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Abstract
In this paper, we study the nonexistence of stable solutions for the quasilinear
Schrödinger equation

–�u –
[
�(1 + u2)1/2

] u

2(1 + u2)1/2
= h(x)|u|q–1u, x ∈ RN , (0.1)

where N ≥ 3, q ≥ 5/2 and the function h(x) is continuous and positive in RN . Under
suitable assumptions on h(x) and q, we prove that Eq. (0.1) has no nonnegative and
stable solutions.

Keywords: Nonexistence of solution; Quasilinear Schrödinger equation; Stable
solution

1 Introduction and main results
In this paper we are interested in the nonexistence of stable solutions to the quasilinear
Schrödinger equation

–�u –
[
�

(
1 + u2)1/2] u

2(1 + u2)1/2 = h(x)|u|q–1u, x ∈ RN , (1.1)

where N ≥ 3 and q ≥ 5/2. Equation (1.1) can be obtained as a stationary problem of the
modified Schrödinger equation

izt = –�z + W (x)z – h
(
x, |z|2)z –

[
�l

(|z|2)]l′
(|z|2)z, x ∈ RN , (1.2)

where z : R × RN → C, W : RN → R is a given potential, h and l are real functions.
It is well known that the standing wave solutions of the form z(t, x) = exp(–iωt)u(x) sat-

isfy (1.2) if and only if the real function u(x) solves the equation of elliptic type

–�u + V (x)u –
[
�l

(
u2)]l′

(
u2)u = g(x, u), x ∈ RN , (1.3)

where V (x) = W (x) – ω,ω ∈ R and g(x, u) ≡ h(x, u2)u.
Quasilinear Schrödinger equations as in (1.3) appear naturally in mathematical physics

and have been derived as models of several physical phenomena corresponding to various
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types of nonlinear term l. When l(s) = s, we get the superfluid film equation in plasma
physics [16]:

–�u + V (x)u – �
(
u2)u = g(x, u), x ∈ RN . (1.4)

In the case l(s) = (1 + s)1/2, (1.3) turns into the following equation:

–�u + V (x)u –
[
�

(
1 + u2) 1

2
] u

2(1 + u2) 1
2

= g(x, u), x ∈ RN , (1.5)

which models the self-channeling of a high-power ultrashort laser in matter, see [2, 10].
The existence of positive solutions for (1.5) has been extensively studied recently. In

[23], the authors proved that (1.5) has a positive solution under the assumptions: g(x, u) =
λ|u|p–1u,

√
6 – 1 ≤ p < N+2

N–2 ,λ > 0 and 0 < infx∈RN V (x) ≤ V (x) ≤ V (∞) := lim|x|→∞ V (x) <
∞.

Li [20] studied the existence of quasilinear Schrödinger equations of the form

–�u + V (x)u –
[
�

(
1 + u2)α/2] αu

2(1 + u2)(2–α)/2 = g(x, u), x ∈ RN , (1.6)

where the parameter α ∈ [1, 2] and the functions V (x), g(x, u) are 1-periodic in xj for j =
1, 2, . . . , N .

Similar works can be found in [6, 7, 11, 24, 27] and the references therein. It is noted that,
in the above works, one always assumes that the potential function V (x) ≥ 0 and V (x) 
≡ 0
in R

N .
On the other hand, the nonexistence of solutions and either the stable or unstable solu-

tions for Lane–Emden problems are investigated to some extent. The results can be found
in [1, 3, 8, 14, 15, 18, 19, 21, 25, 26, 28], and the references therein. To the best of our knowl-
edge, there are no results on the nonexistence of solutions for (1.1). Motivated by [4, 5,
9, 13, 17, 22], our purpose in this paper is to study the nonexistence of nonnegative and
stable solutions of (1.1) under some assumptions on the weighted function h(x) and the
exponent q.

Usually, we make the change of variables z = f –1(u), where f is defined by

f ′(t) =
[

1 +
f 2(t)

2(1 + f 2(t))

]–1/2

=
√

2
(
1 + f 2(t)

) 1
2
(
2 + 3f 2(t)

)– 1
2 , t ≥ 0, f (0) = 0 (1.7)

and by f (t) = –f (–t) on (–∞, 0].

