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1 Introduction
Using Lyapunov technique for some perturbed energy, Messaoudiet and Khulaifi [24]
studied the following problem:

[t |P 1y — At — Autyy + fotg(t—s)Au(s) ds=0 1in £ x (0,00),
u=0 ondf x (0,00), (1.1)

-0 = to, Ugli-o =u1 in £2,

where 2 C R” (n > 1) is a bounded domain with smooth boundary 92 such that the
divergence theorem can be applied.

Cavalcanti et al. [3] proved that the finite energy solutions of nonlinear abstract PDE
with a memory term exhibit exponential decay rates when strong damping —Au, is active,
this uniform decay is no longer valid (by spectral analysis arguments) for dynamics sub-
jected to frictional damping only, say g = 0. Viscoelastic equations with variable density
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have been studied by many authors, and several stability results have been established in
[2,9, 10, 23, 25, 26]. As we know, all the stability results were obtained by establishing
differential inequalities on the functional equivalent to the original energy. Our approach
is based on integral inequalities and multiplier techniques. Indeed, instead of using Lya-
punov technique for some perturbed energy, we rather concentrate on the original energy,
showing that it satisfies a weighted integral inequality which, in turn, yields the final decay
estimate. We prove a general decay rate from which the exponential decay and the poly-
nomial decay are only special cases. Due to the assumption on g, the weighted inequality
established in this paper improves the integral inequality in [1].

We mention here some related works concerning the energy for the evolution equations.
For the nonlinear damped wave equations and Marguerre—von Karman system, some en-
ergy decay rate estimates were obtained in [11-15, 19, 20] and the references therein. Li
and his coauthors [7, 16—18] studied the blow up phenomena of the solutions for evolu-
tion equations. This research laid a good foundation for our further study. For the stability
and convergence results of evolution equations, the readers can refer to [6, 21, 22].

The outline of this paper is as follows. In Sect. 2, we present the preliminaries and our im-
portant result. In Sect. 3, we construct an energy inequality, prove the main Theorem 2.2
and give applications to various functions & (¢).

To simplify calculations in our analysis, we introduce the following notations:

t

t
G() = / g(s) ds — strength of memory, goh= / glt-s) ||h(s) - h(t) ”2 ds,
0 0

t
gxh :/ g(t - s)h(s)ds, (u,v) =/ uvdx, R* := [0, +00),
0 2
VIl o2 == IVl Los2(s2) IVl := Vil 2(e2)-

2 Preliminaries and main result

In this section we prepare some material needed in the proof of our result and state our
main result. Throughout this paper, C denotes a generic positive constant. We impose the
following assumptions on p and g.

Assumption 2.1 Set G(¢) = fot g(s) ds. We assume that

1.
2

n-2

0<p< ifn>3; p>0 ifn=1,2,
which implies that
HY(2) — L2 D().
2. g:[0,00) — [0,00) is a locally absolutely continuous function such that

G(oo) < 1, g(0)>0, g <0, foraet>0.

3. There exists a non-increasing function & € C'[0, +00) with f0+°° £(t)dt = +o00
satisfying

g ) <-£()g(®), §()>0, Ve=0.
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Theorem 2.1 ([24]) Suppose that (uo, u1) € H}(2) x HY(2). Under Assumption 2.1, there
exists a unique solution u of (1.1) satisfying

ueL™(0,00,Hy(2)),  u€L®(0,00Hy(2)),  uy € L®(0,00L%(R2)),
and

ulx, t) = uplx) in Hé(Q), us(x,t) = u1(x) in Hé(_Q),ozs t— 0.
Lemma 2.1 ([4, 5, 8]) H{}(£2) < L"(£2) with

r<2, nx=3,

<
2, n=1,2,
which implies

lell- <BlVela Vo€ Hy(R2).

