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Abstract
This paper is concerned with the dynamics of a predator–prey system with three
species. When the domain is bounded, the global stability of positive steady state is
established by contracting rectangles. When the domain is R, we study the traveling
wave solutions implying that one predator and one prey invade the habitat of
another prey. More precisely, the existence of traveling wave solutions is proved by
combining upper and lower solutions with a fixed point theorem, and the asymptotic
behavior of traveling wave solutions is obtained by the idea of contracting rectangle.
Moreover, we show the nonexistence of traveling wave solutions by applying the
theory of the asymptotic spreading.
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1 Introduction
In population dynamics, predator–prey systems have been widely studied due to their
importance as well as plentiful dynamical behaviors. When the system involves only one
predator and one prey, there have been many results for both ordinary differential systems
and reaction–diffusion equations. For the topic, we refer to Cantrell and Cosner [4], Fife
[13], Ghergu and Radulescu [17], Murray [35, 36], Pao [39], Smith [42], Smoller [43], Ye et
al. [50], Zhang and Feng [52], Zhao [54].

When the spatiotemporal dynamics is concerned, since the pioneer work in [14, 25],
much attention has been paid to the traveling wave solutions of parabolic equations; we
refer to Volpert et al. [44] for some earlier results and a survey paper by Zhao [55] for
some recent conclusions. If a system is of predator–prey type with two species, then sev-
eral methods, including phase analysis, shooting methods, Conley index and fixed point
theorem, have been applied to establish the existence of traveling wave solutions; we re-
fer to some important results by Dunbar [9–11], Gardner and Smoller [16], Gardner and
Jones [15], Chen et al. [7], Huang et al. [19], Huang and Zou [21], Huang [23], Hsu et al.
[18], Li and Li [26], Lin et al. [30], Lin [28, 29], Lin et al. [32], Pan [37], Wang et al. [45],
Wang et al. [47], Zhang et al. [51].

In fact, due to the diversity and complexity of ecosystems, the study of the interaction
among multi-species has more practical significance. However, when there are more than
2 species, studying the ecosystem becomes more difficult. For example, it is difficult to
study the existence of traveling wave solutions by phase analysis. Moreover, even for ordi-

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13661-018-1084-x
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-018-1084-x&domain=pdf
http://orcid.org/0000-0002-1394-2166
mailto:shxpan@yeah.net


Bi and Pan Boundary Value Problems        (2018) 2018:162 Page 2 of 25

nary differential systems, the investigation of dynamical behavior becomes more difficult
due to the deficiency of general Poincare–Bendixson theorem in R

n with n ≥ 3. Of course,
there are also some conclusions about the dynamics of predator–prey systems with mul-
tiple species. For example, Caristi et al. [6] investigated the coexistence of a predator and
two species on bounded habitat with Neumann boundary condition, Du and Xu [8], Shang
et al. [41], Zhang et al. [53] proved the existence of traveling wave solutions to a reaction–
diffusion system with multiple species.

Recently, Huang and Lin [24] considered the following three species reaction-diffusion
system (see Cantrell and Cosner [4]):

⎧
⎪⎪⎨

⎪⎪⎩

∂u1(x,t)
∂t = d1�u1(x, t) + u1(x, t)[b1 – u1(x, t) – b12u2(x, t) – b13u3(x, t)],

∂u2(x,t)
∂t = d2�u2(x, t) + u2(x, t)[b2 – b21u1(x, t) – u2(x, t) – b23u3(x, t)],

∂u3(x,t)
∂t = d3�u3(x, t) + u3(x, t)[b3 + b31u1(x, t) + b32u2(x, t) – u3(x, t)],

(1.1)

where all parameters are positive, u1(x, t), u2(x, t) denote the densities of two competing
prey species located at x ∈ Ω ⊆R

n at time t, u3 denotes the density of predator feeding on
species 1 and species 2 located at x ∈ Ω ⊆R

n at time t. The authors obtained the minimal
wave speed of non-negative traveling wave solutions connecting trivial equilibrium with
positive equilibrium, in which the limit behavior is verified by the abstract results in Lin
and Ruan [31].

Because all the parameters are positive in [24], this implies that the predator could sur-
vive without two preys in the system. In this paper, we suppose that all the parameters,
except b3 < 0, are positive and the predator only feeds on species 1 and 2. Under the condi-
tions of (1.1), there are several different dynamical problems in the literature. For example,
u3 invades the habitat in which u1, u2 coexist, u1, u3 invade the habitat of u2. In population
dynamics, these problems often imply different thresholds in (1.1), and the corresponding
control problem is also very important [40].

The purpose of this paper is to discuss the situation when prey u2 and predator u3 in-
vade the habitat of prey u1. We study the global stability of the positive equilibrium with
the help of contracting rectangles [42] when the domain is bounded, then the existence
as well as noexistence of traveling wave solutions when x ∈R. More precisely, we first es-
tablish the existence of a nontrivial traveling wave solution by the generalized upper and
lower solution. To verify the limit behavior of traveling wave solutions, we use the results
in global stability as well as the asymptotic spreading of Fisher equation [1]. Finally, the
nonexistence of traveling wave solutions is obtained by constructing auxiliary equations
as well as using the theory of asymptotic spreading.

It should be noted that Lin and Ruan [31] applied the idea of contracting rectangles
to verify the limit behavior of a traveling wave solution. But in [31] they needed strictly
contracting rectangles, a condition which is stronger than the general stability conditions
in [42]. In this paper, using the basic idea in [31] and adding necessary discussion, we
prove the limit behavior of traveling wave solutions by general contracting rectangles. We
believe the technique can be applied to more models.

The rest of this paper is organized as follows. In Sect. 2, we will give some preliminar-
ies. If the domain is bounded, the global stability of the positive equilibrium is proved in
Sect. 3. In Sect. 4, by using Schauder’s fixed point theorem and constructing upper and
lower solutions, we obtain the existence of non-negative traveling wave solutions. Then
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the asymptotic behavior of traveling wave solutions is also studied in Sect. 5. In Sect. 6, the
nonexistence of traveling wave solutions is established by using the relevant conclusions
of the asymptotic speed of spreading.

2 Preliminaries
We first introduce some notations. For u = (u1, u2, u3), v = (v1, v2, v3) ∈ R

3, we write u ≥ v
provided ui ≥ vi for i = 1, 2, 3. Let X be the following functional space:

X =
{

u : R →R
3 is bounded and uniformly continuous

}
,

which is a Banach space equipped with the standard supremum norm. If a, b ∈ R
3 with

a ≤ b, then X[a,b] is defined by

X[a,b] =
{

u ∈ X : a ≤ u(x) ≤ b, x ∈R
}

.

If u(x) = (u1(x), u2(x), u3(x)) and v(x) = (v1(x), v2(x), v3(x)) ∈ X, then u(x) ≥ v(x) implies
that u(x) ≥ v(x) for all x ∈ R; u(x) > v(x) is interpreted as u(x) ≥ v(x) but u(x) > v(x) for
some x ∈R.

By rescaling, (1.1) is equivalent to the following system:

⎧
⎪⎪⎨

⎪⎪⎩

∂u1(x,t)
∂t = d1�u1(x, t) + r1u1(x, t)[1 – u1(x, t) – a12u2(x, t) – a13u3(x, t)],

∂u2(x,t)
∂t = d2�u2(x, t) + r2u2(x, t)[1 – a21u1(x, t) – u2(x, t) – a23u3(x, t)],

∂u3(x,t)
∂t = d3�u3(x, t) + r3u3(x, t)[–1 + a31u1(x, t) + a32u2(x, t) – u3(x, t)],

(2.1)

where all the parameters are positive. Clearly, the corresponding kinetic system is

⎧
⎪⎪⎨

⎪⎪⎩

du1(t)
dt = r1u1(t)[1 – u1(t) – a12u2(t) – a13u3(t)],

du1(t)
dt = r2u2(t)[1 – a21u1(t) – u2(t) – a23u3(t)],

du1(t)
dt = r3u3(t)[–1 + a31u1(t) + a32u2(t) – u3(t)].