Lemma 1.1 ([20, 23]) The function f (t) satisfies the following properties:
(f1) f is uniquely defined, odd, increasing, invertible and C∞ in R = (–∞, +∞),
(f2) 0 < f ′(t) ≤ 1, ∀t ∈ R,
(f3) |f (t)| ≤ |t|, ∀t ∈ R,
(f4) f (t)

t → 1 as t → 0,
(f5) f (t) ≤ 2tf ′(t) ≤ 2f (t), ∀t ∈ R+ = [0,∞),
(f6) limt→+∞ f (t)

t =
√

2
3 .
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If we take u = f (z) or z = f –1(u), then (1.1) becomes the following semilinear elliptic
equation:

–�z = h(x)f ′(z)
∣∣f (z)

∣∣q–1f (z), x ∈ RN . (1.8)

As usual, we study the existence and the nonexistence of weak solutions of (1.1) via (1.8).

Definition 1.1 ([12]) The function z ∈ C1,δ
loc(RN ) (0 < δ < 1) is said to be a weak solution of

(1.8) if

∫

RN
∇z∇ζ dx =

∫

RN
h(x)g(z)ζ dx, ∀ζ ∈ C1

0
(
R

N)
, (1.9)

where (and in the sequel) g(z) = f ′(z)|f (z)|q–1f (z). A weak solution z of (1.8) is stable if

∫

RN
|∇ζ |2 dx ≥

∫

RN
h(x)g ′(z)ζ 2 dx, ∀ζ ∈ C1

0
(
R

N)
. (1.10)

In other words, the stability condition translates into the fact that the second variation
of the energy functional is nonnegative. Thus, all the minima of the functional are stable
solutions of (1.8).

As in [11, 20, 23], we give:

Definition 1.2 A function u ∈ D1,2(RN ) is called a weak solution of (1.1) if z = f –1(u) is
a weak solution of (1.8). A weak solution u of (1.1) is stable in R

N if z = f –1(u) is a stable
solution of (1.8).

So in order to prove the nonexistence of stable solutions for (1.1), it is sufficient to prove
that there is no nonnegative and stable weak solution to (1.8).

The main result in this paper is as follows.

Theorem 1.2 Suppose that the positive function h(x) ∈ C1
loc(RN ) is such that there exist

a > –2, a0 > 0 and R0 > 0 such that

h(x) ≥ a0|x|a, ∀|x| ≥ R0. (1.11)

Denote

γ0(a) := 6 + 2a, γ∞(a) := 10 + 4a. (1.12)

Let qc be the positive root of the equation N = X(q) with

X(t) =
2[t + k0(t)] + a[k0(t) + 1]

t – 1
, t ≥ 5/2, (1.13)

and

k0(t) = 2t – 3 +
√

4t2 – 12t + 5, t ≥ 5/2. (1.14)
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Moreover, let u ∈ C1,δ
loc(RN ) (0 < δ < 1) be a nonnegative and stable solution of (1.1). Then,

we have u ≡ 0 in R
N if one of the following conditions is satisfied:

(A1) q ≥ 5
2 and 3 ≤ N ≤ γ0(a);

(A2) q > qc and γ0(a) < N < γ∞(a).

Remark 1.3 When N ∈ (γ0,γ∞), it is not difficult to get

qc =
6 – d2 +

√
16 – 3d2

4 – d2 with d =
N – 6 – 2a

2 + a
. (1.15)

The condition γ0 < N < γ1 implies that d ∈ (0, 2) and qc > 5/2.

