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1 Introduction
In this paper, we consider the first-order impulsive semilinear differential inclusions with
nonlinear boundary conditions

x'(t) € Ax(t) + F(t,x(t)), tef, (1.1)
Ax(ty) = I (x(t)), k=1,...,m, (1.2)
g(%(0),x()) =0, (1.3)

where J' = J\{t1,...,tm}, J =[0,0], b>0,0< t; <ty <--- <&, < b, A is the infinitesimal
generator of a strongly continuous semigroup 7'(¢), £ >0, F:J x R — P(R) is a mul-
tivalued map, P(R) is the family of all nonempty subsets of R, Ax(tx) = x(¢{) — x(£),
x(tf) = limg_ o+ x(tx + €), x(t;) = limg_, o+ x(ty — &), [ € C(R,R) (k=1,...,m),and g : R >R
is a single-valued map.

The evolving process of dynamics is often subjected to abrupt changes such as shocks,
harvesting, and natural disasters. These short-term perturbations are often treated as hav-
ing acted instantaneously or in the form of impulses. For example, (1.1) subjects to impulse
effects (1.2). Impulsive differential equations have been developed in modeling impulsive
problems in physics, population dynamics, biotechnology, pharmacokinetics, industrial
robotics, and so forth. In the case where the right-hand side of (1.1) has discontinuities
and differential inclusions, F(t,x(t)) has played an important role in modeling phenom-

ena, especially in scenarios involving automatic control systems.
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Variational methods and critical point theory plays a major role in discussing the exis-
tence of solutions for boundary problem for impulsive differential inclusions; see [1-9].
There are many other methods such as in [10-12]. In [13], the authors considered peri-
odic boundary conditions g(x,y) = x — y, that is, x(0) = x(). Those results are applicable in
some important cases. However, they are not valid for antiperiodic boundary conditions,
for example, x(0) = —x(b), which corresponds to g(x,y) = x + y. Note that, in this case, g is
nondecreasing in the second variable, and hence the results are not applicable. To the au-
thor’s best knowledge, there is no paper discussing such a boundary problem for impulsive
differential inclusions.

Motivated by the works mentioned, the aim of this paper is to study the existence of
solutions for nonlinear boundary problem (1.1)-(1.3) by Martelli’s fixed point theorem
with upper and lower solutions method. The rest of the paper is organized as follows. In
Sect. 2, we briefly introduce some notations and necessary preliminaries. In Sect. 3, we
prove existence results of solutions for system (1.1)—(1.3), and we give some corollaries in
Sect. 4. Finally, in Sect. 5, we present an example to illustrate the main result.

2 Preliminaries
We introduce some notations, definitions, and preliminary facts.

Let X be a Banach space, and let Z be a subset of X. We denote P(X) ={Z C X | Z # ¥},
P.,(X) ={Z C P(X) | Z is convex}, Pe,(X) = {Z C P(X) | Z is compact}, Py, (X) = Pe,(X) N
P.,(X), and so forth.

Let LY(J,R) = {x: ] — R||x| : ] — [0, +00) is Lebesgue integrable}. Then L'(J,R) is a Ba-
nach space with norm ||x| ;1 = fob |x(2)| dt.

PC(J,R) = {x :J — R|x(2) is continuous everywhere except for some &,

at which x(t,;),x(t,ﬁ) exist, and x(t,;) =x(te), k=1,..., m},

which is a Banach space with norm ||x| pc = sup{|x(¢)| : £ € J}.

Let L(R) = {N : R — R | N is linear bounded}, and for N € L(R), we define [Ny =
inf{r >0| Vx € R, N(x)| < r|x|}. Then (L(R), || - l|l(»)) is a Banach space.

By AC(J, R) we denote the space of all absolutely continuous functions x:J — R.

