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1 Introduction

Retrial queueing systems are widely used in teletraffic theory, computers networks, com-
munication networks, and so on. So, retrial queueing systems received considerable atten-
tion over recent years; see, for instance, Artalejo et al. [1], Phung-Duc et al. [2], Aissani et
al. [3], and Gomez-Corral [4]. This paper studies the M/G/1 retrial queueing system with
general retrial times defined as follows: customers arrive according to a Poisson stream of
rate A > 0; upon arrival, the service of the arriving customer commences immediately; oth-
erwise, the customer leaves the service area and enters a group of blocked customers called
“orbit” in accordance with an FCFS (First Come, First Served) discipline; only the customer
at the head of the orbit queue is allowed for access to the server; when a service is com-
pleted, the access from the orbit to the server is governed by an arbitrary law with com-
mon probability distribution function A(x) (A(0) = 0), the density function a(x), and the
Laplace—Stieltjes transform &(0); the service times are independent with common proba-
bility distribution function B(x) (B(0) = 0), the density function b(x), the Laplace—Stieltjes
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transform B(0), and the first moments Bx = (~1)¥8%(0), k = 1,2, 3; interarrival times, retrial
times, and service times are mutually independent. In 1999, Gomez-Corral [4] studied the
M/G/1 retrial queueing system with general retrial times and obtained the following re-
sults: (1) a necessary and sufficient condition for the system to be stable by establishing
the ergodicity of the embedded Markov chain at the departure points; (2) the steady-state
distribution of the server state and the orbit length by using the supplementary variable
technique; (3) the Laplace—Stieltjes transform of the waiting time distribution of a pri-
mary customer who arrives at the system at time ¢; (4) the Laplace—Stieltjes transform of
the joint distribution of busy periods and idle times; (5) the Laplace—Stieltjes transform
of the server state and the orbit length. To get the results mentioned, Gomez-Corral [4]
firstly established a mathematical model of the M/G/1 retrial queueing system with gen-
eral retrial times by using a supplementary variable technique and studied its steady-state

solution under the following hypotheses:

po=lim po(t),  pu(t) = lim p,(x,8), n=1  Qu() = lim Qu(x,8), n=0,
which imply the following two hypotheses in view of partial differential equations:
Hypothesis 1 The equation system has a unique time-dependent solution.
Hypothesis 2 The time-dependent solution converges to the steady-state solution.

Hypothesis 2 does not hold for some queueing models; see, for instance, Zheng and
Gupur [5], Kasim and Gupur [6], and Abla and Gupur [7]. On the other hand, three types
of convergence are of interest in view of functional analysis: weak convergence, strong
convergence, and uniform convergence, and Hypothesis 2 does not indicate which one
holds for this queueing model. Hence, we need to study Hypotheses 1 and 2.

In 2005, by using the Cy-semigroup theory Gupur [8] has proved that the model has a
unique positive time-dependent solution that satisfies the probability condition, that is, he
showed that Hypothesis 1 holds under certain conditions. So far, no results on Hypothe-
sis 2 have been found in the literature.

When s(x) and r(x) are constants, the M/G/1 retrial queueing model with general retrial
times is called the M/M/1 retrial queueing model with special retrial times. In 2005, by
studying the resolvent set of the adjoint operator of the operator corresponding to the
M/M/1 retrial queueing model with special retrial times Zhang and Gupur [9] obtained
that all points on the imaginary axis except 0 belong to the resolvent set of the operator.
In 2006, Jiang and Gupur [10] proved that 0 is an eigenvalue of the operator with algebraic
multiplicity one and 0 is an eigenvalue of its adjoint operator. By combining these results
with Theorem 14 in Gupur et al. [11] (Theorem 1.96 in Gupur [12]) we deduce that the
time-dependent solution of the M/M/1 retrial queueing model with special retrial times
converges strongly to its steady-state solution. In 2009, Lv and Gupur [13] found that the
operator has one eigenvalue on the left real line. After that, Ismayil and Gupur [14] and
Gupur [15] proved that all points in an interval in the left real line belong to its point
spectrum under different conditions. Until now, any other results on the M/M/1 retrial

queueing model with special retrial times have not been found in the literature.
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In this paper, using Greiner’s idea [16] and Gupur et al. [17], we prove that all points on
the imaginary axis except 0 belong to the resolvent set of the underlying operator corre-
sponding to the M/G/1 retrial queueing model with general retrial times, 0 is its eigen-
value with geometric multiplicity one,and 0 is an eigenvalue of its adjoint operator. Thus,
using Theorem 14 in Gupur et al. [11] or Theorem 1.96 in Gupur [12], we deduce that the
time-dependent solution of the M/G/1 retrial queueing model with general retrial times
strongly converges to its steady-state solution. Hence, we answer that Hypothesis 2 holds
in the sense of “strong convergence” under certain conditions. Next, we describe the point
spectrum of the operator corresponding to the M/M/1 retrial queueing model with special
retrial times and verify that an interval in the left real line that includes 0 belongs to the
point spectrum of the operator. Moreover, we show that our result implies the main results
obtained by Lv and Gupur [13], Ismayil and Gupur [14], and Gupur [15]. Lastly, by com-
bining these results with the spectral mapping theorem we prove that the Cy-semigroup
generated by the underlying operator is not compact, not eventually compact, and even
not quasi-compact, and our result on the convergence of the time-dependent solution of
the M/G/1 retrial queueing model with general retrial times is optimal, that is, it is impos-
sible that the time-dependent solution exponentially converges to its steady-state solution,
which means that Hypothesis 2 holds at most in the sense of strong convergence.

According to Gomez-Corral [4], the M/G/1 retrial queueing model with general retrial
times can be described by the following system of equations:

d o0

p;t(t) — _apold) + /0 Qol, £)s(x) d, (1.1)
3}7;48(:, 2 + ap,g(;c, ) =—[A+r@)]palx,0), V=1, (1.2)
BQOB(:’ 2 + BQ(;(;C’ 2 = —[A + s(x)]Qo(x, t), (1.3)
BQ,(;(:c, D, 8Qg(;’ D o [h e+ s@]Qu ) +2Qua(8), V= 1, (1.4)
pu(0,8) = / N Qulx, t)s(x)dx, VYn=>1, (1.5)

0
Qul0,1) = 2pol) + / P15 (@) dx, (L6)
0
Q,(0,¢) = A/oop,,(x, t)dx + /oop,,+1(x, Hrix)dx, Vn=>1, (1.7)
0 0

pO(O) = Uo, pn(x! O) = un(x)r Vn > 1 Qn(xl 0) = Vn(x)r Vn > o, (18)

where (x,£) € [0,00) x [0,00), ug > 0, u,(x) >0 (Vn > 1), v,(x) > 0 (Vn > 0), and up +
oo Jo  un@)dx + Y 00 [0 valx) dx = 1; po(t) represents the probability that at time ¢
there is no customer in the system and the server is idle; p,(x,£) ( # > 1) represents the
probability that at time ¢ the server is idle and there are # customers in the system with
elapsed retrial time x; Q,(x, ) (n > 0) represents the probability that at time ¢ the server is
busy and there are n customers in the system with elapsed service time x of the customer
who is undergoing service; A is the arrival rate of customers; r(x) is the conditional com-
pletion rate for repeated attempt at x satisfying r(x) > 0 and fooo r(x) dx = 00; s(x) is the
conditional completion rate for service at x satisfying s(x) > 0 and fooo s(x) dx = oo.
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In this paper, we use the notations in Gupur [8] and choose the state space

peR x L'[0,00) x L}[0,00) x L'[0,00) x - - -,
X=1(p,Q)|QeL'0,00) x L'[0,00) x L'[0,00) x -,
s QI = 1ol + Xy 1Pnllz110,00) + 2o 1QullL2{0,00) < 00

It is obvious that X is a Banach space. In addition, X is also a Banach lattice under the
following order relation for almost all x € [0, 00):

