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We consider the second-order nonlocal impulsive differential system

=" =alt)xy + wOf(x), 0<t<1,tFt,
—y"=0bt)x, 0<t<1,t#t,

AX|=, = k@), k=1,2,....n,
Ayl = h@), k=1,2,....n,

x(0) = [, hx®dt, X (1)=0,

yO) = [ gy®dt,  y()=0

where the weight functions a(t), b(t), and w(t) change sign on [0, 1], and g(t) # 0 and
h(t) # 0 on [0, 1]. By constructing a cone Ky x K>, which is the Cartesian product of
two cones in space PC[0, 1], and applying the well-known fixed point theorem of
cone expansion and compression in Ky x K>, we obtain conditions for the existence
and multiplicity of positive solutions of a nonlocal indefinite impulsive differential
system. An example is given to illustrate the main results.
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1 Introduction

It is generally accepted that the theory and applications of differential equations with im-
pulsive effects are an important area of investigation, since it is far richer than the cor-
responding theory of differential equations without impulsive effects. Various population
models, biological system models, ecology models, biotechnology models, pharmacoki-
netics models, and optimal control models, which are characterized by the fact that per
sudden changing of their state, can be expressed by impulsive differential equations. For
an introduction of general theory of impulsive differential equations, we refer the reader to
the references [1] and [2], whereas the applications of impulsive differential equations can
be found in [3-5]. Some classical methods have been widely used to study impulsive dif-
ferential equations: the theory of critical point theory and variational methods [6—8], fixed
point theorems in cones [9-25], and bifurcation theory [26, 27]. In particular, we would
like to mention some results of Lin and Jiang [28] and Feng and Xie [29]. Lin and Jiang [28]
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considered the following Dirichlet boundary value problem with impulse effects:

-u"(t)=f(t,u(t), telt#t,
A |y = —D(u(ty)), k=1,2,...,m, (1.1)
u(0) = u(1) = 0,

and by means of the fixed point index theory in cones the authors obtained some sufficient
conditions for the existence of multiple positive solutions for problem (1.1).
Recently, using fixed point theorems in a cone, Feng and Xie [29] studied the existence

of positive solutions for the following problem:

—u'() =f(t,ult), teltt
—Auﬂmk =L(u(t), k=1,2,...,n, (1.2)
w(©) = Y2 auE),  w(l) = Y bulE).

In comparison with numerous results on the impulsive differential equations, it is less
known about the impulsive differential systems, even for the nonlocal impulsive differen-
tial systems.

Moreover, we see that increasing attention has been paid to the study of boundary value
problems with integral boundary conditions; for example, see Liu, Sun, Zhang, and Wu
[30], Zhang, Feng, and Ge [31], Zhang and Ge [32], Hao et al. [33—35], Yan, Zuo, and Hao
[36], Zhang et al. [37, 38], Sun, Liu, and Wu [39], Lin and Zhao [40], and Ahmad, Alsaedi,
and Alghamdi [41]. This problem contains two-, three-, and multipoint boundary value
problems as particular cases; for instance, see Karakostas and Tsamatos [42], Feng and
Ge [43], Jiang, Liu, and Wu [44], Lan [45], Zhang et al. [46-50], Feng, Du, and Ge [51],
Ahmad and Alsaedi [52], Mao and Zhao [53], Liu, Hao, and Wu [54], and the references
therein. Specifically, Boucherif [55] exploited the fixed point theorem in cones to study
the following problem:

u'(t) =f(t,u(t), O0<t<l,
u(0) - cu'(0) = [ go(t)u(d) dt, (1.3)
u(l)—du' (1) = [ @i (Oult)dt.

The author obtained several excellent results on the existence of positive solutions to prob-
lem (1.3).

Feng, Ji, and Ge [56] began to study the following boundary value problem with integral
boundary conditions in abstract spaces:

u'(t)+f(tu() =0, 0<t<l,

1 (1.4)
u(0) = [y g(Ou(e) dt, u(l) =6.
Applying the fixed point theory in a cone for strict set contraction operators, the authors
investigated the existence, nonexistence, and multiplicity of positive solutions for problem
(1.4).
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Recently, Kong [57] considered the existence and uniqueness of positive solutions for

the second-order singular boundary value problem:

I/l/,(t) + )\f(l/l(t)) =0, te (O; 1)» (1 5)

u(0) = [y u(s)dA(s),  u(l) = [, u(s)dB(s). '
The author examined the uniqueness of the solution and its dependence on the parameter
A for problem (1.5) by using the mixed monotone operator theory.

Simultaneously, an indefinite problem has attracted the attention of Ma and Han [58],
Lopez-Gomez and Tellini [59], Boscaggin and Zanolin [60], Feltrin and Zanolin [61],
Boscaggin et al. [62, 63], Sovrano and Zanolin [64], Bravo and Torres [65], Wang and An
[66], and Yao [67]. Ma and Han [58] considered the following boundary value problem:

u' +ra(t)f(u)=0, O0<t<l,
u(0) = u(1) =0,

(1.6)

where a € C[0, 1] may change sign, and A is a parameter. They proved the existence, mul-
tiplicity, and stability of positive solutions for problem (1.6) by applying bifurcation tech-
niques.

Aapplying the shooting method, Sovrano and Zanolin [60] presented a multiplicity re-

sult for positive solutions for the Neumann problem

u +alt)f(u)=0, O0<t<l,
u(t)>0, tel0,T], (1.7)
u'(0)=u/(T)=0,

where the weight function a € C[0, 1] has indefinite sign.
Recently, Wang and An [66] dealt with the existence and multiplicity of positive solu-

tions for the second-order differential system

~u" =at)ou+h(t)f(u), 0<t<l,
-¢" =b(t)u, O0<t<l,

u(0) = u(1) =0,

9(0) = ¢(1) =0,

(1.8)

where a(t), b(t), and g(¢) are allowed to change sign on [0, 1]. For the latest results of indef-
inite problems, please refer to Jiao and Zhang [68], Feltrin and Sovrano [69], and Zhang
[70].

For all we know, in the literature there are no papers on multiple positive solutions for
analogous indefinite impulsive differential systems with nonlocal boundary value condi-

tions. More precisely, the study of a(t), b(¢), and w(t) changing sign on [0, 1] is still open
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for the second-order nonlocal impulsive differential system

&' =a(t)xy + w(@)f(x), 0<t<1l,t#k,
—y"=b(t)x, O<t<l,

A=y = L(x(tr)), k=1,2,...,n,
AYleey = (), k=1,2,...,m,

x(0) = [ h(t)x(H)dt,  x'(1) =0,

)0) = [y gytd,  y(1)=0,

where a(t), o(t), b(t) change sign on [0,1], & (k = 1,2,...,n; where # is a fixed positive
integer) are fixed points such that 0 < #; <y <--- <fg <--- < t; < 1, Ax|;;, denotes the
jump of x(t) at ¢ = &, that is, Ax|,;, = x(£;) — x(¢;), where x(¢) and x(¢;) represent the
right- and left-hand limits of x(¢) at ¢ = #, respectively; Ay|;-;, has a similar meaning for
y(2). In addition, a, w, b, f, Iy, and Ji (k = 1,2,...,n) satisfy (H1) a,w,b : [0,1] — (—00, +00)
are continuous, and there exists a constant £ € (0, 1) such that

a(t),w(t),b(t) >0, Vtel0,&],

a(t), w(t),b(t) <0, Vtel[§,1].
Moreover, a(t), w(t), b(t) do not vanish identically on any subinterval of [0, 1].
(H2) f:10,+00) — [0, +00) is continuous.