(2.2)

Assume that

⎧
⎪⎪⎨

⎪⎪⎩

a12 + a13(a31 + a32 – 1) < 1,

a21 + a23(a31 + a32 – 1) < 1,

a32[1 – a21 – a23(a31 + a32 – 1)] + a31[1 – a12 – a13(a31 + a32 – 1)] > 1,

(2.3)

then (2.2) has an equilibrium point E = (1, 0, 0) and a unique positive equilibrium point
K = (k1, k2, k3) defined by

k1 =
a12a23 + a13a32 – a23a32 + a12 – a13 – 1

a12a23a31 + a13a32a21 + a12a21 – a13a31 – a23a32 – 1
,

k2 =
a21a13 + a23a31 – a31a13 + a21 – a23 – 1

a12a23a31 + a13a32a21 + a12a21 – a13a31 – a23a32 – 1
,

k3 =
a32a21 + a31a12 – a12a21 – a31 – a32 + 1

a12a23a31 + a13a32a21 + a12a21 – a13a31 – a23a32 – 1
.
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In fact, the existence and uniqueness of K are not evident if (2.3) holds. But this will be
clear from the stability analysis in Sect. 3. More precisely, we could obtain the existence of
equilibria by the limit behavior in Sect. 3; then for any positive equilibria, we shall prove
the global stability which implies the uniqueness of the positive steady state. Furthermore,
(2.2) also has several semi-trivial steady states, which do not affect our following discus-
sion.

For convenience, we introduce the definition of contracting rectangle (see Smith [42]).
Consider the following initial value problem:

⎧
⎨

⎩

x′(t) = f (x(t)),

x(0) = φ,
(2.4)

where x(t) = (x1(t), x2(t), . . . , xn(t)), f (x(t)) = (f1(x(t)), f2(x(t)), . . . , fn(x(t))), φ = (φ1,φ2, . . . ,
φn) and there exists e ∈R

n such that fi(e) = 0.
Denote a one-parameter family of order intervals Σ(s) = [a(s), b(s)], 0 ≤ s ≤ 1 such that

for 0 ≤ s1 ≤ s2 ≤ 1,

a(0) ≤ a(s1) ≤ a(s2) ≤ a(1) = e = b(1) ≤ b(s2) ≤ b(s1) ≤ b(0),

where

a(s) =
(
a1(s), a2(s), . . . , an(s)

)
, b(s) =

(
b1(s), b2(s), . . . , bn(s)

)
,

and ai(s), bi(s), i = 1, 2, . . . , n, are continuous of s ∈ [0, 1].

Definition 2.1 Σ(s) is said to be a contracting rectangle of (2.4) if for any s ∈ [0, 1) and
φ = (φ1,φ2, . . . ,φn) ∈ Σ(s), we have

(1) fi(φ) ≥ 0 whenever φ ∈ Σ(s) and φi = ai(s) while fi(φ) ≤ 0 whenever φ ∈ Σ(s) and
φi = bi(s);

(2) for each s, at least one of above 2n inequalities is strict.

Using the contracting rectangle, we have the following stability result (see Smith [42,
Theorem 5.2.5]).

Lemma 2.2 Assume that Σ(s) is a contracting rectangle of (2.4). If φ ∈ Σ(0), then e is
globally stable.

We also present some results for the Fisher equation. Assume that D, R, M are positive
constants, Z(x) > 0 is a bounded and continuous function with nonempty support. Con-
sider the initial value problem associated to the Fisher equation

⎧
⎨

⎩

∂Z(x,t)
∂t = D�Z(x, t) + RZ(x, t)[1 – MZ(x, t)],

Z(x, 0) = Z(x), x ∈R.
(2.5)

From Fife [13], Ye et al. [50] and Aronson and Weinberger [1], (2.5) has the following
properties.
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Lemma 2.3
(i) Equation (2.5) admits a unique solution Z(x, t) ≥ 0 which is twice differentiable in

x ∈R and differentiable in t > 0.
(ii) Assume that Z(x, t), Z(x, t) are continuous and bounded for x ∈R, t ≥ 0, twice

differentiable in x ∈R and differentiable in t > 0. If they satisfy

⎧
⎨

⎩

∂Z(x,t)
∂t ≥ D�Z(x, t) + RZ(x, t)[1 – MZ(x, t)],

Z(x, 0) ≥ Z(x), x ∈R

and
⎧
⎨

⎩

∂Z(x,t)
∂t ≤ D�Z(x, t) + RZ(x, t)[1 – MZ(x, t)],

Z(x, 0) ≤ Z(x), x ∈R,

then Z(x, t) ≥ Z(x, t) ≥ Z(x, t), where Z(x, t) is a solution to (2.5).
(iii) If Z(x, t) satisfies (2.5), and Z(x) admits nonempty support, then

lim inf
t→∞ inf

|x|<(2
√

DR–ε)t
Z(x, t) = lim sup

t→∞
sup

|x|<(2
√

DR–ε)t
Z(x, t) =

1
M

for any ε ∈ (0, 2
√

DR).

3 Stability of the positive equilibrium
In this section, we shall establish global stability of the positive equilibrium (2.1) on a
smooth bounded domain Ω with Neumann boundary condition by using the contracting
rectangles, throughout which (2.3) holds. We first consider (2.2) if

u1(0) > 0, u2(0) > 0, u3(0) > 0.

By the quasipositivity, we see that

u1(t) > 0, u2(t) > 0, u3(t) > 0

for all t > 0. It is evident that this model is defined for all t ∈ (0,∞).
Due to positivity, we see that

du1(t)
dt

≤ r1u1(t)
[
1 – u1(t)

]

and so

lim sup
t→∞

u1(t) ≤ 1.

Similarly, we have

lim sup
t→∞

u2(t) ≤ 1,
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which further indicates that

lim sup
t→∞

u3(t) ≤ a31 + a32 – 1.

Returning to the first equation of (2.2), we obtain

lim inf
t→∞ u1(t) ≥ 1 – a12 – a13(a31 + a32 – 1) =: u1.

Similarly, we have

lim inf
t→∞ u2(t) ≥ 1 – a21 – a23(a31 + a32 – 1) =: u2

and

lim inf
t→∞ u3(t) ≥ a31

[
1 – a12 – a13(a31 + a32 – 1)

]

+ a32
[
1 – a21 – a23(a31 + a32 – 1)

]
– 1

= a31u1 + a32u2 – 1 =: u3.

Repeating the process, we further have

lim sup
t→∞

u1(t) ≤ 1 – a12u2 – a13u3 < 1,

lim sup
t→∞

u2(t) ≤ 1 – a21u2 – a23u3 < 1

and

0 < lim sup
t→∞

u3(t) < a31 + a32 – 1.

By the theory of dynamical systems [52], we see that (2.2) has at least one positive steady
state K = (k1, k2, k2) with

0 < ui < ki < 1, i = 1, 2,

and

0 < u3 < k3 < a31 + a32 – 1.

If K is globally stable, then K is the unique positive steady state, which implies the con-
clusions in Sect. 2. We now prove the global stability by contracting rectangles.

Lemma 3.1 Assume that (2.3) holds. Denote Σ(s) = [a(s), b(s)] with a(s) = (a1(s), a2(s),
a3(s)), b(s) = (b1(s), b2(s), b3(s)) and

a1(s) = sk1 + (1 – s)u1, b1(s) = sk1 + (1 – s),

a2(s) = sk2 + (1 – s)u2, b2(s) = sk2 + (1 – s),
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a3(s) = sk3 + (1 – s)u3, b3(s) = sk3 + (1 – s)(a31 + a32 – 1).

Then Σ(s) = [a(s), b(s)], s ∈ (0, 1) is a contracting rectangle of (2.2). Moreover, (k1, k2, k3) is
globally stable.

Proof We now verify the definition of a contracting rectangle.
(1) (i) If u1 = sk1 + (1 – s)u1, then

u2 ≤ sk2 + (1 – s), u3 ≤ sk3 + (1 – s)(a31 + a32 – 1)

so that

1 – u1 – a12u2 – a13u3

≥ 1 –
[
sk1 + (1 – s)u1

]
– a12

[
sk2 + (1 – s)

]
– a13

[
sk3 + (1 – s)(a31 + a32 – 1)

]

= (1 – s) – (1 – s)
{

1 –
[
a12 + a13(a31 + a32 – 1)

]
+

[
a12 + a13(a31 + a32 – 1)

]}

= 0.

Therefore

f1(u1, u2, u3)|u1=sk1+(1–s)u1 ≥ 0.

(ii) If u1 = sk1 + (1 – s), then

u2 ≥ sk2 + (1 – s)u2, u3 ≥ sk3 + (1 – s)u3

so that

1 – u1 – a12u2 – a13u3

≤ 1 –
[
sk1 + (1 – s)

]
– a12

[
sk2 + (1 – s)u2

]
– a13

[
sk3 + (1 – s)u3

]

= –(1 – s)(a12u2 + a13u3)

< 0.

Therefore

f1(u1, u2, u3)|u1=sk1+(1–s) < 0.