Lemma 2.2 Let u be the global solution of the problem (1.1), then for any suitable function

w one has
1 d 1
(|ut|putt’W) = m%(ﬂlﬂput»w) - m(|ut|pum Wt)~
Proof From

P

d d 2
P ) = 5 () )
;2
= (|ut|Pum w) + g((u%) “2 2u,uttut,w) + (|ut|/’u,, W,)
=(p+ 1)(|”t|pum W) + (|’4t|put»Wt),

we have

d

1 1
(|Mt|pum W) = ﬁ%(ﬁﬂpum W) - m(|ut|put;wt)~ O

Lemma 2.3 Let u be the global solution of the problem (1.1), then

d 1 1
ZE@®) = =g o Vult) — —g(t)|Vul?,
7 (®) 280 u(t) 2g(t)ll ull

where

B©) = Ll + L (1~ GO) [Vu |+ S19ul” + 3 (g0 V(o)

p+2 2

Proof Multiplying equation (1.1) by u;, integrating by parts over £2 and using Lemma 2.2,
we obtain the conclusion. O

Our main result is the following decay theorem.
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Theorem 2.2 Let u be the global solution of problem (1.1) with Assumption 2.1. We define
the energy functional as

1 1 1
lucll23 + 5 (1= G®)|| Vate) | + §||Vut||2 + (g0 Vu)(o).

E(t) = .

po+2
Then, for some ty > 0 there exist positive constants Cy and w such that
E(t) < Coe™ £,
3 The proof of main result
In order to derive the desired result of Theorem 2.2 by the integral method, we establish

the following weighted integral inequality.

Lemma 3.1 Let u be the solution of (1.1) under Assumption 2.1, then

T
/ E(OE®) dt < CE(S)
S

for some constant C > 0.
To prove the above inequality, we need the following two lemmas.

Lemma 3.2 Let u be the solution of (1.1) under Assumption 2.1, then

T T T
| soE0ar < [ s [ s@1vuid s ce)
s s s
Proof Multiplying by & (£)u(t) both sides of equation (1.1), integrating the resulting equa-

tion over £2 x [S, T] (0 < S < T), then using the boundary conditions and Lemma 2.2, we

have
T t
0= /5 £(t) <u, lute|P thyy — At — Aty + /0 gt —s)Au(s) ds) dt
T T T
- [ e@lnru)des [ soIvardrs [ eo@uudr
s s s
T t
- / &() <Vu,/ gt —s5)Vu(s) ds) dt
s 0
T T T
- [ e0wlnru)des [ sO0-GO)IVUPdrs [ s O Tu)dr
s s s
T ¢
- / &) <Vu,/ gt- s)(Vu(s) - Vu(t)) ds> dt. (3.1)
s 0
According to the definition of the energy functional E(t), we get

(1-GO)IVull? = 2E@) - P2 | Vig|® - g o Vuult). (3.2)

m”utﬂmz -

Page 4 of 16
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Combining (3.1) with (3.2), we deduce that

T 1 T ) 1 T
/ EOE@Q = —— / £ 2dt + - / £ OV dt
s pP+2Js 2 Js
1 T
+ —/ £(t)(go Vu)(t) dt
2 Js
1 (7 1 (7
5 | s O di= 5 [ e Vi
s s
1 T t
+ 5 / E(t) (Vu,/ gt - s)(Vu(s) - V(t)) ds) dt. (3.3)
s 0
From Lemma 2.3, we see that
iE(t) = 1 "o Vul(t) - 1 OV < 1y o Vu(t)
dt 2% 2% =3¢ ’
that is,
—g o Vu(t) < -2E'(¢),
which, together with Assumption 2.1, implies
T T T
/ £(8)(go Vu)t)dr < —/ (g/ o Vu)(¢)dt < —2/ E'(t)dt. (3.4)
s s s

For the fourth term on the right-hand side of (3.3), integrating by parts and using
Lemma 2.2, we have

—/Té(t)(u I7Ale? )dt:—L(S(t)u |u Ipu)|T+ 1 /T((E(t)u) | |"u)dt
s ’ t tt p+1 ) t t)|s )0+1 s P t t

1 1
= - ﬁ(é(t)u,lutl"ut)g + P /S. (&' (6, |4y | ) it

+1

/ (t)” ” 5 12 ( )

+ 3;' u dt. 3.5
1 tlip+2

By Young inequality, Lemma 2.1 and the definition of E(¢), we have
1 1 p+1
= |:§(t)<p 9 IIMIIZE + 012 ||ut||;:§)i|

1 2 §+1 +2 %
Sé(t)<(p+1)(p+2)<1—G(oo)) B (O)+1>E(t)

< ki§(DE®),

(S(t)u, |ut|put)

_p+1

with some positive constant k;. Hence,

1
_p_(g(t)u, |ut|put)|§

=< 2ki5(0)E(S). (3.6)
+1

Page 5of 16
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Similarly,

T T T
‘/Hl / (s’(t)u,mtwut)dt‘fkl [ lewlEad-—k [ cood @)

For the fifth term on the right-hand side of (3.3), integrating by parts, we have