(H3

) I : [0, +00) — [0, +00) is continuous.
(Hy) Ji: [0,+00) = [0, +00) is continuous.
)

(Hs) h,g € L'[0,1] are nonnegative, and v, v; € [0,1), where

1 1
v:/O g(s)ds, V1 :/o h(s)ds. (1.10)

Let / = [0,1] and J' = J\{t1,t2,...,t,}. The basic space used in this paper is PC[0,1] =
{u|u : [0,1] — Ris continuous at t # &, u(t;) = u(tx), and u(ty) exists,k = 1,2,...,n}. Then
PC[0,1] is a real Banach space with the norm

llellpc, = max |u(z)|.
te]

For convenience, consider PC; [0, 1] = {x : x is continuous at ¢ # i, x(¢;) = x(¢), and x(¢])

exists, k = 1,2,...,n}, which is a real Banach space with norm
||x||PC1 = max|x(t)|,
te]

and PC,[0,1] = {y : yis continuous at ¢ # f,x(t;) = x(tx),and y(t}) exists, k = 1,2,...,n},
which is a real Banach space with norm

- 1|,
Iyllec, n;gX!y( )|
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Clearly, PC;[0,1] x PC,[0,1] is also a real Banach space with norm

|(x.%)|| = max{llllpc,» 1¥llpc, }-

By a positive solution of system (1.9) we mean a pair of functions (x, y) with x € C2(J') N
PC,[0,1] and y € C2(J') N PC,[0, 1] such that (x, y) satisfies system (1.9) and x,y > 0, t € J/,
%,y # 0.

Remark 1.1 The technique to deal with the impulsive term is completely different from
that of [6-27].

Remark 1.2 When we consider nonlocal differential systems with indefinite weights, an-

other difficulty is to prove T': K1 x Ky — Kj x Kj; for details, see Lemma 2.3.

Remark 1.3 It is not difficult to see that Proposition 2.3 of [67] plays key roles in the proofs
of main results of [66] and [67]. However, it is invalid for nonlocal problems; for details,

see Corollary 4.1.

Remark 1.4 In comparison with other related indefinite problems [58—66], the main fea-
tures of this paper are as follows.
(i) Ii,Jx #0 (k=1,2,...,n) are introduced.
(ii) Nonlocal boundary conditions are introduced.
(iii) K7 x K; is the Cartesian product of two cones in the space PC[0, 1].
We define a*(£), o*(¢), and b*(¢) as

a*(t) = max{a(t),O}, a ()= —min{a(t),O},
ot (t) = max{w(t),O}, w (t) = —min{a)(t),O},

b*(t) = max{b(t),O}, b () = —min{b(t),O},
so that
a(t)=a*(t) —a (t), o(t) = w*(t) — 0™ (t), b(t)=b*(t)-b~(¢), Vtel0,1].

Inspired by the references mentioned, in this paper, we investigate the existence and
multiplicity of positive solutions for system (1.9). By constructing a cone K; x K, which is
the Cartesian product of two cones in the space PC[0, 1], and using the well-known fixed
point theorem of cone expansion and compression, we obtain conditions for the existence
and multiplicity of positive solutions of system (1.9). We remark that this is probably the
first time that the existence and multiplicity of positive solutions of impulsive differential
systems with indefinite weight and integral boundary conditions have been studied.

The rest of this paper is organized as follows. In Sect. 2, we give some preliminary results.
Section 3 is devoted to state and prove the main results. Finally, an example is given in
Sect. 4.



Jiao and Zhang Boundary Value Problems (2018) 2018:163 Page 6 of 34

2 Preliminaries
In this section, we give some preliminary results for the convenience of later use and ref-
erence. It is clear that system (1.9) is equivalent to the following two boundary value prob-

lems:

-y =b(t)x, O0<t<l,t#,
Ay't:tk =]k(y(tk))7 k= 1;2;-..,}’1, (21)
y(0) = [y gy dt,  y(1)=0,

and

" =at)xy + w(@)f(x), O<t<lt#t,
Axliey = Ix(®)),  k=1,2,...,m, (2.2)
x(0) = [} h(t)x(H)dt,  «'(1)=0.

Lemma 2.1 Assume that (Hy), (H,), (Hy), and (Hs) hold. Then problem (2.1) has a unique
solution y, which can be expressed in the form

1 n
0= [ (eI ds + Y Ht sk (e), 23)
0 k=1
where
1 1
H(t,s) = G(t,s) + ﬁ/ G(t,s)g(r)dr, (2.4)
-vJo
1
H.(t,s) = G.(t,s) + : v/ G.(t,9)g(r)dr, (2.5)
-vJo
t, 0<t<s<l,
G(t,s) = (2.6)
s, 0<s<t<l,
, 0<t=<s<],
G.(t,s) = (2.7)
1, 0<s<t<l.

Proof First, suppose that u is a solution of problem (2.1). It is easy to see by integration of
problem (2.1) that

YO -y(0) = f b(s)x(s) ds. (2.8)
Integrating again, we get

y(t) = y(0) + ¥/ (0)t — /(; (t — 5)b(s)x(s) ds + Z]k (y(tk)). (2.9)

tr<t

Letting ¢ = 1 in (2.8), we find

1
¥(0) = / b(s)x(s) ds. (2.10)
0
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Substituting the boundary condition y(0) = fol g(t)y(t) dt and (2.10) into (2.9), we obtain

1 1 t
y(t) = /0 g(s)y(s)ds + t/o b(s)x(s) ds — /(; (t — 5)b(s)x(s) ds + Z]k (y(tk))

tr<t

1 1 n
= / g(s)y(s)ds + / G(t,s)b(s)x(s)ds + Y _ Gi(t, )i (y(t)),
0 0

k=1

where

/Olg(s)y(s)ds = /olg(s) |:/01g(t)y(t)dr + [01 G(s,7)b(t)x(t) dt

+ Z G.(s, )k (y(tk)):| ds

k=1

1 1 1 1
= d 7} G(s,7)b d
/Og(S) S/o g(m)y(r) r+f0 g(S)[/O (s, T)b(t)x(7) dr

+) Gls, T)]k(y(tk)):| ds.

k=1

Therefore we have

k=1

1 1 1 1 n
/0 g(s)y(s)ds = . /0 g(s) |:/0 G(s,t)b(t)x(t)dT + Z G, (s, r)]k(y(tk)):| ds

and

1 1 1 n
y(t) = T /0 g(s) |:/0 G(s,T)b(t)x(r)dT + Z G.(s, r)]k(y(tk))i| ds

k=1

1 n
+ fo G(t,5)b(s)x(s)ds + Y _ Gy(t, )]k (¥(t))

k=1

1 1
B 1iv/0 [/0 G(f’s)g(f)df}b(S)y(S)ds

1 g
+ 1—v/0 [; G;(T;S)g(f)]k(y(tk))j| dt

1 n
+ /0 G(t,5)b(s)x(s)ds + Y _ Gi(t, )k (y(t)).-

k=1

Let

H(t,s) = G(t,s) + N 1

-V

/1 G(t,s)g()dr,
0

1
H.(t,s) = G.(£,s) + 1

1
5 /0 G(t,s8)g(r)dr.
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Then

1 n
¥(6) = /0 Ht,)b(s)x(s)ds + 3 HI(t, 6 (4(20))-

k=1

The proof of sufficiency is complete.
Conversely, let u be a solution of (2.1). Direct differentiation of (2.4) and (2.5) implies,
fort Z by,

1 t
'(t) = b - b .
Y0 /0 (5)(5) /0 (5)(5)
Evidently,

—y" = b(t)x,

AYlp=gy =]k(y(tk)), k=1,2,...,n,

1
y(()):/ g()y(®) dt, ¥y (1) =0.
0
The lemma is proved. O

Proposition 2.1 Let G(t,s), Gi(¢,s), H(t,s), and H,(t,s) be given as in Lemma 2.1. If v €
[0,1), then we get

G(t,s) >0, H(t,s)>0, Vtse(0,1), (2.11)
G(t,t)G(s,8) < G(t,s) < G(s,s)=s <1, Vt,se], (2.12)
pG(t, t)G(s,s) < H(t,s) < H(s,s) = yG(s,s) <y, Vtse], (2.13)
G.(t,s) <1, 0<H(ts)<y, Vise], (2.14)
where
1
1 tg(t)dt
yo 2 p:l+f0L. (2.15)
1-v 1-v

Proof By the definition of G(¢,s) and H(Z, s), relations (2.11) and (2.12) are simple to prove.
Next, we consider (2.13). In fact, from (1.10) and (2.12) we get

H(t,s) < G(s,s) +

1
T V/o G(s,s)g(tr)dr

1
= G(s,s)<1+ liv/() g(t)dr)

1
:—G ,
- (s,9)

=v
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and

1

-V

H(t,s) > G(t,t)G(s,s) +

fl G(s,5)G(t,7)g(r)dt
0

1
= G(s,s)(G(t,t)+ %/0 G(T,‘L')g(l’)d‘[)

1
> G(s,s)(G(t, p+ G010 / G(r,t)g(r)dt)
1—-v 0

G , 1
= G(s,s)G(t,t)(1+ l(f 1?[0 rg(t)dr)

= pG(t,£)G(s, ).