Q=2 < po=yo pu®) <yu(x), n>1; Qu(x) <z4(x), n=>0.
For convenience, we introduce
d
Big) =~ s, g wHI0,00)
d,
B =~ 1 swlew, ge wHi000),
of () = /0 S@fWdx, feL'[0,00),
Yf ) = /0 r@f@dx, feL'[0,00),
Hf (x) = / Oof(x)dx, f e L0, 00).
0
We define
-~ 0 0 O Do ¢ 0 Qo(x)
0 B, 0 0 p1(x) 0 0 Qi (x)
Au(p, Q) = 0 0 B 0 px)|+]10 O Q) |,
0 0 0 B p3(x) 00 Qs(x)
B, 0 0 O Qo(x)
A By 0 O Qi(x)
0 A B, O Q@) ||,
0 0 A B Qs3(x)
@1 ¢ 1110, 00) (n > 1), %4 € L1[0,00) (n > 0),
D(A,,) = { Q) € X |p,(x) and Q,(x) are absolutely continuous functions

d d
and 3001 122 1 1110,00) < 005 Yoo 1522 [ 1110,00) < 00

We choose the boundary space

axX =1'x [t

and define the boundary operators

W :D(A,,) — 3X,

@ :D(A,,) — 30X,

Page 4 of 31
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Po o(x) p1(0) Qo(0)
p1(x) 1(x) p2(0) Q:(0)
(p, QW =w | |P2®) |, | Q)| |=|]|r:0 [,] 0O ||,
p3(x) Qs(x) pa(0) Qs3(0)
0 ¢ 0 0 Qo(x)
0 0 ¢ O Qi(x)
op,Qx)=|]0 0 0 ¢ Q) |,
0 0 0 O Qs(x)
vy 0 0 -\ ([ p
0O A\H v 0 ... p1(x)
0O 0 AH Y - p2(x)
0 0 0 M --- p3(x)

If we introduce the underlying operator (A, D(A)) by

Ap,Q =Anp:Q, D) ={(EQeDA,|¥{pQ =2pQ)

then Egs. (1.1)—(1.8) can be written as an abstract Cauchy problem in the Banach space X,
which is of the form given by Gupur [8]:

220~ Ap, Q1) Vte (0,00),
(p, Q)(0) = (p(0), Q(0)), (1.9)
P(O) = (Lt(), M11u21~')r Q(O) = (VO’V11V2)'~)'

Gupur [8] has proved the following result for system (1.9).

Theorem 1.1 If sup,(g o) 7(*) < 00, SUP, (g o) S(x) < 00, and (p(0), Q(0)) € D(A?), then (A,
D(A)) generates a positive contraction Co-semigroup T (t), and system (1.9) has a unique
positive time-dependent solution (p, Q)(x,t) = T(£)(p, Q)(0) satisfying

|2, Q1) =p0(t)+2/ p,,(x,t)dx+2/ Qu(x,t)dx=1, Vte[0,00).
n=1 0 n=0 0

2 Asymptotic behavior of the time-dependent solution of system (1.9)
Lemma 2.1 [fr(x) and s(x) satisfy

IS o0
N / eSO g / ws(@)e 0% dx < 1,
0 0

then 0 is an eigenvalue of A with geometric multiplicity one.

Page 5 of 31
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Proof Consider the equation A(p, Q) = 0, which is equivalent to

Apo = /O N Qo (x)s(x) dx, (2.1)
dp;;x) =—[r+r@]pax), Vn=1, (2.2)
dgl(;(x) = —[A +s(¥)]Qo), (2.3)
d%;x) = —[A +5(0)]Qux) + 2Qu1(x), Vn=1, (2.4)
pn(0) = /0 N Qu(x)s(x)dx, Vn=>1, (2.5)
Qul0) = Apo + /0 " prr s, (26)
Qu(0) = A /O h Pulx)dx + /0 b Pun(®)r(x)dx, Vn> 1. (2.7)

Solving (2.2)~(2.4), we have
Pux) = a,e IO gy >, (2.8)
Qo) = boe " Jo s, (2.9)

X
Qu() = by ¥ Jo SO ) g-ra=fy s(&)de f SO (ydr, Vn>1. (2.10)
0

Using (2.9) and (2.10) repeatedly, we deduce

(hx)k
kK

Qul) = el Q&N p, Vi > 0. (2.11)

k=0

It is hard to determine concrete expressions of all p,(x) and Q,(x) and to prove that
(p, Q) € D(A). We further use another method. We introduce the probability generating

functions
Px2) =) p@7, Qw2 =) Qux)Z"
n=1 n=0

for all complex variables |z| < 1. Theorem 1.1 ensures that p(x,z) and Q(x,z) are well-
defined. Equation (2.2) gives

I o) o
W -- ;[x + 1) |pulx)2”
Bpg: i =—[A+r(®)]p(x,2)
= px,2) = p(0,z)e*Jo €& (2.12)

where the summation and differential are interchangeable because of the convergence of
221 [A + r(x)]p.(x)2" and the Lebesgue control theorem.

Page 6 of 31
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The convergence of Y oo [A + s(x)]Q,(x)z" and Y-, Q,-1(x)z" allows us to change the
order of summation and differential, so (2.3) and (2.4) imply

8 o0 » n > ad
W =- HZO:[/\ +5(x)|Qu(x)2" + 1 ; Qn-1(x)z”
8Q(x, z)

™ —[* +5(x)] Q. 2) + 12Q(x, 2) = [A(z - 1) — s(x)|Q(, 2)

= Q2 = Q(0,2)eM Vst (2.13)

Applying (2.5), (2.13), and (2.1) and noting the convergence of Y - Q,(x)z" and
1o 20, Qulx)z" dx, we have

P0,2) =) p,(0)z
n=1

([ e
f Z Q,(x)Z" dx
= Aoo s(x) g Qu(x)2" dx — /:o 5(x)Qo(x) dx

- [ stz dx i
0

= f s(x)Q(O,z)e'\(""l)"’fgS(S)ds dx — Apo
0

=Q(0,2) / S(x)e*(z‘l)x‘fg S Jx — Apo. (2.14)
0

By combining (2.6) and (2.7) with (2.12) and (2.14) and noting the convergence of
1S >0 pu(%)z" dx and the Lebesgue control theorem we have

Q0,2) =) Q07"

n=0

= Qo(0) + Z Qu(0)2"

0)+/\/ Xlzpn(x)z”dx+‘/(;oo %r(x) g(;pml(x)znﬂdx
—/0 r(x)p1(x) dx

oo % 1
=Apo + A / px,z)dx + / —r(x)p(x,z) dx
0 0 z

=Apo + /ooo[k + %r(x)]p(x,z) dx
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) 1 )
=Apo + / |:)» + —r(x)i|p((), Z)e‘k’c—fo r€)ds g,
0 z

) 1 i

=po + p(0, Z)/ |:)\ + —r(x)i|e)‘xfo r€)ds 1,
0 z

=Apo + |:Q(0, Z)/ s(x)e)‘(z_l)x‘f(;cs(f)dé dx — )\PO]

0

) 1 §
0 z
) 1 §
=Apo - )LPO/ |:)» + —r(x):|e)"‘fo rE)dE g
0 z

oo . o 1 )
r Q0 Z)/ s(@)ere o O / [k + ;r(x)i|e‘*"—fo rE)ds g,
0 0
=
po = Apo [37 [+ Lr(x)le 7l T gy
1- fooo s(x)erE D[ sE)de gy fOOO [+ % r()]e o M) dE gy

Q(0,2) =

2hpo = 2po fy "2k + r(x)]e o O gy
Cz- I s(x)erEDa=fg s&)ds gy [ lzh + r(@)] el &) dE gy

(2.15)