T
. / £(8)(Vit, Vitg) dt
S

T
- (6O, Vu)|T + /5 (Vi) Vi) dt

T

Sé(t)( IVul? +—||Vut||)

1
f(m”)[ /|5 |Et)dt] fs Vi dt

< 2o (OE(S) - ks fs £ (OE(D) d + /S O Vi ) dt, (3.9)

/ (§'(®)Vu, Vi) dt+/ E(t)|Vuy | dt

with some positive constant k;.
For the sixth term on the right-hand side of (3.3), we have

(Vu,/tg(t—s)(Vu(s) - Vu(t)) ds)
0
t 2
<el|lVul? + %/ﬂ(/o g(t—s)(Vuls) - Vu(t)) ds) dx

<el|lVu|? + %/tg(s)dsf /Otg(t—s)|Vu(s)—Vu(t)\zdsdx

- 2¢e E(t G(oo)
~1-G(0)

(goVu
Combining with (3.4), we obtain

fTé(t) (Vu(t), /tg(t - 8)(Vuls) - Vu(t)) ds) dt
s 0

/ §()E t)dt—@ E'(t)dt. (3.9)

N

_1— oo)

By (3.3)-(3.9), we get
T 1 1 T o T 5
fs E(DE() dt < (m+m) [5 EO | 2dt + 2 /5 £V dt

& T 1 T
m/s é(t)E(t)dt—i(kaz)[S £'()E() dt

T
- <1 + M) / E'(£)dt + (ky + k2)§ (0)E(S). (3.10)
2¢e S

Page 6 of 16
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Integrating by parts (and noting E’(t) < 0), we have

T T
- / E'(OE®)dt =-E@)EW®) + / EQ)E (t)dt
S S

T
=-§(T)E(T) + §(S)E(S) +/S E(E (t)dt

< £(0)E(S), (3.11)
and
T
- / Et)dt = E(S) - E(T) < E(S). (3.12)
S

Owing to (3.10)—(3.12), we get
T
f E(E(t)dt
s

(ot /Té(t)ll I12%2 dt BfTS(t)nv 1> dt
+ + =
“\p+2 20p+1)/)Js Helps2 2 Js e

£ T G(o0)
*1-Gloo) fs E(E()dt + (1 .

Choosing ¢ small enough, we obtain from (3.13) that

+ ;(kl + k2)§(0)>E(S). (3.13)

T T T
/ E(WE@)dt <C / Q)P de+ C / E(0) V| dt + CE(S).
S S S

The proof of Lemma 3.2 is completed. g

Lemma 3.3 Let u be the solution of (1.1) under Assumption 2.1, then
T ) T T
| sz [ eonvaPasec [ sweod+ ceES).
s s s

Proof Multiplying by & () fotg(t — s)(u(s) — u(t)) ds both sides of equation (1.1) and then
integrating the resulting equation over £2 x [S,T] (0 <§ < T') gives

T t
[ (&0 [ ete-9uto)-ut)as
s 0
t
|ue )P thyy — At — Ay + f g(t—s)Au(s) ds) dt=0. (3.14)
0
Integrating by parts and using Lemma 2.2, we obtain

T t
/ <|ut|" U, € (£) / g(t =) (uls) - u(t)) ds) dt
N 0

- ﬁ (Iutlput, £(t) /O‘g(t —8)(u(s) — u(t)) ds)

T

N
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1 T ) t
- 1/5 (Iutlﬂut,f (t)/o gt —s)(u(s) — u(t)) d3> dr

1 T ¢ /
o+ 1/5 <|ut|/’m;§(t)/o g(t—S)(u(s)—u(t)) ds) dt

T
- / (%’(t)G(t))Hut(t)’p”dt,

* 2
p+1Js p*

Moreover, we have

T t
/ (S(t) / gt - s)(u(s) - u(t)) ds, —Auﬂ> dt
s 0
T t
= / <§(t) / g(t—9)(Vuls) — Vu(?)) ds, Vun> dt
s 0