This shows that (2.13) holds.
Similarly, by the the definition of G,(¢,s) and H.(t,s), we can prove that (2.14) holds. [

Remark 2.1 From (2.5) we can prove that

1
H(¢,s) > / g(r)dr, Vtsel0,§].
&

1-v

Proof 1t follows from (2.5) and (2.7) that

Hl(¢t,s) =

s

£ fo Gir,9)g(r)dr, 0<t<s<l,
L+ 24 [, Giz,9g(x)dr, 0=<s

<t<l1

_ ﬁ[fos G.(t,8)g(r)dr + j;l G.(t,s)g(r)dr], 0<r<s<],
1+ L[S GUr,9)g(t)dr + [ Gl(t,5)g(x)dr], O<s<t<1

lTlufslg(t)dT, 0<t<s<lI,
1+ﬁf:g(f)d1—, 0<s<t<l1
1

1
. ) g(t)dr, Vtse[0,&]. 0

v

Lemma 2.2 Assume that (Hy)—(H3) and (Hs) hold. Then problem (2.2) has a unique solu-

tion x given by

1 1
x(t) = / H,(t,s)a(s)x(s)y(s) ds +/ Hy(t,8)o(s)f (x(s)) ds
0 0

+ 3 Hi (6t (x(8)), (2.16)
k=1
where
1
Hi(t,s) = G(t,s) + 5 / G(t,s)h(t)dr, (2.17)
-1 Jo

1
Hi(t,s) = Gi(t,s) + 1

1
/ G.(t,9)h(r)dz. (2.18)
0
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Proof The proof of Lemma 2.2 is similar to that of Lemma 2.1. O

Proposition 2.2 Let H, and H;, be given as in Lemma 2.1. If v, € [0, 1), then we get

p1G(t,£)G(s,s) < Hi(t,s) < Hi(s,8) = y1G(s,s) <1, Vt,s€], (2.19)
Gy(t,s) <1,  O<H(t;s) <y, Vtse], (2.20)
where
1
1 th(t)dt
V1= ) p1=1+ foi' (2.21)
1-v; 1-1

Remark 2.2 From (2.18) we can prove that

1

1—\)1

1
Hi(ts)> /h(t)dr, Vt,s € [0,£].
&

Remark 2.3 Let (x,y) be a solution of system (1.9). Then from Lemma 2.1 and Lemma 2.2
we have

1 1 1
x(t):/ / Hl(t,s)H(s,r)a(s)b(t)x(s)x(r)drds+/ Hl(t,s)a)(s)f(x(s))ds
0o Jo 0
1 n n
+ /0 Hl(t,s)a<s>x<s)(ZH;(s,tkm(y(tk))) ds+ ) Hi (6 t)(x®),  (2.22)
k=1 k=1

1 n
70 = [ HE9p6)ds + Y H (6801 060),
k=1

where

1
H.(s,7)=G.(s,7) + :

1
/0 G, (5, 1)g(§)dE.

To obtain the existence and multiplicity of a positive solution of system (1.9), we make
the following hypotheses:
(Hs) There exists a constant o7 satisfying 0 < o7 < & such that

&
01/ H(t,s)b*(s)dsz“g‘/;H(t,s)b_(s)ds;

(H7) There exists a constant o5 satisfying 0 < o3 < € such that

3 1
002/ Hi(t,s)G(s,s)a’ (s)ds > y& f Hi(¢t,8)a (s)ds;
o) §
(Hg) There exists a constant u satisfying 0 < u < 1 such that

flw) = pp(w), o el0,+00),

where ¢(w) = max{f(p) :0 < p < w};
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(Hy) There exist constants 0 < & < +00 with « # 1 and ky, ko, I3, [, m1, my > 0 such that

kix® < f(x) < kox®, hx® < Ii(x) < bx”,

my® < Ji(y) <moy”, %,y € [0, +00);

(Hio) There exists 0 < 03 < & satisfying 3 < £; < o3 such that
& 1
o:f;‘uzkl/ Hi(t,s)w*(s)ds > /QE"‘/ Hi(t,s)w (s)ds.
o3 §
Obviously, ¢ : [0,+00) — [0,+00) is nondecreasing. Moreover, if f is nondecreasing,
thenf =¢pand n=1.

We denote

1
PC{[0,1] = {x € PC;[0,1] :Ornin1 x(¢) > 0 and x(0) = / h(t)x(t) dt, ' (1) = O},
<t< 0

Ky = {x € PC{[0,1] : x is concave on [0,£], and convex on [£, 1]},

1
PC;[0,1] = {y € PC,[0,1] :Orgigly(t) >0 and y(0) = / g@)y(@)dt,y' (1) = 0},
< 0

K = {y € PC;[0,1] : y is concave on [0,£],and convex on [£, 1] }

If x € K, then it is easy to see that ||x|lpc, = maxo<;<¢ [%(£)|. Similarly, we have ||y|lpc, =
maxo<;<¢ [y(¢)|. Also, for a positive number r, we define

2= (@) €Ki x Ko, [ )] <7},
and then we get
12, = {(wy) €Ki x Ko, | )] = ).

For any (x,7) € K; x Ky, define the mappings T; : K1 — PC;[0,1], T5 : Ky — PC,[0,1],
and T: K7 x Ky — PC;[0,1] x PC,[0,1] as follows:

1,1
(Tlx)(t)z/o /(; Hi(t,8)H(s, t)a(s)b(t)x(s)x(t) dt ds

1
+/ Hl(t,s)a)(s)f(x(s))ds
0

1 n
- Hl(t,s)ms)x(s)(ZH;u,tk)Jk(y(tk))) ds
’ ko1 (2.23)

+ Y Hy (8 )T (x(8))

k=1

1 n
(Toy)(t) = /0 H(t,9)b(s)yx(s)ds + 3 HU(t, 00k ((80)),
k=1

(T(x)() = (T1x)(2), (T2)(2))-

Page 11 of 34
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Remark 2.4 1t follows from Lemmas 2.1-2.2 and Remark 2.3 that (x,y) is a solution of
system (1.9) if and only if (x, ) is a fixed point of operator T'.

Lemma 2.3 Assume that (H,)—(Hyo) hold. Then T(K; x K3) C Ky x Ky, and T : Ki x Ky —
Ky x Ky is completely continuous.