(2) (i) If u2 = sk2 + (1 – s)u2, then

u1 ≤ sk1 + (1 – s), u3 ≤ sk3 + (1 – s)(a31 + a32 – 1)

so that

1 – a21u1 – u2 – a23u3 ≥ 0
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and

f2(u1, u2, u3)|u2=sk2+(1–s)u2 ≥ 0.

(ii) If u2 = sk2 + (1 – s), then

u1 ≥ sk1 + (1 – s)u1, u3 ≥ sk3 + (1 – s)u3

so that

1 – a21u1 – u2 – a23u3 < 0

and

f2(u1, u2, u3)|u2=sk2+(1–s) < 0.

(3) (i) If u3 = sk3 + (1 – s)u3, then

u1 ≥ sk1 + (1 – s)u1, u2 ≥ sk2 + (1 – s)u2

so that

–1 + a31u1 + a32u2 – u3 ≥ 0

and

f3(u1, u2, u3)|u3=sk3+(1–s)u3 ≥ 0.

(ii) If u3 = sk3 + (1 – s)(a31 + a32 – 1), then

u1 ≤ sk1 + (1 – s), u2 ≤ sk2 + (1 – s)

so that

–1 + a31u1 + a32u2 – u3 ≤ 0

and

f3(u1, u2, u3)|u3=sk3+(1–s)(a31+a32–1) ≤ 0.

According to the definition of a contracting rectangle, Σ(s) = [a(s), b(s)] is a contract-
ing rectangle of (2.2). Then (k1, k2, k3) is globally stable by Lemma 2.2. The proof is
complete. �

The stability result further implies the following properties.
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Theorem 3.2 Assume that Ω is a bounded domain with smooth boundary ∂Ω . Consider
the following initial boundary value problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u1(x,t)
∂t = d1�u1(x, t) + r1u1(x, t)[1 – u1(x, t) – a12u2(x, t) – a13u3(x, t)],

x ∈ Ω , t > 0,
∂u2(x,t)

∂t = d2�u2(x, t) + r2u2(x, t)[1 – a21u1(x, t) – u2(x, t) – a23u3(x, t)],

x ∈ Ω , t > 0,
∂u3(x,t)

∂t = d3�u3(x, t) + r3u3(x, t)[–1 + a31u1(x, t) + a32u2(x, t) – u3(x, t)],

x ∈ Ω , t > 0,
∂u1(x,t)

∂n = ∂u2(x,t)
∂n = ∂u3(x,t)

∂n = 0, x ∈ ∂Ω , t > 0,

ui(x, 0) = φi(x) > 0, i = 1, 2, 3, x ∈ Ω ,

(3.1)

where n is the outward unit normal vector of ∂Ω , φi(x), i = 1, 2, 3, are continuous and
bounded. If (2.3) holds, then

lim
t→∞ ui(·, t) = ki, i = 1, 2, 3.

Since the boundary condition is of Neumann type, the proof is similar to that of ODEs
with nice properties of Laplacian operator, and we omit the proof here. We end this section
by making the following remark.

Remark 3.3 The dynamics of this model has been investigated by other methods, for in-
stance, Cantrell et al. [5] studied it under Dirichlet conditions. We now give the proof in
order to study the traveling wave solutions in Sect. 5.

4 Existence of the traveling wave solutions
We now investigate the existence of traveling wave solutions and first give the following
definition.

Definition 4.1 A traveling wave solution of (2.1) is a special solution taking the form
u(x, t) = Φ(x + ct) ∈ C2(R,R3) with

u(x, t) =
(
u1(x, t), u2(x, t), u3(x, t)

)
, Φ(ξ ) =

(
φ1(ξ ),φ2(ξ ),φ3(ξ )

)
, ξ = x + ct,

in which Φ is the wave profile that propagates through the one-dimension spatial domain
R at the constant wave speed c > 0.

By definition, Φ(ξ ) = (φ1(ξ ),φ2(ξ ),φ3(ξ )) must satisfy

⎧
⎪⎪⎨

⎪⎪⎩

d1φ
′′
1 (ξ ) – cφ′

1(ξ ) + r1φ1(ξ )[1 – φ1(ξ ) – a12φ2(ξ ) – a13φ3(ξ )] = 0,

d2φ
′′
2 (ξ ) – cφ′

2(ξ ) + r2φ2(ξ )[1 – a21φ1(ξ ) – φ2(ξ ) – a23φ3(ξ )] = 0,

d3φ
′′
3 (ξ ) – cφ′

3(ξ ) + r3φ3(ξ )[–1 + a31φ1(ξ ) + a32φ2(ξ ) – φ3(ξ )] = 0.

(4.1)
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Since we shall discuss the dynamical behavior that u2 and u3 invade the habitat of u1,
Φ(ξ ) will satisfy the following asymptotic boundary conditions:

lim
ξ→–∞

(
φ1(ξ ),φ2(ξ ),φ3(ξ )

)
= (1, 0, 0),

lim
ξ→+∞

(
φ1(ξ ),φ2(ξ ),φ3(ξ )

)
= (k1, k2, k3).

(4.2)

In population dynamics, positive solutions of (4.1)–(4.2) describe the following biological
process: at any fixed location x ∈R, there was only one prey a long time ago (t → –∞ such
that x + ct → –∞), and the predator and two preys will coexist after a long-term species
interaction (t → +∞ such that x + ct → +∞).

Letting Ψ (ξ ) = (ϕ1,ϕ2,ϕ3)(ξ ) = (1 – φ1,φ2,φ3)(ξ ), we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1ϕ
′′
1 (ξ ) – cϕ′

1(ξ ) + r1[1 – ϕ1(ξ )][a12ϕ2(ξ ) + a13ϕ3(ξ ) – ϕ1(ξ )] = 0,

ξ ∈R,

d2ϕ
′′
2 (ξ ) – cϕ′

2(ξ ) + r2ϕ2(ξ )[1 – a21 + a21ϕ1(ξ ) – ϕ2(ξ ) – a23ϕ3(ξ )] = 0,

ξ ∈R,

d3ϕ
′′
3 (ξ ) – cϕ′

3(ξ ) + r3ϕ3(ξ )[a31 – 1 + a32ϕ2(ξ ) – a31ϕ1(ξ ) – ϕ3(ξ )] = 0,

ξ ∈R.

(4.3)

Due to (4.2), we have

lim
ξ→–∞

(
ϕ1(ξ ),ϕ2(ξ ),ϕ3(ξ )

)
= (0, 0, 0),

lim
ξ→+∞

(
ϕ1(ξ ),ϕ2(ξ ),ϕ3(ξ )

)
= (1 – k1, k2, k3).

(4.4)

Define a constant

β ≥ r2
[
a21 + a23(a31 + a32 – 1)

]
+ r3(a31 + a32) (4.5)

such that

βϕ1 + r1[1 – ϕ1][a12ϕ2 + a13ϕ3 – ϕ1]

is nondecreasing with respect to 0 ≤ ϕ1 ≤ 1, 0 ≤ ϕ2 ≤ 1, 0 ≤ ϕ3 ≤ a31 + a32 – 1,

βϕ2 + r2ϕ2[1 – a21 + a21ϕ1 – ϕ2 – a23ϕ3]

is nondecreasing with respect to 0 ≤ ϕ1 ≤ 1, 0 ≤ ϕ2 ≤ 1, while it is nonincreasing with
respect to 0 ≤ ϕ3 ≤ a31 + a32 – 1, and

βϕ3 + r3ϕ3[a31 – 1 + a32ϕ2 – a31ϕ1 – ϕ3]

is nonincreasing with respect to 0 ≤ ϕ1 ≤ 1, while it is nondecreasing with respect to 0 ≤
ϕ2 ≤ 1, 0 ≤ ϕ3 ≤ a31 + a32 – 1.
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For Ψ (ξ ) = (ϕ1,ϕ2,ϕ3)(ξ ) ∈ X[0,M] with M = (1, 1, a31 + a32 – 1), denote

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1(ϕ1,ϕ2,ϕ3)(ξ ) = βϕ1(ξ ) + r1[1 – ϕ1(ξ )][a12ϕ2(ξ ) + a13ϕ3(ξ ) – ϕ1(ξ )],

ξ ∈R,

F2(ϕ1,ϕ2,ϕ3)(ξ ) = βϕ2(ξ ) + r2ϕ2(ξ )[1 – a21 + a21ϕ1(ξ ) – ϕ2(ξ ) – a23ϕ3(ξ )],

ξ ∈R,

F3(ϕ1,ϕ2,ϕ3)(ξ ) = βϕ3(ξ ) + r3ϕ3(ξ )[a31 – 1 + a32ϕ2(ξ ) – a31ϕ1(ξ ) – ϕ3(ξ )],

ξ ∈R.