From (2.14), (2.15), [;° s(x)eJo s gy = 1, I+ r(x)]e ™ Jo €5 gy — 1 (see (2.47),
(2.48)), the Lebegue control theorem, and the I'Hospital rule it follows that

[2hpo — hpo [ [2h + r(@)]e 5 Jo FOE g] [ (x) D=l s€)dE g
2 [ sV O o [z 1 r(w)]e s TO% dy

p(0,2)

- Apo

o0 Az ¥ d
_ ~ZApo + Zhpo [5° s(x)erE el sE)ds gy
zZ— fooo S(x)e}\(z—l)xafgs(é)dé dx fooo [z + r(x)]ef)hxffé‘ rE)dE gy

=

Apo Jy has(x)e” Jis©d gy

> 3 0 ¥ . (2.16)
1-xf; e M= Jor&)ds g, /s Axs(x)eJo s©)dE gy

hmp(()r Z) =
z—1

Apo — W2po [3° e N0 rO% gy
[ e O [ xs(x)e o SEI4E gy

lim Q(0,z) = (2.17)
z—1 1

By using (2.12), (2.13), (2.16), (2.17), the condition of this lemma, Theorem 1.1, and the

Lebesgue control theorem we derive

> pu(x) = lim p(x,2)
n=1

_ Apoe o r©ds 2 axs()e i s©de g,
1—a [ e JorOdE dog [ xs(x)e o 5€) & gy

=

Page 8 of 31



Yiming and Gupur Boundary Value Problems (2018) 2018:166

i /oo ) APo fooo e fir©)ds g, fooo Aas(a)e- FEEE gy
X X = _ i oo,
n=1v0 Pn 1- )LfOOO e*""*fo r(&)dé dx — fooo )xxs(x)e*fo ) o

> ApoeJos©dE[] _ ) e e =13 r&)dE gy

Qu(¥) = lim Q(x, 2) = s 7 = 5
; 71 1— 2 fo2 e lo rOd8 gy — [ pxs(x)eJo s gy

=
i _/oo Qu(x)dx = hpo fo eSO da[1 — . [T eI O ] <00
n - X X
—Jo 1= [0 e lo MO8 gy — [ pxs(x)eJo s g

(2.18)

(2.19)

Equations (2.18) and (2.19) show that 0 is an eigenvalue of A. Moreover, from (2.1), (2.5)—

(2.8), and (2.11) we know that the eigenvectors corresponding to 0 span the following

linear space:

Pulx) = a,e RO vy > 1,
X k
Qu(x) = e~ r=Jo s(€)dé Y o bk %, Vn >0,
k X
=4cC ay = =0 Yn-k 77 sx)x"e o Xy n=1,
T:= 1Ep,Q) tobuig o7 swke ol s dk g 1

Apo =
n>1, by=—%——, ¢poeR.
=l T e e O g »Po

&) = o, p1(x), p2(x),...), Q) =(Qo(x), Qi (%), Q) ...),

k
by= A Y g bk [ s()xke 5o S©VdE gy [0 ghxmlo rE)dE gy
k X "X
T b2 2 sl A gy [ e I g

It is easy to see that a, and b, are decided by py, and p,(x) and Q,(x) are decided by a,

and b, respectively. Therefore, p,(x) and Q,(x) are determined by py. Since py € R and

¢ € R, T is a one-dimensional linear subspace of X, that is, the geometric multiplicity of O

is one.

O

According to Theorem 14 in Gupur, Li, and Zhu [11] or Theorem 1.96 in Gupur [12],
we know that to obtain the asymptotic behavior of the time-dependent solution of system

(1.9), we need to know the spectrum of A on the imaginary axis. By comparing to Zhang
and Gupur [9] we find that the main difficult point is the boundary conditions and that

there are infinitely many equations. In 1987, Greiner [16] put forward an idea to study the

spectrum of A by perturbing boundary conditions when he studied a population equation

which was described by a partial differential equation with an integral boundary condi-

tion. Using Greiner’s idea, Haji and Radl [18] obtained the resolvent set of the operator
corresponding to the M/M?/1 queueing model where all parameters are constants and

gave a result described by the Dirichlet operator. In the following, by applying the result,

we deduce the resolvent set of A on the imaginary axis. To do this, define (49, D(Ao)) as

Ao, Q =Au(p,Q and D(Ay) ={(p,Q) € DA,) | ¥(p,Q) =0}

and discuss the inverse of Ay. For any given (y,z) € X, consider the equation (yI —

Ao)(p, Q) = (¥,2), that is,

(y +AMpo =yo + / Qo(x)s(x) dx,
0

ap,(x)
dx

=—[y + 1 +r@®)]|pu®) + yulx), VYn>1,

(2.20)

(2.21)

Page 9 of 31



Yiming and Gupur Boundary Value Problems (2018) 2018:166

dQo(x
%() =—[y + 2 +5(x)]Qo(x) + zo(x),
dQ,
?;lx(x) —[y + 2 +5(x)]Qulx) + AQuor () + 24(x), VYn>1,
pn(0)=0, Vn>1, Q,(00=0, VYu>0.
By solving (2.20)—(2.24) we have
o) = RS e de / * Pu(0)eV I O go vy s,
0

X
Qo(x) = o~ (0= [ s(8) de / Zo(,{.)e(yﬂ)ﬁfor s©)ds g
0

X
Qu(x) = e P s(6)de / 2, (x)eV TS €
0

y+)»)r+ Jo s&)dg dr,

4 ey a7 sE)de / Q. V1,

Yo
po= / Qo(x)s(x) dx
Y+ A Y+ A
o0
! / s(o)e 0 B s ds / " o(2)elr P SO g g
V4 +A V4 +A 0 0
If we set

Ef(x) = o~ +)a= g r(€)ds /xf(T)e(y+k)f+jg r©)ds 4o Vf € L0, 00),
0

Ef(x) = o+ fg s(€) ds /xf(t)e(wk)ﬂf(f s©)ds g Vf € L'[0, 00),
0

then Eqgs. (2.25)—(2.28) give, provided that the resolvent of A, exists,

Y+A 0 0 Yo
0 E O y1(x)
WI-A)"0A=[] o o £ .. ||pw
Ar®Es 0 -\ (zo()
0 o --- z1(x)
+ 0 0 2@ |’
E, 0 o --- Zo(x)
M2 E, 0 ||z

MEP AE: E; - || 22&)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

From this, together with the definition of the resolvent set, we obtain the following result.

Page 10 of 31
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Lemma 2.2 Let r(x), s(x) : [0,00) — [0,00) be measurable, 0 < infyc[oo0)r(x) <
SUP,.c[0,00) '(%) < 00, and 0 < infyc(o,00) S(x) < SUP,c[g, o) () < 00. Then

Ry +A>0,
iyeC‘ Y C p(Ao).

