3.6) follows as desired. If it was
not the case, there would exist a 0 < t0 < T such that (un(t0), θn(t0),ψ t0

n ) ∈ ∂W , i.e.,
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I(un(t0), θn(t0),ψ t0
n ) = 0 and (un(t0), θn(t0),ψ t0

n ) �= (0, 0, 0), or J(un(t0), θn(t0),ψ t0
n ) = d. Due

to (3.4), (3.5) and (3.2), we get

1
2
‖unt‖2 +

1
2
‖∇unt‖2 + J

(
un, θn,ψ t

n
)

< d, (3.7)

for all t ∈ [0, T] and sufficiently large n. This tells us that J(un(t0), θn(t0),ψ t0
n ) = d is impos-

sible. On the other hand, if I(un(t0), θn(t0),ψ t0
n ) = 0 and (un(t0), θn(t0),ψ t0

n ) �= (0, 0, 0), then,
by the definition of d, we get J(un(t0), θn(t0),ψ t0

n ) ≥ d, which contradicts (3.7).
We deduce from (A1) and (A2) that

J
(
un, θn,ψ t

n
) ≥γ – 2α̃

2α̃γ

(‖�un‖2 + g
(‖∇un‖2)‖∇un‖2 + ‖θn‖2 +

∥
∥ψ t

n
∥
∥2
L
)

+
1
γ

I
(
un, θn,ψ t

n
)
.

Combining this with (3.4)–(3.6) and (3.2), we arrive at

γ – 2α̃

2α̃γ

(‖�un‖2 + g
(‖∇un‖2)‖∇un‖2 + ‖θn‖2 +

∥
∥ψ t

n
∥
∥2
L
)

+
1
2
‖unt‖2 +

1
2
‖∇unt‖2 + ω

∫ t

0
‖∇θn‖2 dτ < d, (3.8)

for all t ∈ [0, T] and sufficiently large n. Moreover,

∥
∥f (un)

∥
∥q

q ≤ βq‖un‖p
p ≤ βqCp

∗‖�un‖p < βqCp
∗

(
2α̃γ

γ – 2α̃
d
) p

2
,

where q = p
p–1 , and C∗ is the constant for the Sobolev embedding H2(Ω) ∩ H1

0 (Ω) ↪→
Lp(Ω).

Hence there exist (u, θ ,ψ t) and subsequences of {un}, {θn}, {ψ t
n}, still represented by the

same notations (and we shall not repeat this), such that, as n → ∞,

un ⇀ u weakly star in L∞(
0, T ; H2(Ω) ∩ H1

0 (Ω)
)
, (3.9)

un → u strongly in Lp(Ω) and a.e. in Ω × [0, T], (3.10)

unt ⇀ ut weakly star in L∞(
0, T ; H1

0 (Ω)
)
, (3.11)

θn ⇀ θ weakly star in L∞(
0, T ; L2(Ω)

)

(
and weakly in L2(0, T ; H1

0 (Ω)
)

if ω > 0
)
, (3.12)

ψ t
n ⇀ ψ t weakly star in L∞(0, T ;L), (3.13)

f (un) ⇀ χ weakly star in L∞(
0, T ; Lq(Ω)

)
,

for any T > 0. In view of [18, Lemma 1.3], we have χ = f (u). According to the Aubin–Lions
lemma, we have

un → u strongly in L2(0, T ; H1
0 (Ω)

)
,
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which, together with (3.8), (3.9) and (3.11), gives

un → u strongly in C
(
0, T ; H1

0 (Ω)
)
. (3.14)

Therefore, by the arguments similar to the proof given in [14, p. 343–345], we can pass to
the limit in the approximate problem (3.1)–(3.2). Thus (u, θ ,ψ t) ∈ W is a global solution
to problem (2.1)–(2.3).

Next, we prove (2.4). Indeed, note that

∣
∣G

(‖∇un‖2) – G
(‖∇u‖2)∣∣ =

∫ 1

0
g(ϑ1) dσ

∣
∣‖∇un‖2 – ‖∇u‖2∣∣

≤ C1‖∇un – ∇u‖,

where ϑ1 = σ‖∇un‖2 + (1 – σ )‖∇u‖2, 0 < σ < 1. Hence it follows from (3.14) that

lim
n→∞ G

(‖∇un‖2) = G
(‖∇u‖2). (3.15)

Furthermore,

∣
∣
∣
∣

∫

Ω

F(un) dx –
∫

Ω

F(u) dx
∣
∣
∣
∣ ≤

∫

Ω

∣
∣f (ϑ2)

∣
∣|un – u|dx

≤ ∥
∥f (ϑ2)

∥
∥

q‖un – u‖p

≤ C2‖un – u‖p,

where ϑ2 = σun + (1 – σ )u. This, together with (3.10), yields

lim
n→∞

∫

Ω

F(un) dx =
∫

Ω

F(u) dx. (3.16)

Consequently, by (3.9), (3.11)–(3.13), (3.5), (3.15), (3.16) and (3.2), we obtain

1
2
‖ut‖2 +

1
2
‖∇ut‖2 +

1
2
‖�u‖2 +

1
2
‖θ‖2 +

1
2
∥
∥ψ t∥∥2

L + ω

∫ t

0
‖∇θ‖2 dτ

≤ lim inf
n→∞

(
1
2
‖unt‖2 +

1
2
‖∇unt‖2 +

1
2
‖�un‖2 +

1
2
‖θn‖2 +

1
2
∥
∥ψ t

n
∥
∥2
L

+ ω

∫ t

0
‖∇θn‖2 dτ

)

≤ lim inf
n→∞

(

En(0) –
1
2

G
(‖∇un‖2) +

∫

Ω

F(un) dx
)

= E(0) –
1
2

G
(‖∇u‖2) +

∫

Ω

F(u) dx.