Definition 2.1 Throughout this paper, a multivalued map F :J x R — P(R) is said to be
L'-Carathéodory if
(i) t — F(t,x) is measurable for each x € R,
(ii) x — F(t,x) is upper semicontinuous on R for almost all £ € J,
(iii) for each p > 0, there exists ¢, € L'(J, [0, +00)) such that

HF(t,x) ||P(R) = sup{|v| (Vv E F(t,x)} <,(t), Vix|<pandae.te].

Definition 2.2 Functions «, 8 € PC(J,R)NAC(J', R) are said to be related lower and upper
solutions for problem (1.1)—(1.3) if there exist v1, v, € L'(J, R) such that

vi(t) € F(t,a(t)), aete], (2.1)

o' (t) < Aa(t) +vi(t), aete], (2.2)
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Aa(ty) SIk(Ol(tk)), k=1,...,m,

2(«(0), (b)) <0,

and

vo(t) € F(£,B()), ae.te], (2.3)
B'(t) = AB(t) +w(t), aete], (2.4)
AB(&) = I(Bt)), k=1,...,m,

2(B(0),a(p)) > 0.

Definition 2.3 A function x € PC(J,R) N AC(J', R) is said to be a solution of (1.1)—(1.3) if
g(x(0),x(b)) = 0, Ax(ty) = I (x(tx)), k = 1,...,m, and there exists a function v € L}(J, R) such
that v(¢) € F(¢,x(¢)) a.e. on J, x'(t) = Ax(¢) + v(¢).

Lemma 2.4 (see [14]) Let X be a Banach space, let F : ] x X — Pe,,(X) be a L'-
Carathéodory multivalued map with

Skx = {f e L', X)|f(t) e F(t,x(t)) fora.e. t e]} #0,

and let T : L}(J,X) — C(J, X) be a linear continuous mapping. Then the operator
I'oSp:C(J,X) = Peyep(CU, X)), u> (I o Sp)(x) := I'(Sp,)

is a closed graph operator in C(J,X) x C(J,X).

Lemma 2.5 (Martelli’s fixed point theorem [15]) Let X be a Banach space, and let G :
X — Py p(X) be an upper semicontinuous and condensing map. If theset N = {x e X : Ax €
G(x) for some X > 1} is bounded, then G has a fixed point.

Remark 2.6
(i) If a multivalued map F is completely continuous with nonempty compact values,
then F is upper semicontinuous if and only if F has a closed graph (i.e., x, — x™,
Yn = ¥*, ¥n € F(x,) imply y* € F(x*)).
(ii) If a multivalued map F is completely continuous, then F is condensing. For general
information, see [16].
Let Jo = [0,t1], Jk = (tk, txsn ], k= 1,...,m, tyueq = b.

Definition 2.7 (See [17]) A family of functions S is said to be quasiequicontinuous on J
if for every ¢ > 0, there exists § > 0 such thatifx € S, k=0,1,...,m, then

”x(tl) —x(tz)H <&, Vit €Jisuchthat |t; — ] < 8.

Lemma 2.8 (Compactness criterion; see [17]) The set S € PC(J, R") is relatively compact
if and only if

(i) Sisbounded, thatis, ||x|| < ¢ for each x € S and some ¢ > 0,

(i) S is quasiequicontinuous on J.
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Definition 2.9 Let X be a Banach space. A multivalued map F is said to be completely

continuous if F(U) is relatively compact for every bounded subset U C X.

Lemma 2.10 Ifx is a solution of the inclusion

X' () +x(¢) € Ax(¢) + F(t,x(¢)), te],
Ax(ty) = Ii(x(t)), k=1,...,m, (2.5)
%(0) = uo,

then it is given by

x(t) = T(t)x(0) + /t T(t- s)[v(s) - x(s)] ds
0

+ Z T(t - t/()lk (x(tk))¢ ve SF,xr (26)

O<ty<t
where uy € R.