Ry + infye[0,00) S(x) > 0

Proof. For any f € L'[0,00), using integration by parts, as in Gupur and Ehmet [17], we

estimate
1
IlEAN < - , (2.29)
Ry + A+ infyefo,00) 7(%)
I < ! (2:30)
T Ry + A+ infreio ) ) ’

Since an absolutely convergent number series converges to the original limit if the
original orders of its terms are changed, (2.29), (2.30), ||l < Sup,c(o,~c)5(*), and [|¢]| <
SUD,c[0,00) 7'(*) imply, for (y,2) € X,

|1 -4 3.2

Yo 1
= + ——¢@Ez
Y+ A y+)»¢so

+ ”Eryl”Ll[O,oo) + ”EryZ“Ll[O,oo) + ||Ery3||L1[0,oo) o

+ 1 Eszoll 1 j0,00) + | AES 20 + Esza ||L1[0,oo) + [AEjzo + AElz1 + Eczy ”Ll[o,oo)

+ ”A%“fzo + A2E3z) + AE?z; + Ez3 ”Ll[o,oo) teo

ol 1 -
< + E.zoll 1 + E, 1
< o Bl le IE 9l 11 10.00)
2 23
+[1Eszoll 10,00 + ||)"ESZ0||L1[0,00) + 1Eszill 10,00 + ”A ESzo ”Ll[o,oo)
2 3 4 213
+ ||AEsz1 ”Ll[o,oo) + | Eszal 110,00 + ||)“ Ez “Ll[o,oo) + ”)L Eiz HLl[o,oo)
+ | 1E2z | 2 0,00) T 1EsZ3llL1[0,00) + -+
ol 1 -
0
< + Ellllzoll 71 + E 1
< D e e NEd zolon Zl IE 19l 1 10,00)
+ 1EsI120ll 11 10,00) + MEsI 120l 21 10,00) + IEs 121111 10,00)
+ AHE IR 120l 1110,00) + AMIEsI2 1211121 0,00) + IEs 122121 0,00)
2
+ 2 NEN 120l 111000 *+ A2 NES I |21 2110,00) + MIEs |22 110,00
+ EsI 123l 11 po,00) + -
lyol 1 -
0
= + — E|lllzoll 71 + E, 1
e eIzl > UEAYullziio,00)

n=1

o0 [o¢]
1
£ Y NUEN" D lznll o0
n=0 n=0
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[yol
= + B UIEsl 120l 2110,00) + NEA D Iynlligo
ly + Al |y Al 109 Zl e
o0 o0
FENY A NEN" D Nzl 220,00
n=0 n=0
|)’o | 1 SUP,.e [0,00) S(x)
lzo Il £1(0,00)

Ty + Al |y + A Ry + A+ infie(o,00) S(¥)

1 o]
+
Ry + A+ infreo,00) (%) ; 171121 10,00)

1

A "
* V4
Ry + A+ infreo,00) S(¥) ;(gﬁy A+ infxe[o,oo)S(x)> Z 1211l 170,00

n=0

_ ol . 1 SUP e [0,00) S(*¥) ol
TRy + A Ry + ARy + A+ infucooo s@) | E 0

z
ER)/ +A+ lnfxe[()oo Z Iynletioco + Ry + 1nfxe[000 Z Iznlztio.c0

n=1

1 1
<su + ,
- p{ Ry + A Ry + A+ infyepo,00) 1)

n=0

1 SUP e [0,00) S(¥) N 1
Ry + A Ry + A +infuefo0)8(¥) Ry +infie(o,00) (%)

which means that the result of this lemma is right.

Lemma 2.3 Fory € {y € C|Ry + A >0, Ry + infyejo,00) S(*) > 0} C p(Ao), we have

b & x
(p,Q) eker(yI-A,) & po= _O)L / s(x)e" PSS @ de dx
Yy +aJdo

D) = ae VIl TOE gy >

Qu(x) = e MIxo”sE) déz M) by, V>0,

—
4 =(an,anas..) el b = (by,b1,bs,...) €.
Proof. If (p, Q) € ker(yI — A,), then (yI — A,,)(p, Q) = 0, which is equivalent to

(J/+kpo—/ Qo(®)s(x) dx,

dpn (x)

— =@, vnz1,
d(i};(x) = —[y + 2+ 5(®)]Q),
dQu(x) _

T =y @)@ +AQua @), Vnz 1.

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

Page 12 of 31
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By solving (2.36)—(2.38) we have

D) = a,e VIl rOdE >, (2.39)
Qo(x) = boe™ ¥+l ©)ak, (2.40)

Q,(x) = bnef(yw\)xffé‘S(S)dE

X
+ A e[ s€) / Qur (1)el? PO oy > 1, (2.41)
0

By inserting (2.40) into (2.35) and using (2.40) and (2.41) repeatedly we deduce

bo
Y+ A

Po= / S(x)e_(}’“\)x_fg SEdE gy (2.42)

O
x) but, ¥n=0. (2.43)

Q@) = &Pl Z

Since (p, Q) € ker(yI — A,,), by Theorem 4.12 in Adams [19], which implies that W1[0,
00) = L*°[0,00), we have

Zmn Z|pn(0)| annnpo[m
n=1
dpy
< Z{npnnmw -
o0 o0 o0
> 1bul =Y |Qu0)] =D 11 Qullzoo0)
n=0 n=0 n=0
[o¢]
< Z{ 1Qullzt 0,00 +
n=0

} < 00, (2.44)
L1[0,00)

< 0. (2.45)
dx Lo oo)}

Relations (2.39) and (2.42)—(2.45) show that (2.31)—(2.34) are true.
Conversely, if (2.31)—(2.34) hold, then by using the formulas

o0 k|
/ extde= 25, c>0keN, (2.46)
0
el X X
/ r(x)e’fo 1) dE g — _e—fo r(&)dg |(C)>0 =1, (2.47)
0
e X X
/ s(x)e” Jos®)ds gy - g Jo s&)ds lo° =1, (2.48)
0

integration by parts, and the Cauchy product, we estimate

o0 [ee]
1Ball om0 = f e PSSO | e < g, | / Oy S re)de g
0 0

oo
<l|a,l / e Ry +atinficioon) r@)lx 7. _ - 1 la,], VYn>1
- 0 Ry + A+ infyeo,00) F(X) -

Page 13 of 31
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oo
ol + Y Ipullzijoeo)

n=1
bol Oo|s(ac)e‘(7/”)’“‘ﬂ;cS(S)”lg|clx + 1 i |
—_ . n
ly + Al Ry + A+ infreo,00) 1) —~
o0
< Ol [ e 50 gy . > lal
ly + Al Jo Ry + A+ infyeqo,00) F(X) —~
Dol
= + ay| < oo, 2.49
ly +A Ry +)\+1nfxe[000 r(x)X:| d ( )
||Qn||L1[o,oo)
00 £)de
_ —(y+A)x
I >
oo
= Z —|b,, k|/ ke [Ry +htintieio o) sl
0
k!
Z | -t [Ry + A + infyeio,00) S(x)[K+1
o o)
= . . 1Dy
Ry + A +infyeo,00) S(¥) /g(; Ry + A+ infyeo,00) S(%) "
=
oo
> 11Qullzio,00)
n=0
00 n k
1 A
<> . ( . ) |5k
‘= Ry + A+ infrciooo) s(x) 4\ Ry + 4 + infrepo,o0) 5(x)
k oo
1 A
_ b
Ry + A+ infrepo,00) S(%) Z(%y + A +infre(o,00) s(x)) Z 16l
1 oo
> bl < oo (2.50)

SRy + infye[0,00) (%) —

By direct calculation it is not difficult to verify (2.35)—(2.38). In addition, (2.36)—(2.38)

imply
)
2l <[ivlere sup rx)]annnLI[oOo <00, 251)
X 1121[0,00) x€[0,00) o1
d
R <|lyl+2x+ sup s(x) ||Qn||L1[Ooo <00 (2.52)
d
% lrtoee) x€[0,00) =0

Relations (2.49)—(2.52) mean that (p, Q) € D(A,,) and (yI - A,,)(p, Q) = 0.
It is not difficult to see that ¥ is surjective. Moreover,

lplker(yl—Am) :ker(yl —Am) — 0X
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is invertible for y € p(Ap). For y € p(Ag) we define the Dirichlet operator as

D, = (Wlker(y1-a,) " : 0X — ker(yI — Ay).

Lemma 2.3 gives an explicit form of D, for y € p(Ao):

000 a ﬁq%o 0 --- bo
e 0 O as 0 0o ... by

D, (2, B)=|]0 & 0 alil o o o |]|n],
0 0 ¢ ay 0 0o --- bs
& 0 0 0 bo
8 &% O 0 .- b
8 81 b O ) fbaff, (2.53)
d3 8 &1 S - || b3

where
k
&= e—(VM)x—f(f r(é)dé) Sk = @e—(yﬂ)x—fé‘s(é)ds, k> 0.

k!