Proof For any (x,y) € K1 x K;, we prove that T'(x,y) € K x K, thatis, T1x € Kj and Ty €
K. In view of (2.20), we know that

1 ¢
T1x) (t) = ds — ds,
(Th)'(2) /0 z(s) ds /Oz(s) s

where
2(s) = a(s)xy + w(s)f (x(s)),

and then we have (T1x)'(1) = 0. From (2.14) and (2.20) we get
1 pl 1
(T1x)(0) :/ / H1(0,s)H(s, t)a(s)b(t)x(s)x(t) dt ds+/ Hl(O,s)a)(s)f(x(s)) ds
o Jo 0

1 n n
+ /0 Hi(0,5)a(s)x(s) (Z H.(s,t)Ji (y(tk))> ds+ Y Hi (0, i) I (x(t))
k=1 k=1

1 1 1
= L /oa(s)x(s)/o G(r,s)h(t)drds/o H(s,t)b(t)x(t)dt

1—1}1

1 1 1 n
T 0 /0 a(s)x(s)/o G(z,s)h(t)dr (ZHT(S, tk)]k(y(tk))> ds

k=1

+

1 1
/ w(s)f(x(s)) / G(z,s)h(t)dt ds
0 0

1—1)1

+

1 !
Z/ G.(t,8)h(v) dr I (x(t))
k=170

1—1)1 —
and
1 1 1 1
/0 h(t)(Tlx)(t)dt:/0 h(t) |:/0 /(; Hi(t,8)H(s, T)a(s)b(t)x(s)x(t)dt ds
1 n
+ / Hi(t,s)a(s)x(s) (ZHL(S,tk)]k(y(tk))) ds
0 k=1
1 n
+ /0 Hy (6, s)(s)f (x(s) ds + Y H; (¢, 61 (x(tk)):| dt
k=1

1 1 1
:/ h(t)dt/ Hl(t,s)a(s)x(s)ds/ H(s,7)b(t)x(t)dt
0 0 0

1 1 n
+ /0 h(t) dt /0 Hl(t,s)a(s)x(s)(;Hg(s,rk)/k(y(tk))> ds
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1 1

+/0 h(t)dt/(; H,y (£, s)w(s)f (%(s)) ds
nooal

+y / Hy (& t)h(e) dtli (x(t) )
k=1"0

1 1 1
/ a(s)x(s)/ G(t,s)h(t)dTt ds/ H(s,7)b(t)x(t)dt
0 0

1—\)1 0
1 1 n
[ a0 [ Gan: (EH“S’ tkyk(y(tk»)ds

1 1
+1_U11;wﬁy@ﬁﬂﬂ G(z,s)h(t)dr ds

n 1
3 / G.(t,8)h(x) dr I (x(1))

1—1)1 1 0

= (T1x)(0).

Similarly, we have (T»y)'(1) = 0, (T2y)(0 fo O(Toy)(t) d
Define the function g : [0, 1] [0, 1] as follows:
if x(1) = 0, then

—_

-t

q(t) = ml{ }, Vte];

WY'|H
—_

e

if x(1) > 0, then
. t
q(t) = mm{g,l}, Vte].

Since o1 < &, maxo<;<1 4(¢) = 1 and ming, <;<¢ g(¢) = %, i=1,2,3.

Let x € K;. Then «x is concave on [0,£] and convex on [&,1]. Noticing that x(0) =
[ h(©)x(£) dt and #/(1) = 0, we get

x(t) > x(&)q(t), tel0,&];  «x(t) <x(§)q(t), tel& 1]
First of all, for any x € K;, we show that
1 o1
f H(t,s)b(s)x(s) ds > / H(t,s)b* (s)x(s)ds, te].
0 0
Indeed, for x € K;, we obtain
1 o1
f H(t,s)b(s)x(s) ds — / H(t,s)b* (s)x(s) ds
0 0
& 1
= / H(t,s)b* (s)x(s) ds — / H(t,s)b™(s)x(s)ds
o1 §

& 1
> / H(t,s)b"(s)g(s)x(&) ds — / H(t,s)b™(s)q(s)x(§) ds
o £
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3 1
zx(S)L min q(5) / H&9p(9)ds - max q(9 /E Hts)b(s) ds}
3 1
:x(é)[% /g 1 H(t,s)b* (s)ds — /E H(t,s)b'(s)ds:|.

Then by (Hg) we have

1 o1
/ H(t,s)b(s)x(s) ds > / H(t,s)b" (s)x(s) ds.
0 0

Secondly, for any x € K;, we prove that

1,1
/ / Hi(t,8)H(s, T)a(s)b(t)x(s)x(t)dt ds
0o Jo

oy pl
> /0 /0 Hi(t,8)H(s, t)a* (s)b(t)x(s)x(t) dt ds.
For ¢t € ], since fol H(¢,5)b(s)x(s) ds > 0, we have

1 p1
/ / Hi(t,8)H(s, t)a(s)b(t)x(s)x(t) dt ds
o Jo
o2 1
—/ / Hi(t,s)H(s, t)a* (s)b(t)x(s)x(t) dt ds
o Jo
£ p1
:/ / Hi(t,8)H(s, t)a* (s)b(t)x(s)x(t) dt ds
oy J0
1 pl
—/ / Hi(t,8)H(s, T)a (s)b(t)x(s)x(t) dt ds
£ Jo
§ 1
= [ Hi69a' ©aose) [ His Db dr s
1 1
—/ Hl(t,s)a’(s)q(s)x(é)/ H(s,7)b(t)x(t)dt ds
§ 0
3 . ) 1
> f H(6a"(9) min q(9x(E) fo H(s, 7)b(x)(x) de ds
1 1
—/ Hi(t,s)a(s) max q(s)x(&)/ H(s,7)b(t)x(t)dt ds
>x(§)—/ H;(¢, S)ﬂ+(s)/ H(s,7)b(t)x(t)dt ds
f Hi(t,s)a / H(s,t)b T)dtds
E)—/ Hi(t,s)a s/ 0G(s,8)G(t,7)b(t)x(t)dT ds

—x(é)/g Hl(t,s)a‘(s)/0 yG(t,1)b(t)x(t) dT ds
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S)/ (7, ‘E)b(‘[)x(l’)dl’[ / Hi(t,5)G(s,s)a*(s)ds
- Hi(t,s)a (s)ds |,
yL 69005 ]
and then it follows from (H7) that
1 1
ffHl(t,s)H(s,r)a(s)b(r)x(s)x(r)dtds
0 Jo
a9 1
Hi(t,s)H(s,t)a" (s)b drt ds.
2/0 /0 1(Z,8)H (s, T)a” (s)b(t)x(s)x(7) dt ds

Similarly, for any y € Ky, since Y ;_; H.(s, ti) I (y(t)) > 0, we get

1 n
| 9100 (ZHK& tk)fk(ym))) ds
k=1
> [ Hi a0 (ZHxs,tk)Jk(y(tk))) ds
0 k=1

Thirdly, for any x € K;, we prove that

/Hltsw(s)f ds>/ Hi(t,s)w ))d, te].
Since ¢ is nondecreasing, we also obtain

p(x(®) = p(q()x()), t<[0,&],
o(x(@®) < p(q(x&)), tel&1].

Therefore, for any x € Kj, it follows from (Hg)—(Hio) that
1 o3
/ Hl(t,s)a)(s)f(x(s)) ds—/ Hﬂt,s)w*(s)f(x(s)) ds
0 0
& 1
:/ Hl(t,s)a)*(s)f(x(s)) a’s—/E Hl(t,s)w_(s)f(x(s)) ds
§ 1
> / Ha(t,s)0" (5)o (x(6)) ds - / Ha (b9 (5)o (x(5)) s
>M/ Hi(t,s)w" (s)p x(S ds / Hi(t,s)w %‘)q( ))
>u/ Hy (6,90 (5)f (x(6)q(6)) s——/ Hy (6,0 (5)f (x(6)q(s)) s
Zu/ Hi(¢t,s)o" (s)kix* (§)q” (s) ds — —/ Hi(t,s)w™ (s)kox* (§)q* (s) ds
03 M Je

H 1 1
>x%(&)|] min q"‘(s);Lkl/ Hi(t,s)w*(s) ds — max q"‘(s)—kQ/ Hi(t,s)w (s)ds
03<s<& o3 E<s<1 22 £

Page 15 of 34
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o & 1
> xa(s)[‘;—iukl / Hi(690" () ds - %kz /E Hi(t,s)o (s) ds}