2 Proof of Theorem 1.2
In order to prove the nonexistence of solution to (1.8), we use the test function method,
which has been used in [5, 9] to deal with the m-Laplace equation. The proof is by con-
tradiction which involves obtaining an a priori estimate for a solution of (1.8) by carefully
choosing a special test function and then applying the scaling argument. We first establish:

Lemma 2.1 Assume q > 1. Let f (t) be the function defined by (1.7) and k > 1. Suppose
g(t) = f ′(t)|f (t)|q–1f (t) and

G(t) =
(

g(t)
g ′(t)

tk
)1/2

, ∀t ≥ 0. (2.1)

Then there exist d1, d′
1 > 0 such that

d′
1tk+1 ≤ G2(t) ≤ d1tk+1, ∀t ≥ 0. (2.2)

Furthermore, if q ≥ 2, we have for all t ≥ 0,

(
G′(t)

)2 ≤ αktk–1, where αk =
(k + 1)2

2q – 1
. (2.3)

Proof Let f = f (t) (t ≥ 0). Direct computation shows that

g ′(t) = 2β(t)f q–1[2 + 3f 2]–2, where β(t) = 2q + (5q – 1)f 2(t) + 3qf 4(t) (2.4)

and

G2(t) =
g(t)
g ′(t)

tk =
ftk(1 + f 2) 1

2 (2 + 3f 2) 3
2√

2β(t)
. (2.5)

From f (0) = 0, as well as (f4) and (f6) in Lemma 1.1, it follows that

lim
t→0+

G2(t)
tk+1 =

1
q

and lim
t→+∞

G2(t)
tk+1 =

1
q

. (2.6)

Furthermore, noticing the fact that the function H(t) = t–k–1G2(t) is positive and contin-
uous on any bounded interval [c, d] ⊂ (0, +∞), we obtain (2.2) from (2.6).
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In the following we prove (2.3). First, we have from (2.5) that

√
2β(t)G2(t) = ftk(1 + f 2) 1

2
(
2 + 3f 2) 3

2 , t ≥ 0. (2.7)

Differentiating (2.7) with respect to t gives

2
√

2G(t)G′(t)β(t) +
√

2G2(t)β ′(t) =
[
ftk(1 + f 2) 1

2
(
2 + 3f 2) 3

2
]′

= ktk–1f
(
1 + f 2) 1

2
(
2 + 3f 2) 3

2 +
√

2tk(2 + 16f 2 + 15f 4). (2.8)

Since

√
2G2(t)β ′(t) = 2

√
2tkf 2(1 + f 2)(2 + 3f 2)(5q – 1 + 6qf 2)β–1(t), (2.9)

we have from (2.5), (2.8) and (2.9) that

8
(
G′(t)

)2 = tk–1(A1(t) + A2(t) + A3(t)
)
, ∀t ≥ 0, (2.10)

where

A1(t) =
√

2k2f (1 + f 2) 1
2 (2 + 3f 2) 3

2

tβ(t)
,

A2(t) =
4kγ (t)
β2(t)

,

A3(t) =
2
√

2tγ 2(t)
f β3(1 + f 2) 1

2 (2 + 3f 2) 3
2

(2.11)

and

γ (t) = β(t)
(
2 + 16f 2 + 15f 4) – 2f 2(1 + f 2)(2 + 3f 2)(5q – 1 + 6qf 2)

= 4q + 2(11q + 1)f 2 + 6(7q – 1)f 4 + 3(11q – 3)f 6 + 9qf 8. (2.12)

Using the property (f5) in Lemma 1.1, we have

f (t)
t

≤ 2f ′(t) = 2
√

2
(
1 + f 2) 1

2
(
2 + 3f 2)– 1

2 , ∀t ≥ 0, (2.13)

and then

A1(t) ≤ 4k2(1 + f 2)(2 + 3f 2)
β(t)

=
4k2(2 + 5f 2 + 3f 4)

2q + (5q – 1)f 2 + 3qf 4 ≤ 20k2

5q – 1
, ∀t ≥ 0. (2.14)

On the other hand, directive computation gives

β2(t) = 4q2 + 4q(5q – 1)f 2 +
(
37q2 – 10q + 1

)
f 4 + 6q(5q – 1)f 6 + 9q2f 8. (2.15)

Then an application of (2.12) and (2.15) yields γ (t) ≤ 3
2q β2(t), and so

A2(t) ≤ 6k
q

, ∀t ≥ 0. (2.16)
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Furthermore, we see from (f5) in Lemma 1.1 that

t
f (t)

≤ 1
f ′(t)