Thus the proof of Theorem 2.1 is complete.

4 Proof of Theorem 2.2
We divide the proof of this theorem into two cases.
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Case 1. (u0, θ0,ψ0) �= (0, 0, 0).
Let δm = 1 – 1

m , um0 = δmu0, θm0 = δmθ0 and ψm0 = δmψ0, m = 2, 3, . . . . We consider prob-
lem (2.1)–(2.2) with the following initial conditions:

⎧
⎪⎪⎨

⎪⎪⎩

u(x, 0) = um0(x), ut(x, 0) = u1(x),

θ (x, 0) = θm0(x),

ψ0(x, τ ) = ψm0(x, τ ).

(4.1)

From I(u0, θ0,ψ0) ≥ 0,

J
(
δu, δθ , δψ t) =

1
2
δ2‖�u‖2 +

1
2

G
(
δ2‖∇u‖2) +

1
2
δ2‖θ‖2

+
1
2
δ2∥∥ψ t∥∥2

L –
∫

Ω

F(δu) dx,

and

I
(
δu, δθ , δψ t) = δ

d
dδ

J
(
δu, δθ , δψ t),

it is easy to verify that there exists a unique δ∗ = δ∗(u0) ≥ 1 such that J(δu, δθ , δψ t) is strictly
increasing for δ ∈ [0, δ∗] and assumes the maximum at δ = δ∗. Hence J(um0, θm0,ψm0) <
J(u0, θ0,ψ0) and I(um0, θm0,ψm0) > 0. Moreover,

J(um0, θm0,ψm0) ≥ γ – 2α̃

2α̃γ

(‖�um0‖2 + g
(‖∇um0‖2)‖∇um0‖2 + ‖θm0‖2

+
∥
∥ψ t

m0
∥
∥2
L
)

+
1
γ

I(um0, θm0,ψm0)

> 0.

We further obtain

Em(0) =
1
2
‖u1‖2 +

1
2
‖∇u1‖2 + J(um0, θm0,ψm0) > 0,

and

Em(0) <
1
2
‖u1‖2 +

1
2
‖∇u1‖2 + J(u0, θ0,ψ0) = E(0) = d.

Hence, we conclude from Theorem 2.1 that problem (2.1)–(2.2) and (4.1) admits a global
solution (um(t), θm(t),ψ t

m) ∈W satisfying

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(umtt ,ϕ1) + (�um,�ϕ1) + (g(‖∇um‖2)∇um,∇ϕ1)

+ (∇umtt ,∇ϕ1) – ν(∇θm,∇ϕ1) = (f (um),ϕ1),

(θmt ,ϕ2) + ω(∇θm,∇ϕ2) + (ψ t
m,ϕ2)L + ν(∇umt ,∇ϕ2) = 0,

(ψ t
mt ,ϕ3)L = (θm,ϕ3)L – (ψ t

mτ ,ϕ3)L,
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with

⎧
⎪⎪⎨

⎪⎪⎩

um(x, 0) = u0(x), umt(x, 0) = u1(x),

θm(x, 0) = θ0(x),

ψ0
m(x, τ ) = ψ0(x, τ ),

and

Em(t) + ω

∫ t

0
‖∇θm‖2 dτ ≤ Em(0).

Consequently,

γ – 2α̃

2α̃γ

(‖�um‖2 + g
(‖∇um‖2)‖∇um‖2 + ‖θm‖2 +

∥
∥ψ t

m
∥
∥2
L
)

+
1
2
‖umt‖2 +

1
2
‖∇umt‖2 + ω

∫ t

0
‖∇θm‖2 dτ < d,

By the arguments similar to the proof of Theorem 2.1, we see that problem (2.1)–(2.3)
admits a global solution (u, θ ,ψ t) ∈W .

Case 2. (u0, θ0,ψ0) = (0, 0, 0).
In this case, it is clear that J(u0, θ0,ψ0) = 0. Thus

E(0) =
1
2
‖u1‖2 +

1
2
‖∇u1‖2.

Let δm = 1 – 1
m and um1 = δmu1(x), m > 1 and consider problem (2.1)–(2.2) with the follow-

ing initial conditions:

⎧
⎪⎪⎨

⎪⎪⎩

u(x, 0) = u0(x), ut(x, 0) = um1(x),

θ (x, 0) = θ0(x),

ψ0(x, τ ) = ψ0(x, τ ).

(4.2)

Note that

0 < Em(0) =
1
2
‖um1‖2 +

1
2
‖∇um1‖2 < E(0).

We conclude from Theorem 2.1 that problem (2.1)–(2.2) and (4.2) admits a global solution
(um, θm,ψ t

m) ∈W . The remainder of the proof is the same as in Case 1.
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