>0,

which shows that

1 03
/ H; (t,s)a)(s)f(x(s)) ds > / Hl(t,s)a)*(s)f(x(s)) ds
0 0

Thus, for (x,y) € Ky x K3,
1
(Thx)(t / / Hi(t,8)H(s, T)a(s)b(t)x(s)x (r)dtds+/ Hl(t,s)a)(s)f(x(tk)) ds

/ Hi(t,s)a (ZH s, t )i (y(te)) )ds+ > H (6 ) I (x(8))

1 k=1

> faz Hl(t,s)cf(s)x(s)/ H(s,t)b(t)x(t)dt ds
0 0
+ /03 Hi(t, s)a)*(s)f(x(tk)) ds
0
/ Hi(t,8)a (ZH st (y(te)) )ds+ ZHIS (& ) (x(8))

k=1

>0

)

1 n
(T)(0) = [ He. b6 ds + 30 Hie k(o)
k=1

o] n
> [ HO G015 + 36 60 (00)
0 k=1
>0.
Moreover, by direct calculation we derive

(Thx)"(t) = —a* ()x(t)y(t) - " ()f (x) <0, te[0,€],

(Tox)"(t) = a” (O)x()y(t) + 0™ ()f () = 0, te[§,1],

(Tw)"() = =b* (t)x(t) <0, te[0,&],

(Toy)" () =b~()x(t) = 0, telf,1],
which shows that T7x and T,y are concave on [0,£] and convex on [, 1]. It follows that
Tx € Ky and Tyy € Ky. Thus T(K; x K3) C K; x K.

Finally, by standard methods and the Arzela—Ascoli theorem we can prove that T is

completely continuous. O

Remark 2.5 In [66] and [67], it is not difficult to see that the function g(¢) plays an impor-
tant role in the proof of completely continuous operator. If x(0) = (1) = 0, then we can
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define ¢(t) = min{ g = é} However, if x(0) = fol h(t)x(t) dt and «'(1) = 0, then the defini-

tion of g(¢) is invalid. This shows that when x(0) = fol h(t)x(t) dt and x'(1) = 0, we require
a special technique to give a fine definition of g(t).

t)dt and
= 0. This is probably the main reason why there is almost no paper studymg the

In fact, a fine definition of g(¢) is very difficult to give when x(0 fo
x'(1)
existence of positive solutions for the class of second-order nonlocal differential systems
with indefinite weights and even for second-order nonlocal impulsive differential systems

with indefinite weights.
Remark 2.6 The idea of the proof of Lemma 2.3 comes from Theorem 3.1 of [67].
The following lemma is very crucial in our argument.

Lemma 2.4 (Theorem 2.3.4 of [71], Fixed point theorem of cone expansion and compres-
sion of norm type) Let §2, and §2; be two bounded open sets in a real Banach space E such
that0 € 2, and 2, C §2,. Let an operator T : KN (82,\821) = K be completely continuous,
where K is a cone in E. Suppose that one of the following two conditions is satisfied:

(@) I Tx|| < |lxll, Vo € KN 3821, and || Tx|| > ||x||, Vx € K N 082,
and

(b) | Tx|| > |lxll, Vo € KN 3821, and || Tx|| < |lx]|, Vx € K N 32,
is satisfied. Then T has at least one fixed point in K N (.(22\91).

3 Main results
In this part, applying Lemma 2.4, we obtain the following three existence theorems.

Theorem 3.1 Assume that (Hy)—(Hyo) hold. If « > 1, then system (1.9) admits at least one

positive solution.

Proof On one hand, considering the case « > 1, by (Hy) we get

kox® I lhx®
im < m g i B 2
x—>0 x x—)O X x—0 X x—0 X
hmﬂ<l ﬂ:0.

y—0 y y—0 y

Furthermore, there exist 7/,7” > 0 such that

fx) < ex, L(x) <ewx, k=1,2,...,n,0<x<7,
]k(}’)ft‘?sy» k=172n~,7’1»05y57”,
where €1, €;, €3 satisfy
§ 4ne
4)/181[ o (s)ds <1, 2 < 1,
0 1-v

1 1
83<min{— (1 y/ b*(s)ds)}.
4nyrfo a*(s)ds ny

Page 17 of 34
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Let

& &
A:y1/0 ‘/0 H(s,t)a*(s)b* (t) dz ds,

&
A = yn/ a*(s)ds,
0

and choose r = min{(4A)7!, (4e3A")7L, 7, 7"}. Then for any (x,y) € (K; x K3) N 3£2,, we have
[I(x, )]l = r, and by (2.20) we get

1,1 1
(Tx)(t) = /o ./o Hi(t,8)H(s, t)a(s)b(t)x(s)x(t) dt ds + /0 Hi(t, s)a)(s)f(x(s)) ds
1 n n
‘ / Hi(t, s)a(s)x(s) (ZH;(S, tk)lk(y(tk))) ds+ Y Hi (¢ )l (x(t))
0 k=1 k=1
£ pl
=/ / Hi(t,s)H(s, t)a* (s)b(t)x(s)x(t) dt ds
0o Jo
1,1
—/ / Hi(t,s)H(s, T)a (s)b(t)x(s)x(t) dt ds
g Jo

& 1
+/ Hl(t,s)a)*(s)f(x(s))ds—/ Hl(t,s)w_(s)f(x(s))ds

/ Hi(t,5)a" (s)x(s) (Z H, (s, ti)J (y(@))) ds

k=1

f H(t,)a™ (s)x(s) (ZH (s, 6k (y(8)) )ds + ZH{S(:: Bl (x(t6))

k=1

5/ / Hl(t,s)H(s,t)a*(s)b(r)x(s)x(t)drds+/ Hl(t,s)w"(s)f(x(s))ds
0

/ Hi(t,s)a* (s)x(s) (ZH s, t ]k( (tk )ds + ZH;S(L‘, tk)lk(x(tk))

k=1

:/ / Hi(t,s)H(s,t)a* (s)b" (t)x(s)x(t) dt ds
o Jo

& r& &
—/ / Hi(t,s)H(s,t)a* (s)b™ (t)x(s)x(t) dt ds+/ Hl(t,s)a)+(s)f(x(s)) ds
0

/ Hi(t,s)a* (s)x(s) (ZH s, tk ]k( (&) )ds+ ZH{S(L tk)Ik(x(tk))

k=1

&
5/ / Hl(t,s)H(s,t)a*(s)b*(t)x(s)x(r)dtds+/ Hl(t,s)w+(s)f(x(s)) ds
o Jo 0

‘f’: n n
+ /(; Hi(t,8)a” (s)x(s) (ZH;(S, tk)]k(y(tk))) ds + ZHis(t, tk)lk(x(tk))
k=1

& & H
5)/1‘/0 /0 H(s,r)a*(s)b*(r)x(s)x(r)drds+y1/0 w*(s)exds



Jiao and Zhang Boundary Value Problems (2018) 2018:163 Page 19 of 34

- § 1 <
+y11_v;83y‘/0 a*(s)x(s)ds + ;szx

1—])1

& &
< Allxlg, + e / o () dsllxllnc, +yi——nes / a*(s) dslxllpc Iylec,
0

1
0 1-v

+

nes||x|| p
el

§ 1
<Ar? + ylslr/ ot (s)ds + A'esr® + I nesr
0

-V
<—=r+—r+-—r+-—r
4 4 4 4

=7, (3.2)

1 n
()0 = [ He. b6 ds + 30 Hie k(o)
k=1

S n
< [ H(esp o) ds + 3 1)1 060)
0 k=1

%. n
< y/o b*(s)x(s)ds + 1 i 5 ka(y(tk))
k=1

5 1
<y [ DO dslilinc, + 5
0

nesllylpc,
-v
§
< y/ b*(s)dsr + ynesr
0
<7 (3.3)
Consequently,

1T < @], Y@y e E x K)Nos2,. (3.4)

On the other hand, since « > 1, it follows from (Hy) that

k o
lim 7% > i B -,
x—00 X x—>00 X
I L x
lim %) o B
x—>00 X x—>00 X
]k()’) ml)’a

which shows that there exist R', R” > 0 such that

fx) > eqx, Ii(x)>esx, k=1,2,...,mx>R,

k() = g6y, k=1,2,...,m,y>R",
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where &4, €5, &6 satisfy

o 73
301 —284 min () Gi(s,s)w*(s)ds > 1,
2 g%ftﬁaa 3

1
&5 min 6(t)f h(t)dzr > 1,
&

1-v1 " Bi<os

1 1
/ g(t)dreg ,nin 8(t) > 1,
3

1-v % <t<o3

where
t —t
S(t):min{—,g—}, te[0,&]. (3.5)
& &
If (x,y) € K7 x K3, then x, y are two nonnegative concave functions on [0,&]. So we get

x(t) = S(t)”x”PCp te [0! ‘g],

y(&) = 8(Dyllpc,, £ €[0,8].