T

= <Vut,§‘(t) /tg(t - s)(Vu(s) - Vu(t)) ds)
0

S

T t
_ f (Vut,é/(t)/ g(t—s)(Vuls) - Vu(t)) ds) dt
s 0
T t T
_ / <Vut, £(2) / g (t—5)(Vu(s) - Vu(t)) ds> dt + / EQ)GO|| V|| * dt
s 0 s
and
T t t
/ <$(t) f g(t- s)(u(s) - u(t)) ds,—Au + / g(t—s)Au(s) ds> dt
s 0 0
T t
_ / (g(t) / gt —5)(Vials) - Vult)) ds, Vut) dx) dt
s 0
T t t
- / <§(t) / g(t- s)(Vu(s) - Vu(t)) ds,/ gt —s)Vu(s) ds) dt
s 0 0
T t
= —/ 5(t)”f g(t—s)(Vu(s) - Vu(t)) ds
s 0

T ¢
+ / E(t)(l — G(t)) </ gt- S)(Vu(s) - Vu(t)) ds, Vu(t)) dt.
s 0

2
dt

Therefore, plugging the above three identities into (3.14), we get

1 T pe2 T ,
o+l fs (EOGO)|u)]; de + /5 E(D)G(®)| Vi | dt

T

= i T (|ut|pun§(t)/0tg(t—S)(u(s) - u(t)) ds) )
1 T ) t
Tl /S ('”r'pu»é ® /0 2(t = 5)(uls) - u(o)) ds) dt

1 T t )
" p+1 /S ('utv)”“S(t)/O g (t—5)(uls) — u(t)) ds) dt
¢ T
- (Vut,é(t) fo gt =)(Vuls) - Vu(t)) ds>

S

T ¢
+/; (Vut,é’(t)/o g(t—s)(Vu(s)—Vu(t)) ds)
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T ¢
+/; (Vut,é(t)/o g(t—s)(Vu(s)—Vu(t)) ds

2

T t
+[5 &() ”/0 g(t—s)(Vu(s)—Vu(t)) ds

T t
— / s(:r)(l—G(t))( / gt —$)(Vuls) -
S 0

Vu(t)), Vu(t) dx) dt.

)

(3.15)

Using Cauchy and Hélder inequalities as well as Lemma 2.1, we have

’ (|ut|put, /0 gt - )(uls) - () ds)

,0+1 p+2
< laae 1275 +
p+2

1 ¢ p+l
([ e e-sete
+2 o

p+2

1 t p+2
?/Q</O g(t—s)|u(s)—u(t)|ds> dx

p+2
(t- s|u(s t)‘ds) dx

. 1 t p+1 .
fﬁ%ll e ([ee-9as) [ ([ et-9lu-uo)as) s

=< &II 1955+ — G””(t)ftg(t—s)”u(
= przitlen TN 0
)0+1 p+2
Sl i3+
:0+ p+2 1
< u +——G " (t
< Sl —— G

XBM/() gt =) (| Vals) | + |Vu@)|)" || Vasls) -

10"'1 p+2

1
< — el + me (t)

w(®)|" ds

1 2Gp+1(t)B”+2/0tg(t—S) [ Vuls) - Vule)|"** ds

)| ds

t E Al
o oo 20 os-sur

2E(0)
1 -G(o0)

( 2E (0)

Pz 2
= u +
p+2 e T 50

Gp+1 (t)BerZ <

=(p+1E@) +

)2 / &t =) Vuls) - V()| ds

< ((p +1)+ jp—_:lsz”(t)Bp*z(l ZEG(?) )) g)E(t), (3.16)
which implies that
: t ,
s (1@ [ ete- 9w -ut0) ) S
<20 ((p 1+ 2 Grpe (%) %>E(S)
< igiol) ((,0 +1)+ zp—:;G"“(t)B‘”z (%) %>E(S). (3.17)

Page9of 16
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In order to estimate the second term on the right-hand side of (3.15), we apply (3.16)
and (3.11) to get

1 T t
'0+1/5 (|utlput,$’(t)/o g(t—s)(u(s)—u(t))ds> dr

<1 D+ 2 g ) "(0)|E(0) dt
S R (e >) J el

4
2

_ 1 2p+1 +1 +2 ’ l
-—p—(<p e ARCL] (1 s ) /5 £ (OEQ) dt

£(0) 2f°+1 o 2E0) %
fﬁ((pﬂ”m(’w 0 (I—G( ))

)E(S). (3.18)

In addition, for any § > 0, using Young inequality, we have

T t
/ (|ut|”ut,$(t) / gt —9)(uls) — u(®)) ds) dt
s 0

T p+l 1 t
- f (sw(tnumut,sm(t) / &t —9)(uls) - 1(t)) ds) d
s 0
T 42 T t p+2
55[5 g(t)||ut||p+2dt+C(8)/5 g(ﬂ[/ﬂ(fo lg (t—s)||u(s)—u(t)|ds> dx:|dt.
Using Holder inequality and Lemmas 2.1 and 2.3, we have
T t
Jreal ([
T t P+l ¢
/ / p+2
<[ s(t)(/o ¢ (t—s)dt) UQ(/O ¢/~ 9)]us) - ul0) ds) dx]dt