= 2– 1
2
(
1 + f 2)– 1

2
(
2 + 3f 2) 1

2 , (2.17)

and then

A3(t) ≤ 2γ 2(t)
β3(t)(2 + 5f 2 + 3f 4)

, ∀t ≥ 0. (2.18)

We now claim

γ 2(t)
β3(t)(2 + 5f 2 + 3f 4)

≤ 2
q

, ∀t ≥ 0. (2.19)

In fact, we have

γ 2(t) = 16q2 + 16q(11q + 1)f 2 + 4
(
205q2 + 10q + 1

)
f 4 + 24

(
88q2 – 7q – 1

)
f 6

+ 24q(137q – 32)f 8 + 36
(
88q2 – 31q + 3

)
f 10 + 9

(
205q2 – 78q + 9

)
f 12

+ 54q(11q – 3)f 14 + 81q2f 16 (2.20)

and

(
2 + 5f 2 + 3f 4)β3(t) =

(
2 + 5f 2 + 3f 4)[2q + (5q – 1)f 2 + 3qf 4]3

= 16q3 + 8q2(20q – 3)f 2 + 12q
(
58q2 – 15q + 1

)
f 4

+ 2
(
860q3 – 279q2 + 30q – 1

)
f 6

+
(
2641q3 – 915q2 + 111q – 5

)
f 8

+ 3
(
860q3 – 279q2 + 30q – 1

)
f 10

+ 27q
(
58q2 – 15q + 1

)
f 12 + 27q2(20q – 3)f 14

+ 81q3f 16. (2.21)

Clearly, it is not difficult to verify (2.19) by the use of (2.20) and (2.21). Then, from (2.10),
(2.14), (2.16), (2.18) and (2.19), we obtain

(
G′(t)

)2 ≤ tk–1
(

5k2

2(5q – 1)
+

3k
4q

+
1

2q

)
≤ (k + 1)2

2q – 1
tk–1, ∀t ≥ 0, (2.22)

and the proof of Lemma 2.1 is completed. �

On the other hand, for the function g(t) defined in Lemma 2.1, we have the following
result.

Lemma 2.2 Assume q > 1. Let f (t) be the function defined by (1.7) and k > 1. Suppose
g(t) = f ′(t)|f (t)|q–1f (t). Then, there exists M1 > 0 such that

∣
∣∣
∣

tq

g(t)

∣
∣∣
∣ ≤ M1, ∀t > 0. (2.23)
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Proof Obviously, the function Y (t) = tq

g(t) is continuous on (0, +∞). From (f4) and (f6) in
Lemma 1.1, we derive

lim
t→0+

Y (t) = lim
t→0+

tq(2 + 3f 2) 1
2

√
2(1 + f 2) 1

2 f q(t)
= lim

t→0+

tq

f q(t)
= 1 (2.24)

and

lim
t→+∞ Y (t) =

(
3
2

) 1
2

lim
t→+∞

tq

f q(t)
=

(
3
2

)(q+1)/2

. (2.25)

Then the conclusion (2.23) follows, and the proof of Lemma 2.2 is completed. �

Lemma 2.3 Let z ∈ C1,δ
loc(RN ) (0 < δ < 1) be a nonnegative and stable weak solution of (1.8)

with q ≥ 5/2. Then for every k ∈ (1, k0(q)), where k0(t) is defined by (1.14), there exists a
constant C = C(q, k) such that

∫

RN
h(x)g(z)zkϕ2 dx ≤ C

∫

RN

∣
∣h(x)

∣
∣– k+1

q–1 |∇ϕ| 2(q+k)
q–1 ϕ

– 2(k+1)
q–1 dx, (2.26)

where ϕ = ϕ(x) ∈ C1
0(RN ) is a nonnegative cut-off function, in which ϕ(x) = ϕ0( |x|

R ) with
R > 0, ϕ0(s) ∈ C1

0(R+), 0 ≤ ϕ0(s) ≤ 1, and it is defined by

ϕ0(s) =

⎧
⎪⎪⎨

⎪⎪⎩

1, 0 ≤ s ≤ 1,

2(2 – s)m – (2 – s)2m, 1 < s < 2,

0, s > 2,

(2.27)

with m = q+k
q–1 > 1.

