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1 Introduction
The nonlinear beam equation is a class of fourth-order partial differential equations ap-
pearing in different physical settings (see [26, 27] for a review), and it models the weak
interactions of dispersive waves in [1] and the motion of the clamped plate and beams in
[20]. In general, the nonlinear beam equation is in the following form:

∂2

∂t2 u + �2u + mu – |u|p–1u = 0, x ∈ R
D, (1.1)

where the parameter m > 0. u = u(t, x) : [0, T) × R
D → R and 0 < T ≤ +∞. �2 = �� and

� is the Laplacian. 1 < p ≤ 2D
(D–4)+ – 1, where 2D

(D–4)+ = +∞ when D = 1, 2, 3, 4; 2D
(D–4)+ = 2D

D–4

when D ≥ 5. When m = 0, the scaling symmetry λ
4

p–1 u(λ2t,λx) of Eq. (1.1) implies two
critical exponents: one is the L2 critical exponent p = 1+ 8

D , and the other is the H2 energy-
critical exponent p = 2D

D–4 – 1 (see [12]). Hence, when p = 3 and D = 4, 6, 8, we call Eq. (1.1)
the L2 critical, L2 super-critical, and H2 energy-critical cubic nonlinear beam equation,
respectively. We supplement Eq. (1.1) with the initial data

u(0, x) = u0,
∂

∂t
u(0, x) = u1. (1.2)

In the last two decades, Eq. (1.1) has been widely studied. The local well-posedness of
the Cauchy problem (1.1)–(1.2) for 1 < p < 2D

(D–4)+ – 1 and p = 2D
(D–4)+ – 1 was established

in [17] and in [12], respectively. The stability of traveling waves and standing waves for
Eq. (1.1) was obtained in [17]. There are a lot of papers on the asymptotic behavior and
scattering properties of global solutions (see [9, 10, 15, 18, 21, 24, 25, 28, 31, 32]). To our
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knowledge, the only result on the blow-up solutions of Eq. (1.1) is [12], in which authors
gave a sufficient condition for the existence of blow-up solutions. This motivates us to
study the following properties of Eq. (1.1): How to separate the domains of blow-up and
global existence? What is the limiting behavior of blow-up solutions?

In terms of the sharp criteria for the nonlinear Schrödinger equation in [8, 14, 16, 19, 23,
36], we study the sharp criteria for the nonlinear Beam equation. First, for the L2 critical
case: p = 3 and D = 4, we have the following theorem.

Theorem 1.1 Let m = 1, p = 3, and D = 4. Let R be a ground state of

3
2
�2R +

1
2

R – |R|2R = 0, R ∈ H2. (1.3)

If the initial data (u0, u1) ∈ H2 × L2 satisfies

E
(
(u0, u1)

)
< E(R, 0) =

1
2
‖R‖2

2, (1.4)

then we have the following:
(i) If ‖u0‖2 < ‖R‖2, then the solution u(t, x) of the Cauchy problem (1.1)–(1.2) exists

globally, and u(t, x) satisfies that, for all time t,

∥
∥u(t)

∥
∥2

2 +
∥∥
∥∥

∂

∂t
u(t)

∥∥
∥∥

2

2
< ‖R‖2

2 and
∥
∥�u(t)

∥
∥2

2 +
∥∥
∥∥

∂

∂t
u(t)

∥∥
∥∥

2

2
< ‖R‖2

2. (1.5)

(ii) If ‖u0‖2 > ‖R‖2, then the solution u(t, x) of the Cauchy problem (1.1)–(1.2) blows up
in finite time 0 < T < +∞.

The above sharp criteria of Eq. (1.1) are different from those of the L2 critical nonlinear
Schrödinger equation in [30], where Weinstein proved that for the initial data ‖u0‖2 >
‖Q‖2, the corresponding solution may blow up. However, for Eq. (1.1), in the case ‖u0‖2 >
‖R‖2, the corresponding solution must blow up in a finite time.

Furthermore, we obtain the following limiting profile of blow-up solutions for Eq. (1.1).

Theorem 1.2 Let m = 1, p = 3, and D = 4. If (u0, u1) ∈ H2 × L2 and u(t, x) is the corre-
sponding blow-up solution of the Cauchy problem (1.1)–(1.2) with limt→T ‖u(t)‖2 = +∞
and ‖�u(t)‖2 = ‖�R‖2, where 0 < T < +∞ is the blow-up time, then there exist y(t) ∈ R

4,
γ (t) ∈R such that

u
(
t,λ(t)

(· + y(t)
)) → R(·) strongly in H2 as t → T , (1.6)

where λ(t) = ( ‖u(t)‖2
‖R‖2

) 1
2 and R is a ground state of (1.3).

Throughout this paper, we assume m = 1 and p = 3 for simplification, and the general
cases m = 1 and 1 < p < 2D

(D–4)+ – 1 can be obtained by entirely the same way. We extend
the sharp criteria argument in [14, 16] for nonlinear Schrödinger equations to that for the
nonlinear beam equation (1.1). This is very nontrivial because Eq. (1.1) does not have the
conservation of L2-norm and scaling invariance. The argument in this paper may have a
potential application to other nonlinear wave equations without scaling invariance.
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In this paper, we abbreviate Lq(RD), ‖ · ‖Lq(RD), H2(RD), and
∫
RD ·dx by Lq, ‖ · ‖q, H2, and

∫ ·dx. The various positive constants will be denoted by C.