(3.6)

It follows that min%qqi x(2) = ;|1xllpc, » min%qqi y(t) = 6:llyllpc,, i = 1,2,3, where

. . ) Oi Oj
6; = min 8(t)=m1n{—,1——} > 0. (3.7)
%<t<o; 2§ &
Let
oy oy o1
B=p; 79102/ / Gi(s,8)H(s,t)a*(s)b* (t)dt ds > 0, (3.8)
2 o1
T U3
R; > max{(3B)7!, g—;,r}, Ry > max{lg—;/,r}, and R = max{R;, Ry}. Then for any (x,y) € (K7 x
K5) N 382g, we have

R=| (x| = max{llxllpc,, Iyllpc, } = max{Ry, R},

min () > min 8(¢)||x|lpc, > 3R, >R,
P <t<o3 B <t<o3

min y(#) > min 3(5)lyllec, = 08 > R,

o
P <t<o3 P <t<o3

and

IT1x] pcy

te]

1 1 1
= max {/ / Hi(t,8)H(s, T)a(s)b(t)x(s)x(t) dt ds + / H, (¢, s)w(s)f(x(s)) ds
0o Jo 0

1 n n
+ fo Hi(t,s)a(s)x(s) (ZHQ(& tk)]k(y(tk))) ds+ Y Hi(t, tk)lk(x(tk))}
k=1

k=1 =

Page 20 of 34
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o9 1 o3
> max:/ Hi(t,8)a” (s)x(s) / H(s,t)b(t)x(t)dt ds + / Hi(t, s)af(s)f(x(s)) ds
0 0 0

te]

/ Hi(t,s)a* (s (ZH (s, 6k (¥(t) )ds+ > H (6 t)l(x (tk))}

k=1

v

min /:2 Hi(t,s)a* (s)x(s) [q H(s,7)b*(t)x(t)dt ds

o
F<t<oy J R

02
+ Uzmin ﬁz Hl(t,s)zz(s)x(s)< Z H.(s, tk)]k(y(tk))) ds
T st=o 2 U—3 <tj<o3

+ min / Hi(¢, s)w*(s)f( s))ds+ mln Z H (¢, tk)Ik(x(tk))

2 <t<oj
<tk<t

o (o) o1
=02 [ Guss)a 56 loc, [, HGs Db 050 Ixloc, dr ds
2 2

/ ) dr > ean(te)
§

0
73 <tg<o3

o3 1
+ pl% ﬁs G (s, 5)w" (s)e3x(s) ds + 1
2

-V

o o2 o1
=% [ G169 @3l [ HGs DB (O80xlnc, deds
2 2

1
_lv /; h(t)dte, Z x(t1)

1 o
73 <t1<o3

03
+ ,01%/ Gi(s,8)w" (s)e3x(s) ds +
2 Jz 1

2 03 .
= Bllxllpc, + o1 5 &3, min 5(2) o Gi(s,s)w" (s) ds|lxlpc,
- =<t=o3 >

1 1 i
. f W) dre, min 5(0)lxlec,
3

1- V1 = <t<o3

o I3
= Blale, + ;1 o5 min 5(0) /  Gils 90" () dslel

j
<[<o‘3 >

1 1
. / h(r)dze, min 5(0) e,
3

1—\)1 —<t<g3

lecy + S lxllnc, + ~ 1]
> —|(\¥llpc; + = II¥llpc; + < IXllpC
3 13 13 1

= [I®llpcy s (3.9)

||T2)’||Pc2=max{ / H{t, )b(s)x(s) ds+ZH/(t k( (tk>)}

v

I?gxi/ H(t,s)b" (s)x s)ds+ZH &tk (y (tk))}

k=1

I \Y

min / H(&,5)b" (9)x(s)ds + min, Z ZH(t £k (V&)

2 <t<oy

1 1
- fg dodres Y y(er)

0
73<t1<03

2<tk<t k=1

\Y
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1

1
>— g(r)drse Jmin 8(0)yllec,
1-v —< t<o3
= ¥llpc,- (3.10)
Consequently,
1T@)| > | & V(x,y) € (Ky x K3) N 0S2g. (3.11)

Therefore, applying Lemma 2.4 to (3.4) and (3.11), we can show that T has at least one
fixed point

(x,9) € (Ki x K3) N (2 \ £2)).
The proof of Theorem 3.1 is completed. O

The following theorem deals with the multiplicity of system (1.9). For convenience, we
introduce the following notations:

& 1-vp 3
D:S)/l/ w*(s)ds, A =3ny, I = <1—y/ b*(s)ds),
0 n 0

1

o3
D* -p102/3 Gi(s, s)w* (s) ds, A* =2y1/ h(t)dr,
&
2

1 1 -1
"= (1_vn£ g(‘[)d‘[) .

Theorem 3.2 Assume that (Hy)—(Hio) hold. Suppose that 0 < o < 1 and there exist con-
stants d and r satisfying 0 < d < min{(4A4)71, (4A' "), r} such that

min _ f(x) <D7'd,
(xy)e(K1 xK2)N3 24

min Ik(x) < A_ldy (3.12)
(xy)€(K1 xK2)N3 82y

min () < I'd,
(x,)€(K1 xK2)N3$2y4

where A and A’ are defined in (3.1). Then system (1.9) admits at least two positive solutions.

Proof If 0 < & < 1, then by (Hy) we know that

(i) llm,HOf( > lim,_, l% = 00, lim,_,¢ k( > lim,_, ll =00,
lim,_, ojk(y > lim,,_, mlya = 00;
. . o
(ii) hmx_wof (x < hmx_)oo k— =0, limy oo I"](Cx) < limyo oo 127" =0,
: ) : may® _
lim,_, oo e <limy_ 5= 0.

From (i) it follows that there exists a sufficiently small positive constant r such that

f(x)287x) Ik(x)Z‘C"Sx) k:1,21-'-,n)05x§r)

]k()’)289)’, k=1,2,-.-,1’1,0§y§7’,
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where &7, g, €9 satisfy

o3
01027 mln S(t)/ Gi(s,8)w*(s)ds > 1,
93

7<t<03 >
1 1
2¢eg h(t)dt min &(¢) > 1,
1- V1 £ —<t<(73
1 1
— g(r)drag min §(¢) > 1,
1 - T<t<03

with &(¢) defined in (3.5).
Therefore, for any (x,7) € (K1 x K3) N 382,, we get from (3.6) that

ITixllpc, = maxi/ / Hy(t,8)H(s, t)a(s)b(t)x(s)x(t) dt ds
1
+/ Hl(t,s)w(s)f(x(s))ds

/ Hi(t,s)a(s)x(s) (ZH’ (s, )k (¥(t0)) ) ds + ZHls(t tk)lk(x(tk))}

k=1

o9 1
> max[/ Hi(t,s)a* (s)x(s) / H(s,7)b(t)x(t)dt ds
0 0

te]

+/ 3Hl(t,S)a)*(S)f(x(S)) ds
0

+ /0 " H (8 $)a(s)x(s) (ZH; (s, tk)]k(y(tk))> ds+ Y H(t, tk)Ik(x(tk))}
k=1 k=1

> min /azHl(t,s)a+(s)x(s) ﬁ: H(s,t)b" (t)x(t)dt ds

F<t<or J B

+ min / H, (¢, S)a)*(s)f(x(s)) ds+ mm Z H (¢, tk)Ik( (tk))

2
st=op 0<tk<E

/E h(r)dr Y I(x(t)

O<ty<&

/lh(t)dr Z egx(t1)
3

o
73 <t1<o3

-V

> ,01% fg_: Gi(s,s)w* (s)f (x(s)) ds + I L

0'3 1
> 2 / G (s, )" ()er(s) ds +
2 % 1

-V

o3

O
> p1—e; min 8(t) | Gils,s)w" (s)ds|lx]lpc,
2 _2i<;:<g3 73

1 1
+ &g / h(t)dt min 8(2)|xl pc,
&

1—\)1 —<t<03
xllec, + Sl
> —||¥llpc; + < IIXl|lpC
2 12 !