Remark 2.4 It is not difficult to verify that 0 ≤ ϕ0(s) ≤ 1 and |ϕ′
0(s)| ≤ β0ϕ

1–1/m
0 (s) with

β0 = 21/mm.

Proof Let z ∈ C1,δ
loc(RN ) be a nonnegative and stable weak solution of (1.8) and k > 1. Setting

ζ = zkϕ2 in (1.9), we find

k
∫

RN
|∇z|2zk–1ϕ2 dx ≤ 2

∫

RN
|∇z||∇ϕ|zkϕ dx +

∫

RN
h(x)g(z)zkϕ2 dx. (2.28)

Applying Young’s inequality with parameter ε ∈ (0, 1), we obtain

2
∫

RN
|∇z||∇ϕ|zkϕ dx ≤ ε

∫

RN
|∇z|2zk–1ϕ2 dx + C

∫

RN
|∇ϕ|2zk+1 dx. (2.29)

Here and in the sequel, let C be a positive constant depending on ε and q, k, which may
vary from line to line. Then it follows from (2.28) and (2.29) that

(k – ε)
∫

RN
|∇z|2zk–1ϕ2 dx ≤

∫

RN
h(x)

∣
∣g(z)

∣
∣zkϕ2 dx + C

∫

RN
|∇ϕ|2zk+1 dx. (2.30)
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On the other hand, taking ζ = G(z)ϕ in (1.10), we find

|∇ζ |2 = ϕ2(G′(z)
)2|∇z|2 + 2ϕG′(z)G(z)∇z∇ϕ + G2(z)|∇ϕ|2, (2.31)

and then
∫

RN
h(x)g(z)zkϕ2 dx ≤

∫

RN
|∇z|2∣∣G′(z)

∣∣2
ϕ2 dx + 2

∫

RN
|∇z||∇ϕ|∣∣G′(z)G(z)

∣∣ϕ dx

+
∫

RN
|∇ϕ|2G2(z) dx. (2.32)

By Young’s inequality with ε > 0, one derives

2
∫

RN
|∇z||∇ϕ|∣∣G′(z)G(z)

∣∣ϕ dx ≤ ε

∫

RN
|∇z|2∣∣G′(z)

∣∣2
ϕ2 dx

+ C
∫

RN
|∇ϕ|2∣∣G(z)

∣
∣2 dx. (2.33)

Then, it follows from (2.2), (2.3), (2.30) and (2.32) that
∫

RN
h(x)g(z)zkϕ2 dx ≤ (1 + ε)

∫

RN

∣
∣G′(z)

∣
∣2|∇z|2ϕ2 dx + C

∫

RN
|∇ϕ|2∣∣G(z)

∣
∣2 dx

≤ αk(1 + ε)
∫

RN
|∇z|2ϕ2zk–1 dx + C

∫

RN
|∇ϕ|2∣∣G(z)

∣∣2 dx

≤ αk(1 + ε)
k – ε

∫

RN
h(x)g(z)zkϕ2 dx + C

∫

RN
|∇ϕ|2zk+1 dx

+ C
∫

RN

∣∣G(z)
∣∣2|∇ϕ|2 dx

≤ αk(1 + ε)
k – ε

∫

RN
h(x)g(z)zkϕ2 dx + C1

∫

RN
|∇ϕ|2zk+1 dx. (2.34)

Then one sees from (2.34) that

δε

∫

RN
h(x)g(z)zkϕ2 dx ≤ C

∫

RN
|∇ϕ|2zk+1 dx, (2.35)

where

δε = 1 –
αk(1 + ε)

k – ε
= 1 –

(1 + ε)(k + 1)2

(k – ε)(2q – 1)
. (2.36)

Clearly,

δ0 = lim
ε→0+

δε = 1 –
(k + 1)2

k(2q – 1)
. (2.37)

Moreover, the elementary inequality δ0 > 0 implies that k ∈ (1, k0(q)
2 ), where k0(t) is de-

fined by (1.14). Now, an application of (2.35) yields

∫

RN
h(x)g(z)zkϕ2 dx ≤ C

∫

RN
|∇ϕ|2zk+1 dx. (2.38)
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Let λ = q+k
k+1 , λ′ = q+k

q–1 . Then it follows from Lemma 2.2 that, if z = z(x) is nonnegative in

RN , the function ψ(x) = z(k+1)λ′ (g(z)zk)– λ′
λ = ( zq

g(z) )
k+1
q–1 is nonnegative and bounded in RN .