Then (4.3) can be rewritten as

diϕ
′′
i (ξ ) – cϕ′

i(ξ ) – βϕi(ξ ) + Fi(Ψ )(ξ ) = 0, i = 1, 2, 3. (4.6)

Define constants

λi1(c) =
c –

√
c2 + 4βdi

2di
, λi2(c) =

c +
√

c2 + 4βdi

2di
, i = 1, 2, 3.

Then β > 0 implies λi1 < 0 < λi2 and

diλ
2
i1 – cλi1 – β = 0, diλ

2
i2 – cλi2 – β = 0, i = 1, 2, 3.

For Ψ (ξ ) = (ϕ1,ϕ2,ϕ3)(ξ ) ∈ X[0,M], define an operator P = (P1, P2, P3) : X[0,M] → X (see
Wu and Zou [49]) by

Pi(Ψ )(ξ ) =
1

di(λi2 – λi1)

[∫ ξ

–∞
eλi1(ξ–s) +

∫ +∞

ξ

eλi2(ξ–s)
]

Fi(Ψ )(s) ds, (4.7)

where i = 1, 2, 3, ξ ∈ R. Then a fixed point of operator P is a solution of (4.3) or (4.6). On
the other hand, a solution of (4.3) or (4.6) is a fixed point of operator P (see Huang [22]).

In the following, we will establish the existence of a nontrivial positive solution of (4.3) by
combining Schauder’s fixed point theorem with the method of upper and lower solutions
(for quasimonotone systems, we refer to [20, 34, 46, 49]). We now introduce the definition
of upper and lower solutions of (4.3).

Definition 4.2 Ψ (ξ ) = (ϕ1,ϕ2,ϕ3)(ξ ), Ψ (ξ ) = (ϕ1,ϕ2,ϕ3)(ξ ) ∈ X[0,M] are a pair of upper
and lower solutions of (4.3), if Ψ

′′,Ψ ′,Ψ ′′,Ψ ′ are bounded and continuous for each ξ ∈
R \T with T = {T1, T2, . . . , Tm} and they satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1ϕ
′′
1(ξ ) – cϕ′

1(ξ ) + r1[1 – ϕ1(ξ )][a12ϕ2(ξ ) + a13ϕ3(ξ ) – ϕ1(ξ )] ≤ 0,

d2ϕ
′′
2(ξ ) – cϕ′

2(ξ ) + r2ϕ2(ξ )[1 – a21 + a21ϕ1(ξ ) – ϕ2(ξ ) – a23ϕ3(ξ )] ≤ 0,

d3ϕ
′′
3(ξ ) – cϕ′

3(ξ ) + r3ϕ3(ξ )[a31 – 1 + a32ϕ2(ξ ) – a31ϕ1(ξ ) – ϕ3(ξ )] ≤ 0,

d1ϕ
′′
1(ξ ) – cϕ′

1(ξ ) + r1[1 – ϕ1(ξ )][a12ϕ2(ξ ) + a13ϕ3(ξ ) – ϕ1(ξ )] ≥ 0,

d2ϕ
′′
2(ξ ) – cϕ′

2(ξ ) + r2ϕ2(ξ )[1 – a21 + a21ϕ1(ξ ) – ϕ2(ξ ) – a23ϕ3(ξ )] ≥ 0,

d3ϕ
′′
3(ξ ) – cϕ′

3(ξ ) + r3ϕ3(ξ )[a31 – 1 + a32ϕ2(ξ ) – a31ϕ1(ξ ) – ϕ3(ξ )] ≥ 0.

(4.8)
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Lemma 4.3 Assume that (4.3) has a pair of upper and lower solutions satisfying
(1) Ψ (ξ ) ≤ Ψ (ξ ), ξ ∈R;
(2) Ψ ′(ξ–) ≤ Ψ

′(ξ+), Ψ ′(ξ+) ≤ Ψ
′(ξ–), ξ ∈ T, herein

Ψ ′(ξ±) = lim
t→ξ±

Ψ ′(t), Ψ
′(ξ±) = lim

t→ξ±
Ψ

′(t).

Then (4.3) has a positive solution Ψ (ξ ) such that Ψ (ξ ) ≤ Ψ (ξ ) ≤ Ψ (ξ ).

Proof We prove this lemma by Schauder’s fixed point theorem. Since a similar result has
been proved in several earlier papers mentioned above [31], we only give the scheme.

Define

Bμ

(
R,R3) =

{
u ∈ X : sup

ξ∈R

{∥
∥u(ξ )

∥
∥e–μ|ξ |} < ∞

}
,

∣
∣u(ξ )

∣
∣
μ

= sup
ξ∈R

{∥
∥u(ξ )

∥
∥e–μ|ξ |},

where

μ ∈ (
0, min{–λ11, –λ21, –λ31}

)
,

then (Bμ(R,R3), | · |μ) is a Banach space. Let

Λ =
{
Ψ (ξ ) ∈ X[0,M] : Ψ (ξ ) ≤ Ψ (ξ ) ≤ Ψ (ξ )

}
.

Obviously, Λ is nonempty and convex. It is also closed and bounded with respect to the
decay norm | · |μ.

We now verify that P : Λ → Λ. For Ψ (ξ ) = (ϕ1,ϕ2,ϕ3)(ξ ) ∈ Λ and each fixed ξ ∈ R, the
definition of operator P and the choice of β imply that it suffices to prove that

⎧
⎪⎪⎨

⎪⎪⎩

ϕ1(ξ ) ≤ P1(ϕ1,ϕ2,ϕ3)(ξ ) ≤ P1(ϕ1,ϕ2,ϕ3)(ξ ) ≤ ϕ1(ξ ),

ϕ2(ξ ) ≤ P2(ϕ1,ϕ2,ϕ3)(ξ ) ≤ P2(ϕ1,ϕ2,ϕ3)(ξ ) ≤ ϕ2(ξ ),

ϕ3(ξ ) ≤ P3(ϕ1,ϕ2,ϕ3)(ξ ) ≤ P3(ϕ1,ϕ2,ϕ3)(ξ ) ≤ ϕ3(ξ ).

(4.9)

Without loss of generality, we assume that T1 < T2 < · · · < Tm and denote T0 = –∞, Tm+1 =
+∞. If ξ ∈R\T, namely, ξ ∈ (Tk , Tk+1) with some k ∈ {0, 1, . . . , m}, then

P1(ϕ1,ϕ2,ϕ3)(ξ )

=
1

d1(λ12 – λ11)

[∫ ξ

–∞
eλ11(ξ–s) +

∫ +∞

ξ

eλ12(ξ–s)
]

F1(ϕ1,ϕ2,ϕ3)(s) ds

=
1

d1(λ12 – λ11)

[∫ ξ

–∞
eλ11(ξ–s) +

∫ +∞

ξ

eλ12(ξ–s)
]
[
βϕ1(s) + cϕ′

1(s) – d1ϕ
′′
1(s)

]
ds

≥ ϕ1(ξ ) +
1

λ12 – λ11

[ k∑

j=1

eλ11(ξ–Tj)
(
ϕ′

1(Tj+) – ϕ′
1(Tj–)

)
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+
m∑

j=k+1

eλ12(ξ–Tj)
(
ϕ′

1(Tj+) – ϕ′
1(Tj–)

)
]

≥ ϕ1(ξ ).

Because ξ was arbitrary and due to the continuity, we have P1(ϕ1,ϕ2,ϕ3)(ξ ) ≥ ϕ1(ξ ) in R.
In a similar way, we can verity the remainder of (4.9).

Note that the compactness in [24] is independent of the monotonicity, then P : Λ → Λ

is compact in the sense of the decay norm | · |μ by a discussion similar to that in [24].
By Schauder’s fixed point theorem, there exists Ψ (ξ ) = (ϕ1,ϕ2,ϕ3)(ξ ) ∈ Λ which is a pos-

itive solution of (4.3) satisfying Ψ (ξ ) ≤ Ψ (ξ ) ≤ Ψ (ξ ). The proof is complete. �

Next, we construct the upper and lower solutions of (4.3), and we assume that

a31 > 1. (4.10)

For any fixed

c > max
{

2
√

d2r2(1 – a21), 2
√

d3r3(a31 – 1)
}

:= c∗,

we define positive constants γ21 < γ22,γ31 < γ32 such that

d2γ
2
21 – cγ21 + r2(1 – a21) = d2γ

2
22 – cγ22 + r2(1 – a21) = 0,

d3γ
2
31 – cγ31 + r3(a31 – 1) = d3γ

2
32 – cγ32 + r3(a31 – 1) = 0.