Proof Let x be a solution of problem (2.5). Then there exists v € Sg,, such that x'(£) +x(¢) =
Ax(t) + v(t). We put w(s) = T(t — 5)x(s). Then

w(s) = =T'(t - s)x(s) + T(t —5)x'(s)
= —AT(t - s)x(s) + T(t — s)x'(s)
= T(t - 5)[«'(s) — Ax(s)]
= T(t - 5)[v(s) - x(s)]. (2.7)

If t < 1, then integrating (2.7), we have
—w(0) = '(s)ds = T(t - — ds,
w(t) — w(0) /(; w(s)ds /0 (t s)[v(s) x(s)] s
x(t) = T(t)x(0) + /t T(t—s)[v(s) —x(s)] ds.
0

Ifty <t, k=1,...,m, then integrating (2.7), we have

1’d [Z’dmt’d:tT— - ds,
‘/0 w(s) s+/ w(s)ds + +/ w(s)ds / (t s)[v(s) x(s)] s

t ty 0

that is,
W(tl_) — W(O) + W(t;) — W(t-{) +o- 4 W(t) - W(t]‘:) = \/(; T(t —S)[V(S) - x(S)] ds,
and consequently

w(t) =w(0) + Z [w(eg) -w(t)] + /0 T(t - s)[v(s) — x(s)] ds,

O<tg<t
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x(t) = T(t)x(0) + /t T(t-s) [v(s) - x(s)] ds
+ Z (t- Ifk)lk ))

O<tg<t

which completes the proof. d

3 Main result
Theorem 3.1 Assume that the following conditions hold.

(H1) F:J X R— Peyp(R) is an L'-Carathéodory multivalued map.

(H2) Functions a, B € PC(J,R) NAC(J',R) are related lower and upper solutions of prob-
lem (1.1)—(1.3), which are given in Definition 2.2 and satisfy a(t) < B(t), t €].

(H3) e C(R,R), k=1,...,m

(H4) g is a continuous single-valued map in (x,y) € [«(0), B(0)] x [a(d), B(b)] and non-
decreasing in y € [a(b), B(D)].

(H5) A is the infinitesimal generator of a linear bounded semigroup T(t), t > 0, and there
exists M > 0 such that | T(t)| L) < M.

(H6) For x(t) < a(t), v € F(t,a(?t)), t € ], and Ax(t) + v(t) > Aa(t) + vi(t), and for x(t) >
B(t),veF(t B(t), t €], and Ax(t) + v(t) < AB(t) +vy(t), where vy, v, € L1(J, R) satisfy
(2.1)-(2.4).

Then system (1.1)—(1.3) has at least one solution x such that o(t) < x(t) < B(t) forallt €].

Proof We transform (1.1)—(1.3) into a fixed point problem. Consider the modified prob-

lem

x'(t) +x(t) € Ax(t) + Fi(t,x(¢)), te],
Ax(te) = I(t (&, x(t))), k=1,...,m, (3.1)
x(O) = T(O: x(O) —g(T(O» x): T(b’x))):

where Fi(t,x) = F(t,t(t,x)) + T(¢,x), and 7 : C(J,R) = C(J, R) is defined by

B(t), «x(t) > B(2),
'L'(l’,x) = x(t)r O((t) = x(t) =< ,B(t)r
a(t), x(t) <alt).

Evidently, if x is a solution of (3.1), a(t) < x(¢) < B(¢), and «(0) < x(0) — g(z(0,x),
(T, x)) < B(0), then x is a solution of (1.1)—(1.3).

By Lemma 2.10 we have that a solution of (3.1) is a fixed point of the operator N :
PC(J,R) — P(PC(J,R)) defined by

N(x) = {h € PC(J,R) : h(t) = T(t)x(0) + ft T(t - s)[v(s) +1(s,%) —x(s)] ds
0

+ Z — 6L ( (b, %(8)))» v € SEe(1) }

O<tg<t
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where
SEqc(ty) = {v eL'(J,R):v(¥) € F(t, r(t,x)) forae. t e]}.

Note that, for each x € C(J, R), Sg,x is nonempty (see [14]), so Sg,r(:x) is nonempty.

Next, we will show that N has a fixed point by applying Lemma 2.5. The proof will be
given in several steps. We first show that N is a completely continuous multivalued map,
upper semicontinuous with convex closed values.