= ||xllpcy (3.13)
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I Toyllpc, = maX{ / H(t,$)b(s)x(s) ds + ZH/(t t k(v (tk))}

k=1

>max{ / H(t, s)b+(s)x(s)ds+ZH(t )i ( (tk))}

> min / H(t,s)b" (s)x(s) ds + min Z ZH ttk]k tk))

o
% <t<oy o3=t=f

<tk<t k=1
1 1
=1 L g(r)dres ) > )
73<t1<<73
1
> f g min 50lic,
<t<o3
= ||yllpc, - (3.14)
Consequently,
| 7G| > |G, (®,9) € (Ki x K) N 92, (3.15)

Next, let us turn to (ii), which shows that there exist R', R” > r such that

flx) <ewx, I(x) <ex, x>R,

Ji(y) <e3y, y=R,
where €1, €;, €3 satisfy

5ne,

)

&
5)/151/ w*(s)ds <1,
0 1-w

1 1 1 ¢
£3 < max —,———/ b*(s)dst.
6A'R yn n )y

Let

m= max {f@)},  m= max {L@)},

n3= max {0}, k=12..,n

y€[0,R"]
Then
fx) <ex+n, L(x) <ewx+m, k() <esy+ns, Vx,y>0. (3.16)
Let
§ 1
M= y1n1/ w?(s)ds, M* = nn,.
0 1-v
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Choosing max{6M, 6M*,r} < R < (6A)7L, for any (x,y) € (K; x K3) N 382, similarly to the
proof of (3.2) and (3.3), we get

(T1x)(¢) </ / Hy(t,s)H(s, t)a* (s)b* (t)x(s)x(t) dt ds+/ Hi(t, s)w*(s)f( (s))

/ Hi(t,s)a (ZH (s, ]k( (tk )ds+ ZHis(t, tk)lk(x(tk))

k=1

& pé& &
<7 f / H(s, 7)a* (6" () Ixl3g, dt ds + f " $) (exIxllpcy + ) ds
0 0 0

n

(82||x||PC1 + '72)

1 &
n / & (s)dsllxlic (e ylcy +71s) + -
—" /. -

+ V1
1 L k=1

5 1 é
<AR? + y16 / ot (s)dsR + M + e3A'R* + ()q . nn3/ a*(s)ds
0 -V 0

+ n£2>R+M*

l—V1
1 1 1 1 1 1
<—R+-R+-R+-R+-R+-R
6 6 6 6 6 6
=R, (3.17)

1 n
(Toy)(t) = /0 H(t,5)b(s)x(s) ds + ZHS’(t, 8k (v(%))
k=1

/ Ht, b 6)es) ds + 3 HLe 500k ((60)

k=1

Z]k tk

&
5)// (x(sds+
0

1
neslyllec,
-V

3
< V/ b*(s)dslxllpc, +
0

3
< y/ b*(s)dsR + ynesR
0

=R, (3.18)
which shows that

|7y < [9)

V(?C,y) € (1(1 X I(g) n B.QR (319)

Finally, since 0 < d < min{(44)~!, (4A'I")7L, r}, for (x, y) € (Ki x K3) N 382y, it follows from
(3.12) that

& & &
(Tlx)(t)S/O /(; Hl(t,s)H(s,t)a*(s)bﬂr)x(s)x(r)drds+/o Hl(t,s)wJ'(s)f(x(s))ds

S n n
+ /0 H(t,5)a* (s)x(s) (Z H.(s, te)Jk (y(tk))> ds+ Y Hi (¢, t) I (x(t))
k=1
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& ré &
5)/1/0 /(; H(s,r)of'(s)lf(r)llxll%c1 drds+y1/0 w*(s)f (x(s)) ds

§
n/ a*(s)]k(y(tk)) ds||xllpc, +
0

1
+
Vll_

§ 1
<Ad*+ y1/ w*(s)ds(D)td + A'Td? + l—n(A)‘ld

0 -V
1.1
<—d+—d+1d+ld
4 4 4 4
=d, (3.20)

(Toy)(t / H(t,s)b s)ds+ZH (¢, tx ]k( (tk))

k=1

S n
< [ (e Gr(0)ds + 36 0 (60)
0 k=1

Z[k tk

/ b*(s)x(s) ds+

§ 1
< y/ b*(s)dsd + nl'd
0 1-v
=d, (3.21)
which shows that
1T < | V(%) € (Ki x K3) N 982,. (3.22)

Therefore, applying Lemma 2.4 to (3.15), (3.19), and (3.22), we can show that T has at
least two fixed points

(x1,1) € (K1 x Ko) N (- \ £2,), (x2,2) € (K1 x K3) N (82, \ 24).
The proof of Theorem 3.2 is completed. O

Corollary 3.1 Assume that (Hy)—(Hyo) hold. If 0 < « < 1, then system (1.9) admits at least

one positive solution.
Proof It follows from the proof of Theorem 3.2 that Corollary 3.1 holds. g

Corollary 3.2 Assume that (Hy,)—(Hyo) hold. Suppose that o > 1 and there exist two con-
stants dy and r satisfying 0 < dy < r = min{(4A)7%, (4e3A")L, v, r"} such that

min £ > (D*)'d,

(x,)€(K1 xK2)Nd 82y

min L) > (A%) ),
(xy)e(Ky xK2)Nd 2,

min Jcy) > I'*dy,

(xy)€(K1 xK2)Nd24
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where A, A', 3, 7" and v are defined in Theorem 3.1. Then system (1.9) admits at least two

positive solutions.

Proof Similarly to the proof of Theorem 3.1, we can obtain that (3.4) and (3.11) hold. Then,
similarly to the proof (3.22), we get

G R [CS)

, Y y) e (Ki x K3) N082g,. (3.23)
This finishes the proof of Corollary 3.2. g

Finally, in the case 0 < « < 1, we consider the existence of three positive solutions for

system (1.9).

Theorem 3.3 Assume that (H;)—(Hyo) hold and there exist four positive numbers n, ny,
N2, and y such that one of the following conditions is satisfied:
(H11) O0<a <1,0<n=max{n;,n} <min{r, (44)71, (4A' )"} <r < max{6M,6M*,r} <
R<(6A) ' <y,and

fx) < (D) 'n, Ie(x) < (A) ',
Jky) < I'n, Vx e [B3n1,m],y € (632,12,
f@> D)y, L@>(4%)7y,

]k(J’) > F*]/, Vx’y e[o, V])

where r, R, A, M, M*, D, D*, y, y*, 63, A, and A* are defined in Theorems 3.1 and 3.2,

respectively. Then system (1.9) admits at least three positive solutions.