T t
sg"“(O)é(O)/S (/O g/t = 9)| | us) — ()] 2 d5> dt

T t +2
<& (0)5(0)B" fs ( /0 g/t~ 9)[[|Vuls) - Vu@) 77, ds) dt

g T ¢
sngp”(o)BP+2<lfi§?) )> £(0) f ( / |g’(t-s)|||w(s)-W(t)||2ds) dt

:—2"’g’°+1(0)B”+2( ZE(O) )25()f (f (¢ —9)| Vus) w(t)||2ds>dt

+1_p+1 +2 2E(0) g !
< _2rigri(o)B? (m) £(0) /5 E(®dt

p+l
p+2 (t _ S) |g/

1 p+2
P (f — s)|u(s) - u(t)| ds) dx] dt

< 2,o+1gp+1 (O)Bp+2 (

Therefore,

T t
/ (Iutlput,%‘(t)/ gt —s)(uls) - u(2)) ds) dt
N 0

T 2E(0
<5 [ el e 2P+1C<a>gﬂ“(0)3“2( ©
S

1-G(0)

)js<o>E<s>. (3.19)
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Since
‘ (Vut, &(t) /:g(t - s)(Vu(s) - Vu(t)) ds)

l ) 1 t ~ ~ 2
EOVu +2:§()/9(‘/0 g(t s)’Vu(s) Vu(t)|ds> dx

- SEOIVII + 56060 [ gle=9)|Vuls) - Vulo)* sl
0

’_‘K\J

< EO)EW) + L5(0G(0g o Vae = 2 O (3.20)

one obtains

T
< 4&(0)E(S). (3.21)
s

_<Vut,§(t) /tg(t - s)(Vu(s) - Vu(t)) ds)
0

Using (3.20) and (3.11), we have

T t T
/‘(Vubéu{/gﬁ—sKVMQ—Vu@»dQ:SZf |6'(6)|E(t) < 25(0)E(S).  (3.22)
S 0 S

Similarly,

/T (Vut,f;”(t) /tg’(t —8)(Vuls) - Vu(t)) ds) dt
s 0

s T )
55/ E(0) [ Vu | dt
S

1 T t t
+% : S(t)(—/og’(t—s)ds>-</o ‘g’(t—s)H‘Vu(s)—Vu(t)szs>dt
F) T 1 T t ) t ,
=§/; .§(t)||Vut||2dt—%/S é(t)/o g(s)ds/o ‘g(t—s)‘HVu(s)—Vu(t)”zdsdt

T T P
Sg/g S(t)llvutllzdt#@/ s(t)f gt —9)| | Vuls) - Vaule) | ds it
8
55/5 @Vl dt——/ E(L)E'(t)dt

g (0)5 (0)

s T )
= /S 0 Vir)? de + 825 (), (3.23)

Now, since g(¢) > 0 and G(00) < 1, we get

T
| e
s
T t t 2
< fs “;‘(t)(/o g(s) ds) (/0 gt —s)| Vuls) = Vu(®)|| ds) dt

T t
< G(o0) fs g(t)( /0 gt —s)|| Vuls) - Vu(t)nzds) dt

t 2

gt- s)(Vu(s) - Vu(t)) ds| dt
0

Page 11 of 16
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T t
< 6o | ( [ 2o ete-sigte-9)| vuts) - vty ||2ds) dr
T t
< G(o0) fs < /o E(t - s)g(t —5)|| Vauls) - Vaulz) ||2ds> dt
T t
< -G(00) fs ( /0 &t —9)|Vuls) - Vu(t) ||2ds) dt
T
< -2G(o0) / E'(£) dt < 2G(00)E(S) < 2E(S) (3.24)
N

and

T t
—/ é(t)(l - G(t)) </ gt - s)(Vu(s) - Vu(t)), VM(t)) dt
S 0
! G(o0) ( 2 )
*d ds)d
szs E@IVull®dt + / t)/ gt =) Vuls) - Vu(t)||" ds | dt

T
:8/5 E(0) |Vl dt

G(o0) T( LE®)
+
e Js \Jo &(t-5)