Step 1. N(x) is convex for each x € PC(J,R).

Indeed, if /11, h1; belong to N(x), then there exist V1, V2 € Sr7(1x) such that

hi(t) = T(£)x(0) + /t T(t-s) [17,»(5) +7(s,%) — x(s)] ds
0

+ Z T(t- tk)lk(‘t (tk,x(tk))), i=1,2.

O<tg<t

Let 0 <[ < 1. Then, for each ¢ € J, we have

(11 + (1= Dhs)(0) = T@Ox(0) + Y T(t -tz (1, %(10)))

O<ty<t

+ /t T(t - s)[lvl (8) + (A =Dva(s) + T(s, ) — x(s)] ds.
0

Since Srr(,x) is convex (because F has convex values in (H1)), then lh; + (1 — )h; € N(x),
so N(x) is convex.

Step 2. N is completely continuous.

First, we show that N maps bounded sets into bounded sets in PC(/, R). Let g be a pos-
itive constant, B, = {x € PC(J,R) : ||x| pc < q} be a bounded set, and x € B,. Then for each
h € N(x), there exists v € Sg () such that

h(t) = T(t)x(0) + /t T(t - s)[v(s) + 7(s,%) — x(s)] ds
0

+ Y T(t - It (tox(k))). (3.2)

O<ty<t

Noting the boundary condition of (3.1) and the definition of t, we have

a(0) = x(0) < B(0), (3.3)

a(t) = t(t,x) < B@). (3.4)

Let p; = max(q, sup,; la(£)], sup,c; [B(8)]). Then |z(£,x)| < p1. By (H1) there exists ¢,, €
L'(J, [0, +00)) such that

sup{|v| :v € F(t,7(t,x))} < ¢, (0). (3.5)

Page 6 of 14
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If x € By, then there exist ¢, > 0, k = 1,...,m, such that |[[;(z (¢, x(t)))| < cx, since I; are
continuous in (H3) and (3.4). So, with (3.3), (3.5), and (H5), we have

d
0] = 17Ol 0+ [ 1765 146 + (59 + 9] 5
+ Z ”Tt tk)||LR)|Ik( (tk’ tk)))|

O<tg<t

< M max(

) + M@, llz1 + Md(py + q)

m
+Mch =K,
k=1

and thus ||[N(x)|pc < K.

Second, we prove that N maps bounded sets into quasiequicontinuous sets of PC(/, R).

Let ui,uy € i, k=0,1,...,m, uy < uy, x € By, and h € N(x). Then

|\h(u2) = h(u)| < |T(u2) — T(uy)| max(

©)])

+/ T2 =) = T(ws = )| (90 (5) + 01 + q) ds
0

7))
+/ M(@p,(s) + p1 +q) ds

ui

+ Z ‘T(uz —t)—T(uqg — tk)|ck + Z M.

O<tg<uy Uy <tp<uy

As uy — uy, the right-hand side of this inequality tends to zero since T'(¢) is strongly con-
tinuous. This proves that N(B,) is quasiequicontinuous. By Lemma 2.8, N is completely
continuous and therefore a condensing map.

Step 3. N has a closed graph.

Let x, — x*, h, € N(x,,), and h,, — h*. We will prove that #* € N(x*). Since 4, € N(x,),
there exist v, € Sg,r(¢,) such that

hy,(2) = T(£)x,(0) + /t T(t- s)[v,,(s) +T(s,%,) — x,,(s)] ds
0

+ Z T(t - tk)lk(f(tk,xn(tk))).

O<tg<t
Next, we need prove that there exists v* € Sg;(;+) such that, for each ¢ €/,

W (t) = T(£)x*(0) + /t T(t-s) [v*(s) + t(s,x*) —x*(s)] ds
0

+ Z (t—ty Ik tk,x*(tk))).