From (2.53) and the definition of @ it is easy to determine the expression of @D, by

o8 ¢8% O 0 -\ (bo
@8 P81 PS8 O - || b

PDy@b) = | gss g5, ¢80 ¢d0 - || 6o ]’
Yve 0 0 -\ [m ﬁwo 0 ---\ [bo
AMHe e o - as 0 o --. by
0 AHe Yse --- as + 0 o --- by

Haji and Radl [18] gave the following result, through which we deduce the resolvent set of
A on the imaginary axis.

Lemma 2.4 Ify € p(Ao) and 1 ¢ o (®D,), then
yeold) <& 1leo(®D,)).
By using Lemma 2.4 and p. 297 of Nagel [20] we derive the following result.
Lemma 2.5 Let r(x), s(x) : [0,00) — [0, 00) be measurable,

0< inf r(x) < sup r(x)<oo, and O0< inf s(x) < sup s(x)<oo.
x€[0,00) x€[0,00) x€[0,00) x€[0,00)

Then all points on the imaginary axis except zero belong to the resolvent set of A.



Yiming and Gupur Boundary Value Problems (2018) 2018:166

%
Proof. Let y = im, m € R\{0}, 4 =(aj,ay..)el',and b = (by,b1,by,...) € I'. The

Riemann-Lebesgue lemma

lim oofx)e”"’“dx 0, felL'0,00),f(x)>0,

m—0Q

implies that there exist M >0 and 6; € (0, 1) such that

<6, /oof(x)dx, |m|> M. (2.54)
0

/(; ” f(x)e ™ dx

Replacing f(x) in (2.54) with f(x) = e /0 "®)4 and f(x) = e**~Jo €)% and using (2.47)-
(2.48), we have

< 92/ e Jo r®)ds dx, 05 €(0,1),
0

oo
f g lim+2)x — [ (&) dé dx
0

o0 AX n X
< 92/ Qe‘“‘fo SO gy ¥n>0,0,€(0,1),
0 n.

oo
/ (x)" o im N )x= [ s(€)dg g,
0

n!

recalling that a convergent positive number series still converges to the original limit if the

- — —>
orders of its terms are changed we derive, for |m| > M and (a4, b)#(0, 0),

|op,(2, )]
= |¢p81bg + PSob1| + |PS2by + p81b1 + PSoba|
+|@83bo + Pd2b1 + PS1b3 + PSobs|
+1¢8abo + ¢p33b1 + Pdaby + PS1b3 + PSoba| + - --

+ |AHeay + Yreas|

$Bobo

)\.
+ (ﬂé‘&l +
! }/+)\,

+ |AHeay + Yeas| + |AHeas + Yreaq| + - -+
o0 o0 o0

<> 1¢8ullbol + D15l Y 1684l
n=1 k=1 n=0

A 00
+ ’m‘waonbm +(lyel + A|He) Z |
n=1

<Ibol Y 18l + Y 1bel > 1684l
n=1 k=1 n=0

+ 1bol|pSol + (el + 1IHel) Y |l

n=1

o0
|bk|2|¢a |+ (1¥el + | Hel Z|an|
n=0 n=1

> 1bd
k=0

1 £

/ ( )( x) —(im+0)x— [ s(€) d& dx
0

=
I
o
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g

/ r(x)e”mhx o fo r€)dE g
0

o]

[o¢]
+A / (i Xy [ r(E dédx>2|an|
0 n=1
A
<Z(92/ s(x ( )" [ o) dédx) 3 i
& k=0
* [92 / r(x)e o O gy 1 6,5, / o3 &) de dx] 3 o
’ 0 n=1
o O) ey
—922|bk| S Fsede gy
n= 0 n!
+6> Z || / [h+ r(x)]e Jo Lrr@Nde gy
n=1 0
=6, (Z |aul + Z |bk|/ s(x)e* e —ha- [ s(€) dE dx)
[o¢] 00 0
=6, (Z |anl + Z | Dk / s(x)e’fo s(€)dk dx)
n=1 k=0 0
o 00
=6, (Z laul + > |ka>
n=1 k=0
v
= 6,|(a, b)|
=
@D b
oD, || = sup M 6 <1, -

@ e I, I )l

This means that when |m| > M, the spectral radius r(®D,) < ||®D, || < 6, < 1, which
implies 1 ¢ o (@D, ) for |m| > M, and therefore by Lemma 2.4 we know that y = im ¢ o (A)
for |m| > M, that is,

{im||m|>M}Cp), {im|lml <M} Co(A)NiR. (2.56)

On the other hand, since T'(¢) is positive uniformly bounded by Theorem 1.1, by Corol-
lary 2.3 in Nagel [20], p. 297, we know that o (4) N iR is imaginary additively cyclic, which
states that im € 0 (A) N iR = imk € 0 (A) N iR for all integers k, from which, together with
(2.56) and Lemma 2.1, we conclude that o (A) NiR = {0}, that is, all points on the imaginary
axis except zero belong to the resolvent set of A.

According to Zhang and Gupur [9] and Jiang and Gupur [10], X*, the dual space of X, is
as follows:

p* € R x L*°[0,00) x L*®[0,00) X - -+,
Q* € L*°[0,00) x L*®[0,00) X -+,
(", Q") = max{|p5l,

Sup,;~1 ”p:”LOO[O,Oo)’ SUp,,~o ”QZ”LOO[O,OO)} <0

X* = (P*; Q*)
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It is obvious that X* is a Banach space. Zhang and Gupur [9] gave the following expression

of A*, the adjoint operator of A:

A*(p5, Q) =L+ N+R)(p*Q%), (p*,Q")eD(),

where
o 0 2 _[htr)] 0 o | pi)
LEsQ) =] o 0 D@l | | pe |
& =D+ s)] 0 0 ) (@6
0 L [n+s(x)] 0 QW)
0 0 L-as@] | G@ ||’

) . .
P;bix) (i=1), d(i,;(x) (n > 0) exist and

pH(00) = Ko (i > 1), Q%(00) = Ko (n > 0) |

D(L) = i(p*, Q")

where Kj is a constant which is irrelevant to i, n in D(L).

» 00 Q) (0 % 0 Q)
0o xr 0 - |leo]| oo r ||
NEQ)=[1o o 2 ;| [o 0 o W | |
0 0 0 -\ [Q0)
rx) 0 0 - || Q0
R(p*, Q%) = 0 r®x) 0 ---[|Q0],
0 0 rx ---|]Qs0
s(x) O 0 o .- 28
0 sx 0 0 ---]]pi0)
0 0 s 0 ---]]p;50
0 0 0 s ---]]pi0

Since T'(¢) is uniformly bounded, by Lemma 2.3 in Arendt and Batty [21] and Lemma 2.1
we know that 0 is an eigenvalue of A*. Furthermore, replacing « and g in [9] with r(x) and
s(x), respectively, we deduce the following result.

Lemma 2.6 If

00 o0
[ et e [T anste 805 de <,
0 0

then 0 is an eigenvalue of A* with geometric multiplicity one.
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Since by combining Lemmas 2.1 and 2.6 and Lemma 5 in Gupur [22] we know that O is an
eigenvalue of A* with algebraic multiplicity one, Theorem 1.1, Lemma 2.1, Lemma 2.5, and
Lemma 2.6 satisfy the conditions of Theorem 14 in Gupur, Li, and Zhu [11] (Theorem 1.96
in Gupur [12]). Thus, we obtain the desired result in this section, which is the direct result
of Theorem 14 in Gupur, Li, and Zhu [11].

Theorem 2.1 Let r(x),s(x) : [0,00) — [0,00) be measurable,

0< inf rix) < sup r(x)<oco and O0< inf s(x) < sup s(x)<oo.
x€[0,00) x€[0,00) x€[0,00) x€[0,00)

¥

00 o0
N / L L / axs(x)eJo € gy o 1,
0 0

then the time-dependent solution of system (1.9) converges strongly to its steady-state solu-
tion, that is,

Jim [[(p, Q) 8) = {(p*, Q7). (£(0), QL)) )2, QO =0,
where (p*, Q*) and (p, Q) are the eigenvectors in Lemmas 2.6 and 2.1, respectively.