Moreover, we obtain from the Hölder inequality, (2.23) and (2.38) that

∫

RN
h(x)g(z)zkϕ2 dx

≤ C
∫

RN
|∇ϕ|2zk+1 dx

≤ C
(∫

RN
h(x)g(z)zkϕ2 dx

) 1
λ
(∫

RN

∣
∣h(x)

∣
∣– λ′

λ |∇ϕ|2λ′
ϕ– 2λ′

λ z(k+1)λ′(
gzk)– λ′

λ dx
) 1

λ′

≤ C
(∫

RN
h(x)g(z)zkϕ2 dx

) 1
λ
(∫

RN

∣∣h(x)
∣∣– λ′

λ |∇ϕ|2λ′
ϕ– 2λ′

λ dx
) 1

λ′
. (2.39)

Obviously, inequality (2.39) implies

∫

RN
h(x)g(z)zkϕ2 dx ≤ C

∫

RN

∣
∣h(x)

∣
∣– λ′

λ |∇ϕ|2λ′
ϕ– 2λ′

λ dx (2.40)

and (2.26) follows. �

Proof of Theorem 1.2 Setting x = Rξ in (2.26), we get

∫

RN
h(x)g(z)zkϕ2 dx ≤ C

∫

RN

∣∣h(x)
∣∣– k+1

q–1 |∇ϕ| 2(q+k)
q–1 ϕ

– 2(k+1)
q–1 dx

≤ CRθ

∫

1≤|ξ |≤2

[ |ϕ′
0(|ξ |)|

ϕ
1– q–1

q+k
0 (|ξ |)

] 2(q+k)
q–1

dξ ≤ CRθβ
2(q+k)

q–1
0 , (2.41)

where assumption (1.11) on h(x) has been used, C is a positive constant independent of R,
and

θ = N –
2(q + k) + a(k + 1)

q – 1
. (2.42)

Clearly, if θ < 0, the desired result follows by letting R → ∞ in (2.41). In the following,
we will show that some appropriate k = k(q) can be chosen such that θ < 0. Let X(t) be the
function defined in (1.13). Obviously, we have

lim
t→5/2

X(t) = γ0(a) := 6 + 2a, lim
t→+∞ X(t) = γ∞(a) := 10 + 4a. (2.43)

Note that X(t) = 2 + (2 + a)Y (t) (t ≥ 5/2) with

Y (t) =
k0(t) + 1

t – 1
= 2 +

√
4t2 – 12t + 5

t – 1
(2.44)

and

X ′(t) =
(2 + a)(2t + 1)

(t – 1)2

(
4t2 – 12t + 5

)–1/2 > 0, ∀t > 5/2. (2.45)
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So, the function X(t) is increasing and 6 + 2a < X(t) < 10 + 4a for t > 5/2.
Therefore, if N ≤ 6 + 2a, we have N < X(t) for any t > 5/2. Hence, if we fix k ∈ (1, k0(t))

suitably near k0(t), we obtain

N <
2[t + k0(t)] + a[k0(t) + 1]

t – 1
. (2.46)

For this reason, the desired result follows by letting R → ∞ in (2.41).
Assume now γ0(a) < N < γ∞(a). Since X(t) is increasing, we get in this case a critical

value qc > 5/2 such that N < X(q) for qc < q. From this, the desired result follows again by
letting R → ∞ in (2.41). Clearly, qc may be determined from the equation N = X(qc). Then
we complete the proof of Theorem 1.2. �

3 Concluding remarks
In this paper, we have considered a model described by the quasilinear Schrödinger equa-
tion. Nonexistence of stable solutions is proved.
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