! Gloo) (T( [
<o [ eorvura 52 (/0 s(r—s>g<t—s>HVu<s>—w(t)\fds)dt
T G( ) T t )
<o [ somvupa- =2 (/0g(r—s)llw(s>—w(r)!!"’ds)dt
r G(oo) (T
2 /
58[5 EOIVulPde- 7 [Smt)dt

T T
<e /S £ Vul® dt + iE(S) <e¢ fs £(t)E(t) dt + %E(S). (3.25)

E(t—s)g(t-ys) ” Vu(s) — Vu(t) ”2 ds) dt

Combining (3.15)—(3.25), we obtain

T T
— [ (ews)imizzaes [ 0G0V

T
sa/S o +2dt+—/ £V dm/ E(OE() dt

. [C1 L EOEO) 1
é 2e

]E(S). (3.26)

Since g is continuous and g(0) > 0, for any £ > 0, we have

t to
G() = / g(s)ds > / gls)dx>0, Vt=>1t,.
0 0

Now, if we fix § > 0 small enough such that

to
§< / g(s)ds,
0

Page 12 of 16
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then by (3.26), for T > S > ¢y, we have

T T T
[ eonuiziars [ s@ivuita<ec [ ewewd ). .
S S S

Proof of Lemma 3.1 Plugging the estimate of Lemma 3.3 into the inequality of Lemma 3.2,
and fixing ¢ small enough, we obtain

T
/ E()E(t)dt < CE(S)
s

for some constant C > 0. Letting T — +00, we have

/ W OEG)ds < cE(@), Ve to, (3.27)
with
vio)= [ ewas .

Proof of Theorem 2.2 From Assumption 2.1 and Lemma 2.3, we know that E(¢) is a non-
increasing function and 1 : [£y, +00) — R* is a strictly increasing C? function such that
Y (to) = 0 and lim,_, ,oc ¥ (£) = +00. Firstly, we define a new function f : [y, 00) — R* as

follows:

f@)=E(Y (1)),

then f is a non-increasing function such that

¥(T) W¥(T) T
/ f(r)dr =/ E(w_l(t)) dt =/ E@)y'(t)dt

¥(S) ¥(S) S

< /m E@)y'(t)dt < cE(S) =cf (¥(S)), Vi <S<T<oo.
s
Set t = ¥(S). Since lim7_, ;o0 ¥(T) = +00, we get
/+<>0f(T) dt <cf(t), Vt=>to. (3.28)

t

Next, we define the following function:

h(x) = et f ) ds, (3.29)

where ¢ > 0 is a constant. Noting (3.28), we obtain

W (x) = %e%x( / . f(s)ds - cf(x)) <o0. (3.30)
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Integrating (3.30) over [Z,¢] and noting (3.28), we have
h(t) < h(ty) = / f(s)ds < cif (to)- (3.31)

Furthermore, using (3.29) and (3.31), we obtain

/ f(s)ds < erf (o) <. (3.32)
t
On the other hand, noting that f is a positive non-increasing function, it is easy to see
that
+00 t+c
/ f(s)ds > / fs)ds = cf(t+c). (3.33)
t t

Combining (3.32) with (3.33), we get
fE+0) < eof (t)e™". (3.34)
Letting s = ¢ + c in (3.34), we have
1) < cof (to)e' <,
that is,
E(¥1(s)) < eof (o)e! ¢, (3.35)
Moreover, letting £ = (s in (3.35), we get
E(t) < ¢of (to)e! eV
that is,
E(t) < Coe™V ) = Coe i 60

for some constants Cy and w = % > 0.
The proof of Theorem 2.2 is completed. O

Remark 3.1 From Theorem 2.2, if we choose different &(t), we can get different decay
results. Choosing & (£) = a, we get the exponential decay result

E(t) < Ce ™, Vt=>t,.

Now consider &(t) = 0<y <1).If y =1, we get the polynomial decay result

1+t)7 (
Et)<C1+1)° w>0,Yt>t,.

If 0 < y < 1, we get a decay result of the form

L (1+)1~

E(t) <Ce T- , w>0,Vt>t.
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4 Conclusions

In this paper, we present a weighted integral inequality to derive decay estimates for a
quasilinear viscoelastic wave equation with variable density and memory. Due to the as-
sumption on the memory kernel function, the weighted inequality established in this pa-
per improves the integral inequality in [1]. We establish a general decay rate of the solution
such that the exponential and polynomial decay results are special cases of this paper.
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