Remark 2.1 Gomez-Corral [4] obtained that the Markov process is ergodic if and only if
AB1 < @(1). This condition is quite different from the conditions in Theorem 2.1. Hence,
it is worth studying the relation between the ergodicity of the Markov process and the
conditions in Theorem 2.1. This is our future research topic.

3 Point spectrum of Awhen r(x) =a, s(x) = 8
When r(x) = @, s(x) = B, we have the following result.

Theorem 3.1 Ifa,B,A>0and Mi—;}") <1, then all points in the set
Ry +A+a>0,Ry +8>0,
v €ClIly +A+a)(y + 21+ B) - 18] U {0}

i\/[(y+k+a)(y + A+ B)=ABI12 —daBr(y + A +a)| < 2aB

are eigenvalues of A with geometric multiplicity 1. Especially, the interval

(—(2A+a+ﬂ)+\/(a+,6)2+4)\,8 0i|

2

belongs to the point spectrum of A.

Proof. Consider the equation A(p, Q) = ¥ (p, Q), that is,

(v + )po=B /0 Qulx) dx, 3.1)

M =—(y +2+a)p,(lx), Vn=>1, (3.2)
dx
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d
QdO(x) ==(y + 1+ B)Qo(x), (3.3)
X

d?i—;(x) = —()/ +A+ IB)Qn(x) +AQu1(x), Vm=>1, (3.4)

pn(0) =B /oo Q.(x)dx, Vn=>1, (3.5)
0

Q0 =ipva [ pid (36)

0

Q,(0) = A /oopn(x) dx +«a /oop,,ﬂ(x) dx, VYn>1. (3.7)

0 0

By solving (3.2)—(3.4) we have

Pu(x) = ane” VR, > 1, (3.8)
Qo(x) = boe VPR, (3.9)
X
Q,(x) = be Y HHPF )Le_(”“ﬁ)x/ eV BT, ((t)dr, VYn>1. (3.10)
0

By combining (3.9) with (3.10) we deduce

= (wy
Qi) = e VPN T, 8, Yn= 0. (3.11)

PR

By (3.5)—(3.10), using the Fubini theorem, we calculate, for Ry + L +« >0and Ry + > 0,
b= Qua@ =i [ pra@dsra [ puatds
0 0
[o¢] [o¢]
=X / Ay VY x b o / Apipe” VHHOR gy
0 0

A o
:y+k+aﬂn+l+y+k+aan+2: Vn>1, (3.12)

Antl :Pn+1(0) = ﬂ/ Qus1(x) dx
0

o0 X
= ﬂ/ [bmle‘(”*“ﬂ)x + Ae‘(y*“ﬂ)"/ e(””*ﬂ)’Qn(t)dr} dx
0

0

__ Bk
y+Ai+p
B AB /°°
= by, W(T)d
y+Ai+p 1+y+k+/3 0 Qv dr
= b by +
y+Ai+p y+Ai+p
B A
= bn+l + Ay,
y+Ai+p y+Ai+p

o0 o0
by + Aﬂ/ eV Pt Q,,(t)/ e VB gy dr
0 T

pn(0)

n+1

V> 1. (3.13)

By inserting (3.12) into (3.13) and rearranging we immediately get

(y+A+a)(y+A+ﬁ)—kﬁﬂ Ay + A+ )

n+2 = O[,B n+l — Ol,B a, Yn>1 (314')

Page 20 of 31
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If we set
+h=(y+k+a)(y+k+ﬁ)—kﬁ’ thm, (3.15)
of aB
then it is easy to calculate that
1
vh= ﬁ{[(y+k+a)(y+k+ﬁ)—kﬂ]
j:\/[(y+A+a)(y+k+,3)—k;3]2—4aﬁk(y+k+a)}. (3.16)

By comparing (3.14) with (3.15) we find

ansz = (v + h)au, — vha,
=
2 3
An2 — Vapsl = h(an+1 - Van) =h (an - Vﬂn—l) =h (an—l - Van—2)
=.-.=h"ay-vay), n>1
=
Apy2 — Vayi1 = hn(aZ - Vﬂl):
2 _ n-1
Vap —Vvoa, =vh"  (ay — vay),
2 3

Va, —vVia,_1 = V" X ay — vay),

3 2

Vi3as — V' 2ay = v 33 (ay — van),

Vi=2a, — V' as = v (ay — van),
Vilas —vV'ay = vV h(ay — vay).
By adding up all these equations together we have

Ao —V'ay = (h” TV VT VT e v”’lh)

X (ay — vay)
m'a, — nv"*lay ifv=nh,
= l/n+17hr1+1 .
(55— V") az —va)) ifv#h
If v = h, then
peo —V'ay =mV"ay — vV ay, = apo =W+ 10W'ay - ta;, VYu>1. (3.17)

This and (3.12) give

o

bn+2 = Ay Ap+3

+
y+Ait+a y+it+a
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A
= T[(n +1)v'"a, - nv’”lal]
y+i+a
+ f[(n + 2V a, — (n+ l)v’”zal]. (3.18)
y+i+a

From this, together with (3.8), (3.11), (3.17), (2.46), and the Cauchy product, we estimate
for Ry + A +a>0,Ry +B>0:

o0
ol = 1pol + Y 12ull 210,00
n=1

0 00
“ipl+ Y [ lputo] s
n=1 0
|190|+Z/ e dx = o] + aZw
= |pol + <|a1| + lay| + Z |an+z|)

n=1

= |pol + W <|611| + |as| + Z|(Vl +1)0W'"ay - nvn+1d1|>

n=1
1 o) oo
<lpol+ =———|lal +lazl + Y (m+D)V|"|az| + Y nlv|"™|a
< Ipol my+“a<| il + 1| le( v/l Zl v e

lai| + |az|
= + + a E n+ )"
pol Ry + L +a 9%)/+A+oe| 2| ( i

1 . +1
Ry +)+a " 3.19
* iﬁy+k+a|al|;n|vl ( )
1Qull10,00) =/ |Qu(x)| dx = V”““Z -
0 5 !
Jj=
Y 0
< Zf|bn—j|/ we Qv erehlx gy
j=0 ]‘ 0
-~ /! . 3
= - b >
;): |n]|(my+)"+ﬁ)]+1 FZO(%V+)\'+ﬂ)]+1|nl|
=
o oo n ,
- o Y
Il ;ue 211000 26‘1 (my+x+ﬂy+1' j

:;bnl;(myﬂwyu :my+ﬁ;|bn|

1 [o¢]
oy (|bo| byl + b + ) |bn+2|)

n=1
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|bol + |b1| + by 1 < 1
< + n+10W'a, —mv"'a
- Ry + B i)‘%y+ﬂn2=1: y+A+a[( Waz 1

1 i o
+ n+ 2V ay — (n+ 1)v*2a
%y+ﬂn2=1: y+A+a[( ) 2= ( ) 1]

b b b A =
< |bo| + |b1] + |by] s ap Z(”+1)|V|n
Ry + B Ry +B|ly+r+a —~

A ay i il o a) nd
+ nlv/™ 1+ n+2)|v|"!
%y+ﬂ’y+k+a; i Ry +B|ly+Ai+a nX:I:( i
o a >
1 2
+ n+1)v|". 3.20
mwﬁ’y”w’;( v (3.20)
If v # h, then
Vn+1_hn+1
Ao —V'ay = (— - V")(ﬂz —vai)
v—h
=
Vn+1_hn+1
an+2:v”*1a1+7h(u2—m1), V> 1. (3.21)
V_