O<tg<t

Page 7 of 14
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Since x, — x*, h, — h*, and Iy € C(R, R) in (H3), by the definition of T we have

h,(t) — T(t)x,(0) — f(f T(t- s)[t(s, Xp) — x,,(s)] ds

= D T = t)(x (toxu(te))

O<ty<t
_ |:h*(t) — T(£)x*(0) — /‘t T(t—- S)[T (S, x*) - x*(s)] ds
0

-0 (3.6)
PC

S Tl (e (tk,x*(tk)))]

O<ty<t

as n — oo. Consider the linear continuous operator I" : L'(J,R) — C(/, R) defined by

vie T(v)(f) = /t T(t - s)v(s)ds.
0

Note that Sr;(;x) is nonempty, so by Lemma 2.4, I" o S is a closed graph operator. More-

over,

hy,(t) — T(¢)x,(0) — /t T(t— S)[‘L'(S, Xp) — x,,(s)] ds
0

= > Tt = )k (x (b %u(t))) € T (SE(1)- (3.7)

O<ty<t

Since %, — x*, by (3.6) and (3.7) there exists v* € Sg () satisfying

W (t) — T(£)x"(0) — /t T(t- s)[r (S, x*) - x*(s)] ds

0

_ Z T(t - t) k(T (t 5™ (8))) = /0 T(t - s)v*(s) ds.

O<tg<t

As a consequence of Steps 1 to 3, N is a completely continuous multivalued upper semi-
continuous map with convex closed values.

Step 4. The set N = {x € PC(J,R) : Ax € N(x) for some A > 1} is bounded.

Let x € R. Then Ax € N(x) for some A > 1. Thus, for each t €],

x(t) = 271 |:T(t)x(0) + /t T(t —s)[v(s) +1(s8,%) —x(s)] ds
0

+ Z T(t- tk)Ik(T (tk,x(tk)))]

O<ty<t

for some v € Sr(x). Let py = max(sup,; [a(£)],sup; |B(¢)]). From (3.4) it follows that
|T(£,%)| < p2. By (H1) there exists ¢,, € L*(J, [0, +00)) such that

sup{|v| :v € F(t,7(t,x))} < ¢, (). (3.8)

Page 8 of 14
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Since Iy € C(R,R) in (H3) and (3.4), there exist ¢; > 0, k = 1,...,m, such that |L(t (&,
x(t)))| < ;. So, by (3.3) and (3.8), for each ¢ € J, we have

|x(t)| < M[|x(0)| +/0 [|v(s)| + |r(s,x)| + |x(s)|]ds + Z |Ik(t(tk,x(tk)))|:|

O<ty<t

’

gmﬁmww@ ﬂ@D+WmMH*M+ALW”“+2}4'
k=1

Set

’

Ko :M|:max(|oe(0) BO)) +ll9p, ll1 +bpa + ZCL}

k=1
Using Gronwall’s lemma (see [18], p. 36), for each ¢ € J, we have
[(t)| < Koe™.
So,
llxllpc < Koe™®.
This shows that the set ) is bounded. As a consequence of Lemma 2.5, we deduce that N
has a fixed point, which is a solution of problem (3.1).
Step 5. The solution x of (3.1) satisfies
a(t) =x(t) < p@), te], (3.9)
and
a(0) < x(0) - g(z(0,%), T(b,x)) < B(0). (3.10)
We first prove (3.9). Let x be a solution of (3.1). We prove that x(¢) < 8(¢) for all £ € J.

Suppose that x — B attains a positive maximum on J at sy. As (3.3), we consider the only
possible case sy € (0, T']. Then there exists s; € (0,s9), s1 # & (k=1,2,...,m), such that

0 < x(t) — B(t) <x(s0) — B(s0), t € [s1,50].
So, 7(t,x) = B(¢) for t € [s1,50], and there exists v € F(¢, B(t)) such that

B(so) — B(s1) < x(so) — x(s1)
= /So [Ax(s) + v(s) + B(s) — x(s)] ds

S1

< / K [Ax(s) + v(s)] ds.