Proof Since 0 < & < 1, from the proof of Theorem 3.2 we know that

ITG| > )], Yy e ® x K)Nos2, (3.24)

|76 < [9)

, Vi y) € (K x Ky) N 082, (3.25)
By the first part of (Hi;), for any (x,7) € (K7 x K3) N 8§2,, we obtain

|, %)|| = max{llxllpc;» 1¥llpc,} = n = max{ni, 2},

O3m < 6sllxllpc, = min x(¢) <x(£) <,

-5 =t=03
0313 < 63]lyllpc, < UBmiIl y(t) <x(t) < na,

- <t=<o3

and similarly to the proof of (3.22), we get

| 7G| <[

» Y(xy) e (K x Ky) N3s2,. (3.26)
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Considering the second part of (Hi;), for any (x,y) € (K1 x Ky) N 352, we have
I Thxllpc, = max{/ / Hi(t,8)H(s, T)a(s)b(t)x(s)x(t) dt ds
1
+ / Hi(t, s)a)(s)f(x(s)) ds

/ Hi (¢, 5)a(s)x(s) (ZH (s, 6k (¥(84)) ) ds + ZHls(t tkw(x(tk))}

k=1

o2
zmax{/ Hi(t,8)a” s)f H(s,t x(t)dt ds
te] 0

/ Hi(t,s)w x(s))
/ Hi(t,s)a (ZH (s, e )i (y(tx) )ds+ZH;S(t,tk)1k(x(tk))}

k=1

> mm / Hi(t,s)a s)x(s)/ H(s,t)b* (t)x(t)dt ds

2

+ min / Hi(t, s)a(s)x(S)( Z H;(S,tk)/k(y(tk)))ds

% 5 <tk<o3

+ _min / H, (¢, S)a)*(s)f(x(s)) ds+ mm Z H (¢, tk)Ik( (tk))

0<tk<E

> min / Hi(t,s) *(s)f(x(s))ds+ m1n Z H (8, )1k (x(2))

0<tk<?,-‘

1
— L h(ydr Y I(x)

o
73<t1 <03

1
f h(z)dt(A*) 'y
3

(o)) I3 +
= oy / Gi(s,8)w" (s)f (x) ds +
% 1

-V

03
> pl% ﬁs G1(s,s)w™* (s) ds(D*)_ly +
3

1 1
>=y+=y=Y, 3.27
27/ 2)’ 14 (3:27)

IToyllpc, = max{/ H(t,5)b(s)x(s) ds + ZH/(t A (tk))}

k=1

zntlgxi/ H(t,s)b dS+ZH &tk (y (tk))}

k=1

> min / H(t,5)b" (9x(5)ds + min ZH’(t LT ((6)

> min ZH;(t, tJk (y(t))

te[06] P}

1 1
>n / glr)ydtr*y =y. (3.28)
1-v £
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This shows that

Y(x,y) € (K1 x Ky) N9s2,. (3.29)

’

|75 > )

Therefore, applying Lemma 2.4 to (3.24), (3.25), (3.26), and (3.29) respectively, we can
show that T has at least three fixed points (x;,y;) (i = 1,2, 3) satisfying

(x1,01) € (K1 x K3) N (82, \ $2g),
(x2,92) € (K1 x K2) N (- \ £2,),
(X3,y3) S ([(1 X [(2) N (Qr \ Q")

This gives the proof of Theorem 3.3.

4 An example
Example4.1 Letn=1and¢ = 11—0, Consider the following system:

—x" = a(t)xy + w(t)x®, 0<t<l,t+5s,

-y =b(t)x, O<t<l,t+# %,

Axl,_1 = L(x(3)), @1)
AVl t = (),

x(0) = [y x(t)dt,  x/(1)=0,

20 = [y y®de,  y(1)=0,

1
10

where I (x) = %Jﬂ)’) = %, h(t)=1,g(t) =t and

48(% _t)’ te [O)%],

b=y " 1
-5=3), tel31],

1728 (1 1
“=(3-1), tel0,3],

a(t) =
_%(t_%)’ te[%yl]:

192(3 -1), tel0,3],

1 1 1
“le-d), celdl.

g(t) =

Conclusion 4.1 System (4.1) admits at least one positive solution.
For convenience, we give a corollary of Proposition 2.3 in [67].

Corollary 4.1 Consider the following system:

—x" =k(t)x¥, 0<t<l,
1 (4.2)
%(0) = [y h(t)x(t) dt, x'(1) =0,

-y’ = k(lt)y"‘, 0<t<l, @3)
y(0) = [y g@y(®)dt,  y'(1)=0,

Page 29 of 34
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where o > 0, and k(t) satisfies the changing-sign condition

k() =0, te[0,],
k(t) <0, tel&,1],

and
cx” <f(x) =x" < cox®, Y <f) =" <c* c1,2>0.

If there exists 0 < o < & such that

%n) >tk (E+n), nel0,1-£] (4.4)

E-o

) §6a+luzk+ <€_- _

then the following inequalities hold:
£ o 1
o%u? / H(t,)k*(s)ds > —&* / H(t,s)k™(s) ds, (4.5)
o 1 3
& ¢ 1
o%u? / Hi(t,s)k*(s)ds > —&° / H;i(t,8)k™(s)ds. (4.6)
o C1 3
Proof Similarly to the proof of Proposition 2.3 in [67], we can prove that

G(t,é - %n) >oG(t,E+m), nel01-£&]

Hence it follows from (2.4) that

_ _ 1 1 _
H(t,g— %n) - G(t,g— %n) + 1—v/0 G(r,g— %n)g(t)dr

1
/0‘ G(t,& +n)g(r)dr

>oG(tE+n)+

1-v

1
l—v/(; G(r,& +n)g(r)dt]

=oH(tE+n), nel0,1-£].

= o|:G(t,§ +1)+

Next, letting s = £ — %n, ne€[0,1-£&], we get

3 _ 1-¢ _ _
/ H(t,s)k*(s) ds = %/@ H(t,g - %n)k* (g - %n> dn;

letting s =& + 1, n € [0,1 — &], we have
1-¢

1
/;H(t,s)k_(s)ds= 5 H(t,& +nk (& +n)dn.

Now, from assumption (4.4), for all (¢,1) € [0,1] x [0,1 — &], we have

rotwe (e ST (e 0n) zes e sk . )

(4]
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Finally, by integrating in n both sides of (4.7) from 0 to 1 — £ it follows that inequality
(4.5) holds. a

Similarly, we can show that inequality (4.6) holds.

Proof of Example 4.1 From the definitions of a(t), b(¢), and g(t) we know that & =
Step 1. We show that (Hg) holds. For fixed ¢; =¢; =1, 07 = 6, n=1,anda =1,

equivalent to the inequality

1 1 1 1 2
— b (=--n)z=b (= 0,2 |.
48 (3 4") ( ”’) "e[ 3]

Lettlng - —‘L' = o, this inequality is equivalent to

1 5 11
Eb%)>b(——@> 96[43]

By the definition of b(¢) the last inequality holds obviously. It is clear that by (4.5) (H) is
reasonable.

Step 2. We show (H7) holds. Similarly to Step 1, letting ¢; = 1, ¢; = 3?6, o9 = %, u=1,and
a =1, by (4.6) we get

1 1
éé%ﬂmW@ﬂz%éfﬂmM@ﬁ. (4.8)

It is easy to see by calculating that

1 1 1
v:/ g(s)ds:/ sds=—,
0 0 2

1
1 Jy Tg(x)dr 5
=— =2, =140 =77 _
YT P=ir T T3

Furthermore, from inequality (4.8) it follows that

5 (3 1 1! .
—/ Hi(t,s)=a*(s)ds >2- —/ Hi(t,s)a(s)ds
3 1 6 3 1

1 1t
& - / Hi(t,s) mm G(s, Yat(s)ds > 2 - —/ Hi(t,8)a (s)ds
6 se[ 3 %
1 5 (3 1! _
= - —/ Hi(t,s)G(s,8)a*(s)ds > 2 - —/ Hi(t,8)a (s)ds
6 3 L 3 1

So, (H7) holds.

Step 3. Similarly to Step 1, letting ¢; = ¢, =1, 03 = é, u =1, and @ = 3, we get that (Hj)
holds.

Hence it follows from Theorem 3.1 that system (4.1) admits at least one positive solution
foro > 1. O

Page 31 of 34
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