From this and (3.12) we determine

o
Dyio = Ao + a
n+2 )/+)»+O[ n+2 ]/+)»+(X n+3
A Vn+1_hn+1
= (Vg + ————(ay—va
y+k+a( ! v—-h (@ 1)>
o Vn+2_hn+2
+ it a (V"*zal + —h(ﬂg - val)), Vn>1. (3.22)
y+ita V-

From this, together with (3.8), (3.11), (3.21),(3.22), as in (3.19) and (3.20), we estimate
for Ry + A +a>0and Ry + 8> 0:

a1l +laa| 1
Ry +ri+a Ry+ri+oa

x [mn Dot (Z ey |h|““)], (3.23)
n=1 n=1 n=1

|b0|+|b1|+|h2|+ A ay i""ml
Ry + B Ry +Bly +r+a|—~

A a, —va > >

2~ vel n+l n+l
+ vI™"+ > |kl
Ry + B (y+)\+a)(v—h)‘(n21: ; )

oo
Z |V|Vl+2
n=1

lipll < lpol +

ay) —va)
h

IRl =

o ay
+
Ry +Ply+ri+a

« az —vai = n+2 = n+2
+ v + |4 . (3.24)
Ry + B (y+)\+a)(v—h)‘(n2_1: nX:I: )
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From (3.1), (3.5)—(3.8), and (3.11) by direct calculation we determine

At By + )

by 8 Po,

(y 2+ )y + 1)+ vB]

1= Po>

ap
b (2t a)y + A+ By + 1) + yBl - By + 1)
1= 2 Po,
of

g - y+it+a

TR

x{[(y + 1>+ yB][(y + 2+ &)y + 1+ B) = AB] — 2By + 1)} po,

b (Y +r+a)y +1+B)
)=

0{2,33
x{[(y + 1>+ 1B][(y + A + &)y + 1 + B) = AB] = AaB(y + 1) }po
L
y+Ai+p

A2y + 1)
yEA+ ﬂpo-

For simplicity, we introduce the notation

Ry +A+a>0,Ry +B>0,
A=y eClll(y +2r+a)y + A+ 8)—AB]

+/[(y + 2+ a)(y + 1+ B) — AB]2 —dafr(y + A +a)| < 208

From (3.16) it is easy to see that

yed & Ry+i+a>0, Ry + >0, vl <1, |h| < 1.

From this, together with (3.19), (3.20), and (3.23)—(3.29), we have, for y € A,

|2, Q| = lIpll + 1Qll < o0,

{(y +r+ )y + 1+ B)[(y + 1> + ¥B] — 2By + 1) }po

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

which shows that all y € A are eigenvalues of A. Moreover, from (3.17), (3.18), (3.21),
(3.22), (3.25)~(3.29), (3.8), and (3.11) we know that their geometric multiplicity is one.
In the following, we discuss the case y € R. Since Theorem 1.1 implies thatall y € (0, 00)

belong to the resolvent set of A, the spectral set of A belongs to (—oo,0]. This includes the

following three cases:

Dy +r+a)y +r1+B)—AB1? —dafr(y + A +a)>0& |(y + A +a)(y + L+ B) —AB| >

V4aBA(y + A + «), which implies, for y + A + a > 0,

2

=(y+r+a)y +A+8)=2AB>V4aBA(y + L +a)>0

2

(y_—(2A+a+,3)+\/(a—;3)2+4)\,3)(y_—(2)L+a+,3)—\/(a—;3)2+4)&/3

)
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Vs —2A+a+B)+/(a—B)2+4r8

2

)< —2A+a+ B)—/(a—pB)2+4r8

2

Ifa>pB,thendd>0= J(a-B)l+4rB>a-B= B+ /(@a-B)2+4r8>a. If a < B,
then B8 + /(@ —B)2+418 >a.So, foralla >0, 8>0,A>0
B++/(a—=B)2+4rB>a
& —r+a+B)-V(a-B)2+4r8 <20\ + )

-2r+a+B)—/(a-B)+4r8
2

<—(A+a).

This, together with

) < QA +a+B)—(a—pB)2+4r8

2 ’

imply that y < —(A + ), which contradicts to the condition y + A + « > 0. Hence,

) s QA +a+ B) +/(a—B)?+4r8

> (3.30)
It is easy to see that
af+A(A+a)>0
& 4o + 427 +dha +4rB > 4rp
& (a+ B +42% +4r(a + B) > (w — B)? + 418
& Qr+a+p)?s(a-p)>?+4arB
& 2h+a+B>(a—B)2+4r8
& —r+a+B)++(a—-B)2+4rB<0. (3.31)
If 8 > «, then
B=a

= B-a<+(a-B)?+428
= 20 +a)<-2r+a+B)++/(a—B)?+4r8

& s —(2)\.+Ol+ﬂ)+2\/(06—,3)2+4)\.ﬂ.

If B8 < «, then

B<a
= ala-pB)+2AB+a/(@a—B)2+418>0
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= 20 -2aB +4rB + 2/ (e — B)2 +4AB >0
B2 <a® + (o — ) +4rB +20/(a - ) + 43 = [a + /(- B +4AB]’
= B<a++/(a-p)+408

—QA+a+B)+/(a—pB)2+4r8

= —(A .
A+a)< 5

4

The above two inequalities give, forall 8 >0, >0, 1 >0,

Chta)< —(2A+a+ﬂ)+2\/(oz—ﬁ)2+4kﬁ' (332)

The conditions A%—;“) <land B>0,a>0,A>0imply

= A<B

=  4A(h+a) <4B(B +a) <2B(B +a) + 2B (a + )% +4AB + 40p

= @r+a) =4t +a)+a®<a® +2B(B +a)+ 28 (o + B) + 4AB + 478
=B+ (@ +B) +4rB + 2B/ (+ B + 408
=[B+V(@+p?+ap]

= 2+a<f+(a+p)?+4r8

_ﬂ<—(21+a+ﬂ)+\/m. (333)

2

=

In addition, for y <0, ¥ + A + « > 0, we have

AA+a)

of <l = o> r+a)>Ay+r2+a)> (Y +A)(y +A+a).

By this we verify that, fory + .+« >0,y + 8 >0,and y <0,

0<[(y+k+a)(y+k+ﬂ)—kﬂ]

—\/[(y +)\+a)(y+k+ﬁ)—kﬁ]2—4aﬁk(y +A+a)

<[(y+k+a)(y+k+ﬂ)—kﬂ]

+\/[(y +k+a)(y+A+ﬁ)—kﬂ]2—4aﬂk(y+k+a)

<[y+r+a)y+r+B)—(y +1)B]

+\/[(y+x+a)(y+x+ﬂ)-(y+,\),3]2-4a,3(y+x)(y+)\+a)

=[(y +A+a)(y+k)+aﬂ]
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+\/[(y+A+a)(y+A)+aﬁ]2—4aﬂ(y+k)(y+k+a)

:[(y +A+a)(y +A)+a/3]+\/[(y +A+a)(y +A)—aﬂ]2
=[(y +A+a)(y +A)+aﬁ]—(y+k+a)(y +A) +af =20

= 0<|v<«], O<lh<1l = yeA (3.34)

Relations (3.30), (3.31), (3.32), (3.33), (3.34), and

A +a+ B)+/(a—B)2+4r8 . QA +a+ B)++/(a+ B)?+4r8 <0
2 2

- / 2
( e 5 (@ rpy+42p ,0) are eigenvalues of A, which includes the
—Qrta+B)+A/ (@+B)2+41B
4

imply that all points in

is an eigenvalue of A for o)

ap
i, the main result in Ismayil and Gupur [14] that all points in (

—2r+a+B)++/ (@ +B)2+418 0)
4 )
A(h+a)

are eigenvalues of A for = < i, and the main result in Gupur [15] that all points in
( —(2r+a+B)+A/ (a+B)%+41p 0) A(A+a) 1
4 ’

are eigenvalues of A for === = 7.
In the case y =0, it is just the result of Lemma 2.1, so we omit the proof.

main resultin Lv and Gupur [13] that

af 4

Although it is hard to determine explicitly the roots of the equation [(y + A + a)(y + A +
B) — AB1? — dafr(y + A + &) = 0, without loss of generality, we assume that all negative
real roots of the equation are w; (i = 1,2,3,4) satisfying w1 < wy < w3 < w4 (in fact, we
discovered numerically that the equation has two real roots). Then from our discussion
we know that all points in the interval (max{—(A + &), — 8, w4}, 0] are eigenvalues of A with
geometric multiplicity one.