Further choose ε > 0 such that

γ21 + ε < min{2γ21,γ22,γ21 + γ31},

and

γ31 + ε < min{2γ31,γ32,γ21 + γ31}.

Let

γ11 = min{γ21,γ31}.

We now assume that

d1γ
2
11 – cγ11 < 0. (4.11)

Define Γ = (γ21,γ22) ∩ (γ31,γ32), then Γ is nonempty if c is large enough or other parame-
ters satisfy suitable conditions. In particular, when Γ is nonempty, we further assume that
there exists γ ∈ Γ such that

d1γ
2 – cγ < 0, γ < γ21 + γ31. (4.12)



Bi and Pan Boundary Value Problems        (2018) 2018:162 Page 14 of 25

Remark 4.4 Assume that all the parameters in (2.1) are fixed. Then there exists c′ ≥ c∗

such that (4.11)–(4.12) hold.

For any given c > c∗, we now fix these constants and define continuous functions as
follows:

ϕ1(ξ ) = min
{

1, eγ11ξ + peγ ξ
}

, ϕ1(ξ ) = 0,

ϕ2(ξ ) = min
{

1, eγ21ξ + peγ ξ
}

, ϕ2(ξ ) = max
{

0, eγ21ξ – qe(γ21+ε)ξ},

ϕ3(ξ ) = min
{

a31 + a32 – 1, eγ31ξ + pa32eγ ξ
}

, ϕ3(ξ ) = max
{

0, eγ31ξ – qe(γ31+ε)ξ},

in which p > 1, q > 1 will be clarified in the following lemma.

Lemma 4.5 Assume that c > c∗. Further suppose that Γ is nonempty such that (4.11)–
(4.12) hold. Then there exist p, q such that Ψ (ξ ) = (ϕ1(ξ ),ϕ2(ξ ),ϕ3(ξ )) and Ψ (ξ ) =
(ϕ1(ξ ),ϕ2(ξ ),ϕ3(ξ )) are a pair of upper and lower solutions of (4.3).

Proof It suffices to verify (4.8) one by one.
(1) (i) If ϕ1(ξ ) = 1 < eγ11ξ + peγ ξ , then

d1ϕ
′′
1(ξ ) – cϕ′

1(ξ ) + r1
[
1 – ϕ1(ξ )

][
a12ϕ2(ξ ) + a13ϕ3(ξ ) – ϕ1(ξ )

]
= 0.

(ii) If ϕ1(ξ ) = eγ11ξ + peγ ξ < 1, then ξ < 0 and

ϕ2(ξ ) ≤ eγ21ξ + peγ ξ , ϕ3(ξ ) ≤ eγ31ξ + pa32eγ31ξ

so that

a12ϕ2(ξ ) + a13ϕ3(ξ ) – ϕ1(ξ )

≤ a12
(
eγ21ξ + peγ ξ

)
+ a13

(
eγ31ξ + pa32eγ ξ

)
–

(
eγ11ξ + peγ ξ

)

≤ (a12 + a13 – 1)eγ11ξ + (a12 + a13a32 – 1)peγ ξ

< 0

because γ11 = min{γ21,γ31}, a12 + a13a32 < 1 and a12 + a13 < 1. Therefore, we have

d1ϕ
′′
1(ξ ) – cϕ′

1(ξ ) + r1
[
1 – ϕ1(ξ )

][
a12ϕ2(ξ ) + a13ϕ3(ξ ) – ϕ1(ξ )

]

≤ d1ϕ
′′
1(ξ ) – cϕ′

1(ξ )

=
(
d1γ

2
11 – cγ11

)
eγ11ξ +

(
d1γ

2 – cγ
)
peγ ξ

< 0.

(2) (i) If ϕ2(ξ ) = 1 < eγ21ξ + peγ ξ , then ϕ1(ξ ) ≤ 1 so that

d2ϕ
′′
2(ξ ) – cϕ′

2(ξ ) + r2ϕ2(ξ )
[
1 – a21 + a21ϕ1(ξ ) – ϕ2(ξ ) – a23ϕ3(ξ )

]

≤ d2ϕ
′′
2(ξ ) – cϕ′

2(ξ ) + r2ϕ2(ξ )
[
1 – a21 + a21ϕ1(ξ ) – ϕ2(ξ )

]
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≤ r2(1 – a21 + a21 – 1)

= 0.

(ii) If ϕ2(ξ ) = eγ21ξ + peγ ξ < 1, then

d2ϕ
′′
2(ξ ) – cϕ′

2(ξ ) + r2ϕ2(ξ )
[
1 – a21 + a21ϕ1(ξ ) – ϕ2(ξ ) – a23ϕ3(ξ )

]

≤ d2ϕ
′′
2(ξ ) – cϕ′

2(ξ ) + r2ϕ2(ξ )
[
1 – a21 + a21ϕ1(ξ ) – ϕ2(ξ )

]

≤ d2
(
γ 2

21eγ21ξ + pγ 2eγ ξ
)

– c
(
γ21eγ21ξ + pγ eγ ξ

)

+ r2
(
eγ21ξ + peγ ξ

)[
1 – a21 + a21

(
eγ11ξ + peγ ξ

)
–

(
eγ21ξ + peγ ξ

)]
.

If γ11 = γ21 ≤ γ31, then

a21
(
eγ11ξ + peγ ξ

) ≤ (
eγ21ξ + peγ ξ

)

so that

d2ϕ
′′
2(ξ ) – cϕ′

2(ξ ) + r2ϕ2(ξ )
[
1 – a21 + a21ϕ1(ξ ) – ϕ2(ξ ) – a23ϕ3(ξ )

]

≤ d2
(
γ 2

21eγ21ξ + pγ 2eγ ξ
)

– c
(
γ21eγ21ξ + pγ eγ ξ

)
+ r2

(
eγ21ξ + peγ ξ

)
[1 – a21]

≤ 0

by the definitions of γ21 and γ . Otherwise, γ11 = γ31 < γ21 so that

γ < γ11 + γ21

and

d2ϕ
′′
2(ξ ) – cϕ′

2(ξ ) + r2ϕ2(ξ )
[
1 – a21 + a21ϕ1(ξ ) – ϕ2(ξ ) – a23ϕ3(ξ )

]

≤ d2
(
γ 2

21eγ21ξ + pγ 2eγ ξ
)

– c
(
γ21eγ21ξ + pγ eγ ξ

)

+ r2
(
eγ21ξ + peγ ξ

)[
1 – a21 + a21eγ11ξ

]

≤ [
d2γ

2 – cγ + r2(1 – a21)
]
peγ ξ + r2a21e(γ11+γ21)ξ + pr2a21e(γ11+γ )ξ

≤ 0

provided that

[
d2γ

2 – cγ + r2(1 – a21)
]
peγ ξ + 2r2a21e(γ11+γ21)ξ ≤ 0 (4.13)

and

[
d2γ

2 – cγ + r2(1 – a21)
]

+ 2r2a21eγ11ξ ≤ 0. (4.14)

Clearly, (4.13) is true if

p > 1 –
2r2a21

d2γ 2 – cγ + r2(1 – a21)
:= p1(> 1)
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and (4.14) is true if

p >
(

2r2a21

–(d2γ 2 – cγ + r2(1 – a21))

) γ
γ11

+ 1 := p2 > 1.

(3) (i) If ϕ31(ξ ) = a31 + a32 – 1 < eγ31ξ + pa32eγ ξ , then ϕ2(ξ ) ≤ 1 so that

d3ϕ
′′
3(ξ ) – cϕ′

3(ξ ) + r3ϕ3(ξ )
[
a31 – 1 + a32ϕ2(ξ ) – a31ϕ1(ξ ) – ϕ3(ξ )

]

≤ d3ϕ
′′
3(ξ ) – cϕ′

3(ξ ) + r3ϕ3(ξ )
[
a31 – 1 + a32 – ϕ3(ξ )

]

= 0.