2 Notations and preliminaries
For the Cauchy problem (1.1)–(1.2), the work space is defined by

H2 :=
{

v ∈ L2
∣∣∣
∫ (|v|2 + |∇v|2 + |�v|2)dx < +∞

}
.

It is easy to check that (‖v‖2
2 + ‖�v‖2

2) 1
2 is an equivalent norm of H2, and this equivalent

norm is used to decompose the bounded sequences in H2 (see [37]). Define two function-
als in H2 × L2 by

E
((

v(t),
∂

∂t
v(t)

))
:=

∫ [
1
2

∣∣∣
∣
∂

∂t
v(t)

∣∣∣
∣

2

+
1
2
∣∣�v(t)

∣∣2 +
1
2
∣∣v(t)

∣∣2 –
1
4
∣∣v(t)

∣∣4
]

dx,

H
(
v(t)

)
:=

∫ [
1
2
∣
∣v(t)

∣
∣2 dx –

1
4
∣
∣v(t)

∣
∣4

]
dx.

The functionals E and H are well-defined by the Sobolev embedding theorem (see [12]).
Moreover, Hebey and Pausader established the local well-posedness of the Cauchy prob-
lem (1.1)–(1.2) in the energy space H2 × L2 in [12] as follows.

Proposition 2.1 Let m = 1, 1 < p < 2D
(D–4)+ – 1, and (u0, u1) ∈ H2 ×L2. There exists a unique

solution u(t, x) of the Cauchy problem (1.1)–(1.2) on the maximal time [0, T) such that
u(t, x) ∈ C([0, T); H2 × L2). Moreover, the following properties hold: either T = +∞ (global
existence), or 0 < T < +∞ and limt→T ‖u(t, x)‖H2 = +∞ (blow-up). Furthermore, for all
t ∈ [0, T),

E
((

u(t),
∂

∂t
u(t)

))
= E

(
(u0, u1)

)
. (2.1)

Remark 2.2 Particularly, in the H2 energy-critical case: p = 2D
(D–4)+ – 1, Hebey and Pau-

sader’s result in [12] implies that the local well-posedness of the Cauchy problem (1.1)–
(1.2) also holds in H2 × L2. Moreover, for the solution u(t, x) ∈ C([0, T); H2 × L2), if
0 < T < +∞, then limt→T ‖u(t, x)‖H2 = +∞, or lim supt→T ‖u(t, x)‖Lq

t ([0,T);Lr
x) = +∞ (blow-

up), where

(q, r) =
(

2(D + 4)
D – 4

,
2D(D + 4)

(D – 4)(D + 2)

)

is the B-admissible.

Now, we introduce the following important sharp inequalities: the sharp generalized
Gagliardo–Nirenberg inequality established in [7] and in [37, 38]. Some other sharp
Gagliardo–Nirenberg inequalities can be established by the profile arguments (see [2–4,
11, 22, 29, 34, 35]).
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Lemma 2.3 Let R be a ground state of (1.3) Then, when D = 4, for all v ∈ H2, we have

‖v‖4
4 ≤ 2

‖R‖2
2
‖v‖2

2‖�v‖2
2. (2.2)

3 Sharp criteria of blow-up and global existence
In terms of the sharp Gagliardo–Nirenberg type inequalities, sharp Sobolev inequality,
and some new estimates, we obtain the precisely sharp criteria of blow-up for Eq. (1.1): if
‖u0‖2 < ‖R‖2, then the solution exists globally; if ‖u0‖2 > ‖R‖2, then the solution blows up
in finite time, where R is a ground state of (1.3). Now, we give the proof of Theorem 1.1.

Proof (i) Applying the sharp inequality (2.2) to the energy functional E, we deduce that,
for all t ∈ I(maximal existence interval),

2E
((

u(t),
∂

∂t
u(t)

))
=

∥
∥∥∥

∂

∂t
u(t)

∥
∥∥∥

2

2
+

∥∥u(t)
∥∥2

2 +
∥∥�u(t)

∥∥2
2 –

1
2
∥∥u(t)

∥∥4
4

≥
∥
∥∥
∥

∂

∂t
u(t)

∥
∥∥
∥

2

2
+

∥∥u(t)
∥∥2

2 +
(

1 –
‖u(t)‖2

2
‖R‖2

2

)∥∥�u(t)
∥∥2

2. (3.1)

By the bootstrap and continuity argument, we claim that if ‖u0‖2 < ‖R‖2, then, for all t ∈ I ,
∥∥u(t)

∥∥
2 < ‖R‖2. (3.2)

Indeed, if (3.2) is not true, then there exists t1 ∈ I such that ‖u(t1)‖2 ≥ ‖R‖2. Since the
solution u(t, x) is continuous with respect to t, there exists 0 < t0 ≤ t1 such that ‖u(t0)‖2 =
‖R‖2. But from (1.4), (3.1), and the conservation of energy E((u0, u1)) = E((u(t), ∂

∂t u(t)))
with t = t0, we get

‖R‖2
2 > 2E

((
u(t0),

∂

∂t
u(t0)

))
≥

∥
∥∥
∥

∂

∂t
u(t0)

∥
∥∥
∥

2

2
+

∥∥u(t0)
∥∥2

2 ≥ ∥∥u(t0)
∥∥2

2.