(2) [(y + A+ a)(y + 1+ B)—AB1® —4aBA(y + L +a) = 0. From this, together with /\(2_;1) <1,
y+i+a>0,y+6>0,and y <0, we have

[(y+k+a)(y+k+ﬁ)—kﬁ]2—4a,3)»(y+k+a)=0

= |(y +A+a)(y+k+ﬂ)—kf3|:2 aBA(y + A +a)

1
= 0<|v=|h= ﬂ[(y +A+a)(y+A+ﬂ)—kﬂ]

= ﬁ 2V oAy + A+ )

= éw/aﬂ)\(y +A+a)

< #N/aﬁk(k +a)

< 1 (@B)?=1 = yeA (3.35)
of

Without loss of generality, we assume that all negative real roots of the equation are w; <
wy < w3 < wy. Then (3.35) implies that max{—(A + «),—B, w4} is an eigenvalue of A with

geometric multiplicity one.
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(3) [(y + A +a)(y + A+ B)=AB1> —4aBr(y + A +a) < 0, from which, together with ’\(2—;") <1,
y+Ai+a>0,y+pB>0,and y <0, we deduce

0<|v|

=’ﬁ{[(y+k+a)(y+l+ﬂ)—kﬁ]

—\/[(y+k+a)(y +A+ﬂ)—kﬁ]2—4aﬁk(y +A+a)}

1

m{[(y+k+a)(y +A+,3)—)»,3]

—i\/4aﬁk(y +A+a) - [(y +A+a)(y +A +ﬁ)—kﬁ]2}

_ 1 dafr A
_ﬂw/ ofr(y + A+ )

< ﬁ\ﬂkaﬁk(k +a)

< ﬁ 4ap)? =1, (3.36)

0<|h|=‘ﬁ{[(y+)\+a)(y +A+B)—AB]

+\/[(y+k+a)(y+k+ﬁ)—kﬁ]2—4aﬁk(y+k+a)}‘

= ﬁ{[(y+k+a)(y+k+ﬂ)—)\,3]

+i\/4aﬂk(y+k+a)—[(y +)\+a)(y+)»+,8)—)»f3]2}

= 1 4daB A A
—m\/ aBr(y + A +a)

< L\/4()5,6)»()& +a)
20

< L\/4(05/3)2 =1. (3.37)
208

Relations (3.36) and (3.37) imply that y € A. Without loss of generality, we assume that
all negative real roots of the equation are w; (i = 1,2,3,4) satisfying w; < wy < w3 < wa,
then all points in (max{—(A + &), —B, w3}, max{—(A + @), — B, wa}) are eigenvalues of A with
geometric multiplicity one.

By summarizing our discussion we conclude that all points in

Ry +A+a>0Ry +B8>0,
Yy €ClIy + 2 +a)(y + 1+ B) - 28] U {0}
+/[(y + 2+ a)(y + 1+ B) = AB12 —dafr(y + A +a)| < 208
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are eigenvalues of A with geometric multiplicity 1. In particular, all points in (max{—( +
a),—B,ws},0] are eigenvalues of A with geometric multiplicity one, and the interval

(—(2)»+a+ﬁ)+,/(a+,3)2+4)»,3 0:|

2

belongs to the point spectrum of A.

Remark 3.1 From (3.17), (3.18), (3.21), and (3.22) it is easy to see that if |[v| > 1 and |h]| < 1
or [v] <1and |h| > 1, then [|(p, Q)| = ||l + ||Q]l = 0o, that is, there are no eigenvalues in

I[(y + 2 +a)(y + 1+ B) - AB]
+/[(y + A+ a)(y + 1+ B) — ABI2 —dafr(y + A +a)| > 2B,
I[(y + 2 +a)(y + 1+ B) - AB]
—\/[(y+)L+a)(y+k+ﬁ)—)»,3]2—4aﬁk(y +A+a)| <2aB
or [[(y + A +a)(y + A+ B) - AB]
+\/[(y +A+a)(y + A+ B)=ABI2 —daBr(y + A +a)| < 2apB,
[y + 2 +a)(y + A+ B) - AB]
—\/[(y+A+a)(y+k+,3)—kﬂ]2—4a,3k(y +A+a)>2aB

yeC

4 Conclusion and discussion
Let 0,(T'(¢)) and 0,,(A) be the point spectra of T'(t) and A, respectively. From Theorem 1.1,
Theorem 3.1, and the spectral mapping theorem for the point spectrum ([23], p. 277)

0, (T(8) = P U {0}

we know that 7'(¢) has uncountably many eigenvalues, and therefore it is not compact and
even not eventually compact ([23], p. 330).

Corollary 2.11 in Engel and Nagel [23], p. 258, states that if 7(¢) is a Cp-semigroup on
the Banach space X with generator A, then

L. wo = max{wess,S(A)}, where wy is the growth bound of T'(£), wess is the essential
growth bound of T'(¢), and 5(A) is the spectral bound of A.

II. o(A)N{y € C|Rey > w} is finite for each w > wess. Here o (A) is the spectrum of A.

Theorem 1.1, Lemma 2.5, and Theorem 3.1 imply that wy = 0 and 5(A) = 0. These, to-
gether with items I and I above, yield wess = 0. From this and Proposition 3.5 in [23], p. 332,
we conclude that T'(¢) is not quasi-compact. Hence, queueing models are essentially dif-
ferent from the population equation [24] and the reliability models that are described by
a finite number of partial differential equations with integral boundary conditions [12].

Let (p, Q)(x) be an eigenvector with respect to 0 in Lemma 2.1, and let (p, Q) (x) be

— 2
@hrarp) > (+f) e for e € (0,1) in Theorem 3.1. Then,

eigenvectors with respect to
using A(p, Q) (x) = 0 and

@A +a+B)+/(a+ B+ 40

5 e(p, Q¥ (),

AP, Q% ()

we have, for all t > 0 and ¢ € (0, 1),

TO[(, Q") + AP, Q¥ ()]
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=T®)(p, QVx) + T(H)A(p, Q) (x)

=(,Q(x) + T(t)|:_(ZA +a+p) +2 (@ + B)2 + 4rp

—(2k+a+ﬁ)+,/(a+ﬂ)2+4kﬂ8T

2

e(p, Q" (x)}

=(p, Q") + ), Q¥ (x)

= (10"

—Cr+a+B)+/(a+B)2+4rB  -@rarplen/(@sp)>iip
+ ( ,3) > ( ,B) IBSe Y ”(p, Q)(s)(x)

=
I 7@[@. Q0 + A, Q)] - (1. Q)|
| =@r+a+ B)+ /(e + B)* + 4B 86—(’M+a+ﬂ)+ y (@+p2+43p

2

‘. Q@]
This means that there are no positive constants M, > 0 and @ > 0 such that

|76, Q) + AP, Q)] - (2, Q)|
<Moe ™| (,Q), Vt=0,Y(p,Q) € D(A),

that is, it is impossible that the time-dependent solution of system (1.9) exponentially con-
verges to its steady-state solution. In other words, the convergence result given in Theo-
rem 2.1 is optimal.

Until now, we have not described the essential spectrum of A for r(x) = « and s(x) = 8.
We have not found an efficient way to describe the spectrum of A when r(x) and s(x) are
nonconstant. All of them are our next research topic.
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