(ii) If ϕ3(ξ ) = eγ31ξ + pa32eγ ξ < a31 + a32 – 1, then ϕ2(ξ ) ≤ eγ21ξ + peγ ξ so that

d3ϕ
′′
3(ξ ) – cϕ′

3(ξ ) + r3ϕ3(ξ )
[
a31 – 1 + a32ϕ2(ξ ) – a31ϕ1(ξ ) – ϕ3(ξ )

]

≤ d3ϕ
′′
3(ξ ) – cϕ′

3(ξ ) + r3ϕ3(ξ )
[
a31 – 1 + a32ϕ2(ξ ) – ϕ3(ξ )

]

≤ [
d3γ

2
3 – cγ31 + r3(a31 – 1)

]
eγ31ξ +

[
d3γ

2 – cγ + r3(a31 – 1)
]
pa32eγ ξ

+ r3
(
eγ31ξ + pa32eγ ξ

)[
a32

(
eγ21ξ + peγ ξ

)
–

(
eγ31ξ + pa32eγ ξ

)]

≤ [
d3γ

2 – cγ + r3(a31 – 1)
]
pa32eγ ξ + r3a32e(γ21+γ31)ξ + r3a32

2pe(γ21+γ )ξ

≤ 0

provided that

[
d3γ

2 – cγ + r3(a31 – 1)
]
peγ ξ + 2r3e(γ21+γ31)ξ ≤ 0 (4.15)

and

[
d3γ

2 – cγ + r3(a31 – 1)
]

+ 2r3a32eγ21ξ ≤ 0. (4.16)

For (4.15), since γ < γ21 + γ31, we have

[
d3γ

2 – cγ + r3(a31 – 1)
]
peγ ξ + 2r3e(γ21+γ31)ξ

≤ eγ ξ
{[

d3γ
2 – cγ + r3(a31 – 1)

]
p + 2r3

}
,

which is true if

p ≥ –2r3

d3γ 2 – cγ + r3(a31 – 1)
+ 1 := p3.

Since eγ31ξ + pa32eγ ξ < a31 + a32 – 1, then

peγ ξ <
a31 + a32 – 1

a32

so that

ξ <
1
γ

ln
a31 + a32 – 1

pa32
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and

eγ21ξ <
(

a31 + a32 – 1
pa32

) γ21
γ

.

Clearly, (4.16) holds if

(
a31 + a32 – 1

pa32

) γ21
γ

<
d3γ

2 – cγ + r3(a31 – 1)
–2r3a32

,

which is true provided that

p >
a31 + a32 – 1

a32

[(
d3γ

2 – cγ + r3(a31 – 1)
–2r3a32

) γ
γ21+γ31

+ 1
]

:= p4.

(4) If ϕ1(ξ ) = 0, then

d1ϕ
′′
1(ξ ) – cϕ′

1(ξ ) + r1
[
1 – ϕ1(ξ )

][
a12ϕ2(ξ ) + a13ϕ3(ξ ) – ϕ1(ξ )

]

= r1
[
a12ϕ2(ξ ) + a13ϕ3(ξ )

]

≥ 0.

(5) (i) If ϕ2(ξ ) = 0 > eγ21ξ – qe(γ21+ε)ξ , then

d2ϕ
′′
2(ξ ) – cϕ′

2(ξ ) + r2ϕ2(ξ )
[
1 – a21 + a21ϕ1(ξ ) – ϕ2(ξ ) – a23ϕ3(ξ )

]
= 0.

(ii) If ϕ2(ξ ) = eγ21ξ – qe(γ21+ε)ξ > 0, then

ϕ2(ξ ) < eγ21ξ , ϕ3(ξ ) ≤ eγ31ξ + pa32eγ ξ

so that

d2ϕ
′′
2(ξ ) – cϕ′

2(ξ ) + r2ϕ2(ξ )
[
1 – a21 + a21ϕ1(ξ ) – ϕ2(ξ ) – a23ϕ3(ξ )

]

≥ d2ϕ
′′
2(ξ ) – cϕ′

2(ξ ) + r2ϕ2(ξ )
[
1 – a21 – ϕ2(ξ ) – a23ϕ3(ξ )

]

≥ d2
[
γ 2

2 eγ21ξ – q(γ21 + ε)2e(γ21+ε)ξ ] – c
[
γ21eγ21ξ – q(γ21 + ε)e(γ21+ε)ξ ]

+ r2
(
eγ21ξ – qe(γ21+ε)ξ )[1 – a21 – eγ21ξ – a23

(
eγ31ξ + pa32eγ ξ

)]

≥ –
[
d2(γ21 + ε)2 – c(γ21 + ε) + r2(1 – a21)

]
qe(γ21+ε)ξ

– r2a23
[
e(γ21+γ31)ξ + pa32e(γ +γ21)ξ ] – r2e2γ21ξ

≥ –
[
d2(γ21 + ε)2 – c(γ21 + ε) + r2(1 – a21)

]
qe(γ21+ε)ξ

– r2e(γ21+ε)ξ [1 + a23(1 + a32p)
]
.

Let

q ≥ q1 = 1 +
–r2[1 + a23(1 + a32p)]

d2(γ21 + ε)2 – c(γ21 + ε) + r2(1 – a21)
,
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then

d2ϕ
′′
2(ξ ) – cϕ′

2(ξ ) + r2ϕ2(ξ )
[
1 – a21 + a21ϕ1(ξ ) – ϕ2(ξ ) – a23ϕ3(ξ )

] ≥ 0.

(6) (i) If ϕ3(ξ ) = 0 > eγ31ξ – qe(γ31+ε)ξ , then

d3ϕ
′′
3(ξ ) – cϕ′

3(ξ ) + r3ϕ3(ξ )
[
a31 – 1 + a32ϕ2(ξ ) – a31ϕ1(ξ ) – ϕ3(ξ )

]
= 0.

(ii) If ϕ3(ξ ) = eγ31ξ – qe(γ31+ε)ξ > 0, then

ϕ1(ξ ) ≤ eγ11ξ + peγ ξ , ϕ3(ξ ) < eγ31ξ

so that

d3ϕ
′′
3(ξ ) – cϕ′

3(ξ ) + r3ϕ3(ξ )
[
a31 – 1 + a32ϕ2(ξ ) – a31ϕ1(ξ ) – ϕ3(ξ )

]

≥ d3ϕ
′′
3(ξ ) – cϕ′

3(ξ ) + r3ϕ3(ξ )
[
a31 – 1 – a31ϕ1(ξ ) – ϕ3(ξ )

]

≥ d3
[
γ 2

31eγ31ξ – q(γ31 + ε)2e(γ31+ε)ξ ] – c
[
γ31eγ31ξ – q(γ31 + ε)e(γ31+ε)ξ ]

+ r3
(
eγ31ξ – qe(γ31+ε)ξ )[a31 – 1 – a31

(
eγ11ξ + peγ ξ

)
– eγ31ξ

]

≥ –
[
d3(γ31 + ε)2 – c(γ31 + ε) + r3(a31 – 1)

]
qe(γ31+ε)ξ

– r3a31
[
e(γ31+γ11)ξ + pe(γ31+γ )ξ ] – r3e2γ31ξ

≥ –
[
d3(γ31 + ε)2 – c(γ31 + ε) + r3(a31 – 1)

]
qe(γ31+ε)ξ

– r3e(γ31+ε)ξ [1 + a31(1 + p)
]
.

Let

q ≥ q2 = 1 +
–r3[1 + a31(1 + p)]

d3(γ31 + ε)2 – c(γ31 + ε) + r3(a31 – 1)
,

then

d3ϕ
′′
3(ξ ) – cϕ′

3(ξ ) + r3ϕ3(ξ )
[
a31 – 1 + a32ϕ2(ξ ) – a31ϕ1(ξ ) – ϕ3(ξ )

] ≥ 0.

By what we have done, we first fix p = p1 + p2 + p3 + p4, then let q = q1 + q2, which
completes the proof. �

Summarizing the above, we have the following conclusions.

Theorem 4.6 Assume that (4.10) holds. If c > c∗ is such that (4.11)–(4.12) are true, then
(4.3) has a nonconstant positive solution.

About the traveling wave solution, we also give the following remark.

Remark 4.7 By direct calculations in P, we see that ϕ′
i(ξ ),ϕ′′

i (ξ ), i = 1, 2, 3, are uniformly
bounded.
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5 Asymptotic behavior of traveling wave solutions
In this section, we consider the asymptotic behavior of traveling wave solutions of (4.3) by
using the idea of contracting rectangles.

Theorem 5.1 Assume that (2.3) holds. If Ψ (ξ ) = (ϕ1(ξ ),ϕ2(ξ ),ϕ3(ξ )) is a positive solution
of (4.3) given in Theorem 4.6, then (4.4) is true.