S1
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By (H6) and Definition 2.2 we have

S0 S0

[Ax(s) + v(s)] ds < / [A,B(s) + V2(S)] ds

S1

Blso) - Bls1) < /

$1

< / " B(s)ds = Bso) - B(s1).

This is a contradiction. Consequently, x(¢) < B(¢) forall £ € J.
Similarly, we can prove that « () < x(¢) on J. This shows that (3.9) holds.
Finally, we prove that the solution x of (3.1) satisfies (3.10). Suppose that
a(0) > x(0) —g(r(O, x), r(b,x)). (3.11)
Then by the boundary condition of (3.1) and the definition of T we have
x(0) = a(0). (3.12)
By (3.9) and the definition of T we have
7(0,x) = x(0), 7(b,x) = x(b). (3.13)
From (3.11) to (3.13) we get
g(a(O),x(b)) =g(r(0,x), r(b,x)) > 0.
Since g is nondecreasing in the second variable in (H4) and x(b) < B(b), we have
g(«(0), 8(0)) = g(«(0),x(5)) >0,
which contradicts g(«(0), 8(b)) < 0 in Definition 2.2. So, we have
a(0) <x(0) — g(7(0,%), T(b,%)). (3.14)
Analogously, we can prove that
x(0) — g((0,%), 7 (b, x)) < B(0). (3.15)
Inequalities (3.14) and (3.15) show that (3.10) holds.

According to Steps 1 to 5, the solution x of (3.1) is also a solution of (1.1)—(1.3). The

proof is complete. d

Remark 3.2 If g(x(0),x(b)) = x(0) + x(b) in (1.1)—(1.3), that is, x(0) = —x(b), which satis-
fies (H4), then (1.1)—(1.3) become an antiperiodic boundary value problem for semilinear

impulsive differential inclusions.



Luo Boundary Value Problems (2018) 2018:165 Page 11 of 14

4 Corollary
Definition 4.1 Functions «, 8 € PC(J,R) N AC(J', R) are said to be lower and upper solu-
tions for problem (1.1)—(1.3) if there exist v1, v, € L'(J,R) such that

vi(t) € F(t,a(t)), a.e.te],

o' (t) <Aa(t) +v1(¢), ae.te],
Aa(ty) < L(a(ty), k=1,...,m,
g(e(0),a(b)) =0,

and

vo(t) € F(t, B(2)), ae.te],
B'(t) = AB(t) + »a(t), aete],
AB(te) = Ik(B(t), k=1,...,m,
g(B(0),B(b)) = 0.

Corollary 4.2 Assume (H1), (H3), (H5), (H6), and the following conditions hold.
(H7) Functionsa, 8 € PC(J,R)NAC(J', R) are lower and upper solutions of problem (1.1)—
(1.3) given in Definition 4.1 and satisfying a(t) < B(t), t € J.
(H8) g is a continuous single-valued map in (x,y) € [« (0), B(0)] x [a (), B(b)] and nonin-
creasing in y € [a(b), B(D)].
Then system (1.1)—(1.3) has at least one solution x such that o(t) < x(t) < B(t) forallt €].

The proof is similar to that of Theorem 3.1, and we omit it.

Remark 4.3 If g(x(0),x(b)) = x(0) — x(b) in (1.1)—(1.3), that is, x(0) = x(b), which satisfies
(H8), then (1.1)—(1.3) become a periodic boundary value problem for impulsive semilinear
differential inclusions.

Definition 4.4 Functions «, 8 € PC(J,R) N AC(J', R) are said to be lower and upper solu-
tions for problem (1.1)—(1.3) if there exist v1, v, € L'(J,R) such that

vi(t) € F(t,a(t)), ae.te],

o (t) <Aa(t) +vi(2), aete],
Aa(ty) < L(a(ty), k=1,...,m,
g(a(0), (b)) > 0,

and

vo(t) € F(t, B(t)), ae.te],
B'(t) = AB(t) + vr(t), ae.te],
AB(t) = k(Bt), k=1,...,m,
g(B(0), B(b)) < 0.
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Corollary 4.5 Assume that (H1), (H3), (H4), (H5), (H6), and the following condition hold.