Proof According to Theorem 4.6, we have limξ→–∞ Ψ (ξ ) = 0. Now we verify

lim
ξ→+∞

(
ϕ1(ξ ),ϕ2(ξ ),ϕ3(ξ )

)
= (1 – k1, k2, k3),

which is equivalent to

lim
ξ→+∞

(
φ1(ξ ),φ2(ξ ),φ3(ξ )

)
= (k1, k2, k3). (5.1)

By Theorem 4.6, u1(x, t) = φ1(ξ ) satisfies

⎧
⎨

⎩

∂u1(x,t)
∂t = d1�u1(x, t) + r1u1(x, t)[1 – u1(x, t) – a12u2(x, t) – a13u3(x, t)],

u1(x, 0) = φ1(x) > 0,

and so
⎧
⎨

⎩

∂u1(x,t)
∂t ≥ d1�u1(x, t) + r1u1(x, t)[u1 – u1(x, t)],

u1(x, 0) = φ1(x) > 0

for all x ∈R, t > 0. Then Lemma 2.3 indicates that

lim inf
t→∞ u1(0, t) ≥ u1 > 0,

which implies that

lim inf
ξ→∞ φ1(ξ ) ≥ u1 > 0.

Similarly, we can verify that

lim inf
ξ→+∞ φ2(ξ ) ≥ u2 > 0, lim sup

ξ→+∞
φ3(ξ ) ≤ a32 + a31 – 1.

We now verify that

lim sup
ξ→∞

φ1(ξ ) < 1.

By what we have done, we only need to show that lim supξ→∞ φ1(ξ ) = 1 is impossible. If
lim supξ→∞ φ1(ξ ) = 1, then there exists {ξm}∞m=1 such that

ξm → ∞, φ1(ξm) → 1, m → ∞,
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and Remark 4.7 indicates that

lim
m→∞

[
d1φ

′′
1 (ξm) – cφ′

1(ξm)
] ≤ 0.

Moreover, if m is large, then 2φ2(ξm) ≥ u2 and

r1φ1(ξm)
[
1 – φ1(ξm) – a12φ2(ξm) – a13φ3(ξm)

]
< 0

and so

d1φ
′′
1 (ξm) – cφ′

1(ξm) + r1φ1(ξm)
[
1 – φ1(ξm) – a12φ2(ξm) – a13φ3(ξm)

]
< 0,

which indicates a contradiction.
By a similar discussion, we can prove that

ai(0) < lim inf
ξ→∞ φi(ξ ) ≤ lim sup

ξ→∞
φi(ξ ) < bi(0), i = 1, 2, 3,

where ai(0), bi(0) are defined by Lemma 3.1.
If (5.1) does not hold, then there exists some s0 ∈ (0, 1) such that

ai(s0) ≤ lim inf
ξ→∞ φi(ξ ) ≤ lim sup

ξ→∞
φi(ξ ) ≤ bi(s0), i = 1, 2, 3, (5.2)

and at least one equality holds.
If b1(s0) = lim supξ→∞ φ1(ξ ), then there exists {ξm}∞m=1 such that

ξm → ∞, φ1(ξm) → b1(s0), m → ∞,

and

lim sup
m→∞

[
d1φ

′′
1 (ξm) – cφ′

1(ξm)
] ≤ 0.

Moreover, we have

lim sup
m→∞

{
r1φ1(ξm)

[
1 – φ1(ξm) – a12φ2(ξm) – a13φ3(ξm)

]}

< –r1b1(s0)(1 – s0)(a12u2 + a13u3) < 0

by Lemma 3.1, which indicates that

d1φ
′′
1 (ξm) – cφ′

1(ξm) + r1φ1(ξm)
[
1 – φ1(ξm) – a12φ2(ξm) – a13φ3(ξm)

]
< 0

if m is large enough. Thus, b1(s0) > lim supξ→∞ φ1(ξ ).
If lim supξ→∞ φ3(ξ ) = b3(s0), then there exists {ξm}∞m=1 such that

ξm → ∞, φ3(ξm) → b3(s0), m → ∞,
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and

lim sup
m→∞

[
d1φ

′′
1 (ξm) – cφ′

1(ξm)
] ≤ 0.

Moreover, by Sect. 3 and b1(s0) > lim supξ→∞ φ1(ξ ), we have

lim sup
m→∞

{
r3φ3(ξ )

[
–1 + a31φ1(ξ ) + a32φ2(ξ ) – φ3(ξ )

]}

< r3b3(s0)
[
–1 + a31b1(s0) + a32b2(s0) – b3(s0)

]
= 0,

and so

d3φ
′′
3 (ξm) – cφ′

3(ξm) + r3φ3(ξm)
[
–1 + a31φ1(ξm) + a32φ2(ξm) – φ3(ξm)

]
< 0

if m is large enough. Thus, lim supξ→∞ φ3(ξ ) < b3(s0). It should be noted that in Sect. 3,
we cannot obtain a strict inequality for b3(s), but we can obtain strict a inequality in the
above inequality since b1(s0) > lim supξ→∞ φ1(ξ ).

By similar discussions, we find that every inequality in (5.2) is strict. A contradiction
occurs, which implies (5.1). The proof is complete. �

Remark 5.2 Different from Lin and Ruan [31], we did not use a strictly contracting rect-
angle.

6 Minimal wave speed
In this section, we shall prove that (4.3)–(4.4) has no positive solution if c < c∗, which
implies that c∗ is the minimal wave speed. The method is similar to that in Lin [29] and
Lin and Ruan [31].

Theorem 6.1 If c < c∗, then (4.3)–(4.4) has no positive solution.

Proof If the statement is false, then there exists some c′ < c∗ such that (4.3)–(4.4) with c = c′

has a positive solution Ψ (ξ ) = (ϕ1(ξ ),ϕ2(ξ ),ϕ3(ξ )) which satisfies (4.4). We now discuss two
cases: c∗ = 2

√
d2r2(1 – a21) and c∗ = 2

√
d3r3(a31 – 1).

If c∗ = 2
√

d2r2(1 – a21), then there exists ε1 > 0 such that

2
√

d2r2(1 – a21 – 2a23ε1) > c′.

By the asymptotic boundary condition limξ→–∞ ϕ3(ξ ) = 0 and the strict positivity of solu-
tion to (4.3), there exists ξ1 ∈R such that

a23ϕ3(ξ ) < a23ε1, ξ < ξ1.

When ξ ≥ ξ1, the positivity and limit behavior of ϕ2(ξ ) indicate that

inf
ξ≥ξ1

ϕ2(ξ ) > 0.



Bi and Pan Boundary Value Problems        (2018) 2018:162 Page 22 of 25

Let

L =
a23(a31 + a32 – 1)

infξ≥ξ1 ϕ2(ξ )
,

then a23ϕ3(ξ ) ≤ Lϕ2(ξ ) and

1 – a21 + a21ϕ1(ξ ) – ϕ2(ξ ) – a23ϕ3(ξ ) > 1 – a21 – (L + 1)ϕ2(ξ )

for ξ ≥ ξ1.
Therefore, we have

⎧
⎨

⎩

∂w2(x,t)
∂t ≥ d1�w2(x, t) + r2w2(x, t)(1 – a21 – a23ε1 – (L + 1)w2(x, t)),

w2(x, 0) = ϕ2(x) > 0

for x ∈R, t > 0.
Namely, ϕ2(x + c′t) is the upper solution of

⎧
⎨

⎩

∂w2(x,t)
∂t = d2�w2(x, t) + r2w2(x, t)(1 – a21 – a23ε1 – (L + 1)w2(x, t)),

w2(x, 0) = ϕ2(x).

By the theory of asymptotic spreading (Lemma 2.3), we see that

lim inf
t→∞ inf|x|≤c1t

w2(x, t) ≥ 1 – a21 – a23ε1

L + 1
> 0

with c1 = 2
√

d2r2(1 – a21 – 2a23ε1). Letting –x = c1t, one gets

lim inf
t→∞ w2(–c1t, t) ≥ 1 – a21 – a23ε1

L + 1
> 0.

At the same time, we have

ξ = x + c′t =
(
c′ – c1

)
t → –∞, t → ∞

so that

lim
ξ→–∞ϕ2(ξ ) = lim

t→∞ w2(–c1t, t) = 0,

which gives a contradiction.
Similarly, we can obtain a contradiction if c∗ = 2

√
d3r3(a31 – 1).

Thus, for any c < c∗, (4.3)–(4.4) has no positive solution. The proof is complete. �

7 Conclusion and discussion
For a parabolic system, if there exists a constant c0 such that c ≥ c0 (c > c0) implies that
the system has a desired traveling wave solution while c < c0 (c ≤ c0) implies the nonexis-
tence of desired traveling wave solution, then c0 is the so-called minimal wave speed. In
population dynamics, the minimal wave speed is an important threshold [36].
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In this paper, we obtain the existence of traveling wave solutions if c > c∗ and nonexis-
tence of traveling wave solutions if c < c∗. In a weaker sense, we formulate the minimal
wave speed. However, we cannot directly confirm the existence or nonexistence of travel-
ing wave solutions with c = c∗ by the method in this paper.