(H9) Functionsa, 8 € PC(J,R)NAC(J', R) are lower and upper solutions of problem (1.1)—
(1.3) given in Definition 4.4 and satisfying a(t) < B(t), t € J.

Then system (1.1)—(1.3) has at least one solution x such that o(t) < x(t) < B(t) forallt €].

Proof We transform (1.1)—(1.3) into a fixed point problem. Consider the modified prob-

lem

x'(t) +x(t) € Ax(t) + Fi(t,x(2)), te],
Ax(tr) = I(t(te, x(t)),  k=1,...,m, (4.1)
x(0) = 7(0,x(0) + g(z(0,x), T (b, x))),

where F; and 1 are defined in (3.1).
The rest of the proof of Corollary 4.5 is similar to the proof of Theorem 3.1, and we omit
it. O

Definition 4.6 Functions«, 8 € PC(J,R)NAC(J’, R) are said to be related lower and upper
solutions for problem (1.1)—(1.3) if there exist v1, v, € L'(J, R) such that

vi(t) € F(t,x(t)), a.e.te],

o/ (t) < Aa(t) +vi(t), aete],
Aa(ty) < Ik(a(te), k=1,...,m,
g(@(0), B(b)) = 0,

and

vo(t) € F(t, B(t)), a.e.te],
B'(t) = AB@) +na(t), aete],
AB(t) = I(B(t0), k=1,....m,
g(B(0),a(b)) < 0.

Corollary 4.7 Assume that (H1), (H3), (H5), (H6), (H8), and the following condition hold.

(H10) Functionsa, B € PC(J,R)NAC(J', R) are related lower and upper solutions of prob-
lem (1.1)—(1.3) given in Definition 4.6 and satisfying a(t) < B(t),t €].

Then system (1.1)—(1.3) has at least one solution x such that o(t) < x(t) < B(t) forallt €].

The proof is similar to that of Corollary 4.5, and we omit it.

5 An example
In this section, as an application of our main result, we present an example. We consider
the following partial differential equation:

2
2L) ¢ DD 4 Fy(t,x(1,0)), 0 €[0,m]te],
x(¢,0)=x(t,7t)=0, ¢te][0,b],

x(ty,0) —x(t;,0) =x(t,0), k=1,...,m,

x(0,0) +x(b,0) =0,
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where J' = [0,b]\{t1,...,t,}. Let X = L2([0, 7], R). Define F: [0,b] x X — P(X), I; : X — X,
andg: X x X — X by

F(t,x)(0) :Fl(t,x(t,é)), 0 €[0,7],
L(1(8))(0) = 2(t,0), 6 € [0,7],

2(x(), y(1))(0) = x(u,0) + y(v,0), u,ve[0,b],60 €[0,7].

Obviously, Iy and g satisfy conditions (H3) and (H4) in Theorem 3.1, respectively.
Define A : X — X by Ax = x” with

D(A) = {x € X, x,x" are absolutely continuous, x” € X,x(0) = x() = 0}.

It is well known that A is the infinitesimal generator of a strongly continuous cosine func-
tion (C(£));er on X. The operator A has a discrete spectrum, and the eigenvalues are
-n2, n € N, with corresponding eigenvectors z,(6) = (2/7)"? sin(n6). Furthermore, the
set {z,, : n € N} is an orthonormal basis of X, and the following properties hold.

(a) Forx € D(A), Ax ==Y o2) n*(x,2,) 2.

(b) Forx e X, C(t)x =Y -, cos(nt)(x,z,)zn.

Consequently, ||C(¢)|| <1 for all £ € R, that is, condition (H5) in Theorem 3.1 is satis-
fied. More about the cosine family can be found in [19, 20]. Hence the partial differential
inclusions (5.1) can be rewritten in an abstract form as system (1.1)—(1.3).

If we assume that conditions (H1), (H2), and (H6) in Theorem 3.1 hold, then system

(5.1) has at least one mild solution.
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