Besides the minimal wave speed, spreading speed is also an important threshold, which
may equal to the minimal wave speed of traveling wave solutions. For monotone systems,
some important results have been established, see Fang et al. [12], Liang and Zhao [27],
Lui [33], Weinberger et al. [48]. For predator–prey systems of two species, Lin [29] and
Pan [38] proved a similar result, also see Bianca et al. [2, 3]. However, for the predator–
prey system with three species, the question of estimating the asymptotic spreading of
each species remains open.

Acknowledgements
The first author would like to thank Professor Guo Lin for his guidance. The authors would like to thank the referees for
their valuable comments.

Funding
The first author is supported by the Science and Technology Innovation Fund of Shanxi Agricultural University (2017010).
The second author is supported by NSF of China (11461040, 11471149).

Availability of data and materials
Not applicable

Competing interests
The authors declare that they have no competing interests.

Conflict of interest
The authors declare that there is no conflict of interest regarding the publication of this paper.

Authors’ contributions
All authors read and approved the final manuscript.

Author details
1School of Arts and Sciences, Shanxi Agricultural University, Jinzhong, People’s Republic of China. 2School of
Mathematics and Statistics, Lanzhou University, Lanzhou, People’s Republic of China. 3School of Science, Lanzhou
University of Technology, Lanzhou, People’s Republic of China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 20 September 2018 Accepted: 21 October 2018

References
1. Aronson, D.G., Weinberger, H.F.: Nonlinear diffusion in population genetics, combustion, and nerve pulse

propagation. In: Goldstein, J.A. (ed.) Partial Differential Equations and Related Topics. Lecture Notes in Math., vol. 446,
pp. 5–49. Springer, Berlin (1975)

2. Bianca, C., Pappalardo, F., Motta, S., Ragusa, M.A.: Persistence analysis in a Kolmogorov-type model for
cancer-immune system competition. AIP Conf. Proc. 1558, 1797–1800 (2013)

3. Bianca, C., Pennisi, M., Motta, S., Ragusa, M.A.: Immune system network and cancer vaccine. AIP Conf. Proc. 1389,
945–948 (2011)

4. Cantrell, R.S., Cosner, C.: Spatial Ecology Via Reaction–Diffusion Equations. Wiley, Chichester (2003)
5. Cantrell, R.S., Cosner, C., Hutson, V.: Permanence in some diffusive Lotka–Volterra models for three interacting species.

Dyn. Syst. Appl. 2, 505–530 (1993)
6. Caristi, G., Rybakowski, K.P., Wessolek, T.: Persistence and spatial patterns in a one-predator–two-prey Lotka–Volterra

model with diffusion. Ann. Mat. Pura Appl. 161, 345–377 (1992)
7. Chen, Y.Y., Guo, J.S., Yao, C.H.: Traveling wave solutions for a continuous and discrete diffusive predator–prey model.

J. Math. Anal. Appl. 445, 212–239 (2014)
8. Du, Z., Xu, D.: Traveling wave solution for a reaction-diffusion competitive–cooperative system with delays. Bound.

Value Probl. 46, 14 (2016)
9. Dunbar, S.R.: Travelling wave solutions of diffusive Lotka–Volterra equations. J. Math. Biol. 17, 11–32 (1983)
10. Dunbar, S.R.: Traveling wave solutions of diffusive Lotka–Volterra equations: a heteroclinic connection in R

4 . Transl.
Am. Math. Soc. 286, 557–594 (1984)

11. Dunbar, S.R.: Traveling waves in diffusive predator-prey equations: periodic orbits and point-to-periodic heteroclinic
orbits. SIAM J. Appl. Math. 46, 1057–1078 (1986)



Bi and Pan Boundary Value Problems        (2018) 2018:162 Page 24 of 25

12. Fang, J., Yu, X., Zhao, X.: Traveling waves and spreading speeds for time-space periodic monotone systems. J. Funct.
Anal. 272, 4222–4262 (2017)

13. Fife, P.C.: Mathematical Aspects of Reacting and Diffusing Systems. Springer, Berlin (1979)
14. Fisher, R.A.: The wave of advance of advantageous genes. Ann. Eugen. 7, 355–369 (1937)
15. Gardner, R., Jones, C.K.R.T.: Stability of travelling wave solutions of diffusive predator–prey systems. Transl. Am. Math.

Soc. 327, 465–524 (1991)
16. Gardner, R., Smoller, J.: The existence of periodic travelling waves for singularly perturbed predator–prey equations

via the Conley index. J. Differ. Equ. 47, 133–161 (1983)
17. Ghergu, M., Radulescu, V.D.: Nonlinear PDEs. Mathematical Models in Biology, Chemistry and Population Genetics.

Springer Monographs in Mathematics. Springer, Heidelberg (2012)
18. Hsu, C.H., Yang, C.R., Yang, T.H., Yang, T.Z.: Existence of traveling wave solutions for diffusive predator-prey type

systems. J. Differ. Equ. 252, 3040–3075 (2012)
19. Huang, J., Lu, G., Ruan, S.: Existence of traveling wave solutions in a diffusive predator–prey model. J. Math. Biol. 46,

132–152 (2003)
20. Huang, J., Zou, X.: Existence of traveling wavefronts of delayed reaction diffusion systems without monotonicity.

Discrete Contin. Dyn. Syst. 9, 925–936 (2003)
21. Huang, J., Zou, X.: Traveling wave solutions in delayed reaction diffusion systems with partial monotonicity. Acta

Math. Appl. Sin. 22, 243–256 (2006)
22. Huang, W.: Problem on minimum wave speed for a Lotka–Volterra reaction-diffusion competition model. J. Dyn.

Differ. Equ. 22, 285–297 (2010)
23. Huang, W.: Traveling wave solutions for a class of predator–prey systems. J. Dyn. Differ. Equ. 24, 633–644 (2012)
24. Huang, Y.L., Lin, G.: Traveling wave solutions in a diffusive system with two preys and one predator. J. Math. Anal.

Appl. 418, 163–184 (2014)
25. Kolmogorov, A.N., Petrovsky, I.G., Piskunov, N.S.: Study of the diffusion equation with growth of the quantity of matter

and its application to a biological problem. Byul. Mosk. Gos. Univ. Ser. A: Mat. Mekh 1, 1–26 (1937)
26. Li, K., Li, X.: Travelling wave solutions in diffusive and competition–cooperation systems with delays. IMA J. Appl.

Math. 74, 604–621 (2009)
27. Liang, X., Zhao, X.Q.: Asymptotic speeds of spread and traveling waves for monotone semiflows with applications.

Commun. Pure Appl. Math. 60, 1–40 (2007)
28. Lin, G.: Spreading speeds of a Lotka–Volterra predator–prey system: the role of the predator. Nonlinear Anal. 74,

2448–2461 (2011)
29. Lin, G.: Invasion traveling wave solutions of a predator–prey system. Nonlinear Anal. 96, 47–58 (2014)
30. Lin, G., Li, W.T., Ma, M.: Travelling wave solutions in delayed reaction diffusion systems with applications to

multi-species models. Discrete Contin. Dyn. Syst., Ser. B 13, 393–414 (2010)
31. Lin, G., Ruan, S.: Traveling wave solutions for delayed reaction-diffusion systems and applications to diffusive

Lotka–Volterra competition models with distributed delays. J. Dyn. Differ. Equ. 26, 583–605 (2014)
32. Lin, X., Weng, P., Wu, C.: Traveling wave solutions for a predator–prey system with sigmoidal response function. J. Dyn.

Differ. Equ. 23, 903–921 (2011)
33. Lui, R.: Biological growth and spread modeled by systems of recursions. I. Mathematical theory. Math. Biosci. 93,

269–295 (1989)
34. Ma, S.: Traveling wavefronts for delayed reaction–diffusion systems via a fixed point theorem. J. Differ. Equ. 171,

294–314 (2001)
35. Murray, J.D.: Mathematical Biology, I. An Introduction, 3rd edn. Interdisciplinary Applied Mathematics, vol. 17.

Springer, New York (2002)
36. Murray, J.D.: Mathematical Biology, II. Spatial Models and Biomedical Applications, 3rd edn. Interdisciplinary Applied

Mathematics, vol. 18. Springer, New York (2003)
37. Pan, S.: Convergence and traveling wave solutions for a predator–prey system with distributed delays. Mediterr. J.

Math. 14, Article ID 103 (2017)
38. Pan, S.: Invasion speed of a predator–prey system. Appl. Math. Lett. 74, 46–51 (2017)
39. Pao, C.V.: Nonlinear Parabolic and Elliptic Equations. Plenum Press, New York (1992)
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