This contradicts ‖u(t0)‖2 = ‖R‖2. Hence, claim (3.2) holds.
Now, we can prove (1.5). By injecting (3.2) into (3.1), we can obtain the first estimate in

(1.5) by (1.4) and (3.1). For the second estimate in (1.5), from (3.1), we see that ∀t ∈ I

‖R‖2
2 > 2E

((
u(t),

∂

∂t
u(t)

))
≥ ∥

∥u(t)
∥
∥2

2 +
‖R‖2

2 – ‖u(t)‖2
2

‖R‖2
2

∥
∥�u(t)

∥
∥2

2,

and so, for all t ∈ I ,

(‖R‖2
2 –

∥
∥u(t)

∥
∥2

2

)(‖R‖2
2 –

∥
∥�u(t)

∥
∥2

2

) ≥ 0. (3.3)

Inject (3.2) into (3.3). We get ‖�u(t)‖2
2 < ‖R‖2

2 for all t ∈ I . Moreover, by rewriting (3.1),
we see that, for all t ∈ I ,

‖R‖2
2 > 2E

((
u(t),

∂

∂t
u(t)

))
≥

∥
∥∥
∥

∂

∂t
u(t)

∥
∥∥
∥

2

2
+

∥∥�u(t)
∥∥2

2 +
(

1 –
‖�u(t)‖2

2
‖R‖2

2

)∥∥u(t)
∥∥2

2

≥
∥∥∥
∥

∂

∂t
u(t)

∥∥∥
∥

2

2
+

∥∥�u(t)
∥∥2

2.

Then the second estimate in (1.5) is true.
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(ii) We claim that if ‖u0‖2 > ‖R‖2, then for all t ∈ I

∥
∥u(t)

∥
∥

2 > ‖R‖2 and
∥
∥�u(t)

∥
∥

2 > ‖R‖2. (3.4)

Indeed, if ‖u(t)‖2 > ‖R‖2 is not true for all t ∈ I , then there exists t2 ∈ I such that ‖u(t2)‖2 ≤
‖R‖2. From the continuity of ‖u(t)‖2, there exists 0 < t3 ≤ t2 such that ‖u(t3)‖2 = ‖R‖2.
Injecting this into (3.1) with t = t3, we get

2E
((

u(t3),
∂

∂t
u(t3)

))
≥ ∥

∥u(t3)
∥
∥2

2 = ‖R‖2
2,

which contradicts E((u(t), ∂
∂t u(t))) = E((u0, u1)) < 1

2‖R‖2
2 for all t ∈ I . Then we prove that

‖u(t)‖2 > ‖R‖2 for all t ∈ I . Moreover, injecting ‖u(t)‖2 > ‖R‖2 for all t ∈ I into (3.3), we
obtain that ‖�u(t)‖2 > ‖R‖2 for all t ∈ I . This completes the proof of claim (3.4). Now,
let J(t) :=

∫ |u(t, x)|2 dx. By some basic computations, we deduce that, for all t ∈ I , J ′(t) =
2
∫

u(t) ∂
∂t u(t) dx and

J ′′(t) = 6
∥∥
∥∥

∂

∂t
u(t)

∥∥
∥∥

2

2
+ 2

∥
∥u(t)

∥
∥2

2 + 2
∥
∥�u(t)

∥
∥2

2 – 8E
(
(u0, u1)

)

> 6
∥
∥∥
∥

∂

∂t
u(t)

∥
∥∥
∥

2

2
, (3.5)

where the last step employs (1.4) and (3.4). Hence, J ′′(t) is positive and has a lower bound
for all t ∈ I . Notice that J ′(t)2 ≤ 4‖u(t)‖2

2‖ ∂
∂t u(t)‖2

2. Then

J(t)J ′′(t) > 6
∥
∥∥
∥

∂

∂t
u(t)

∥
∥∥
∥

2

2

∥∥u(t)
∥∥2

2 >
3
2

J ′(t)2. (3.6)

There exists t0 > 0 such that J ′(t) > 0 for all t > t0. Thus, for all t > t0, we get J ′′(t)
J ′(t) > 3

2
J ′(t)
J(t) ,

which implies that there exists K > 0 such that J ′(t) > KJ(t) 3
2 . Due to 3

2 > 1, we deduce that,
for all t > t0,

J(t) >
(

2
√

J(t0)
2 – K

√
J(t0)(t – t0)

)2

.

Then there exists 0 < T < +∞ such that limt→T ‖u(t)‖2
2 = limt→T J(t) = +∞. The solution

u(t, x) blows up in finite time 0 < T < +∞. �

4 Limiting profile of blow-up solutions
In this section, we assume that the ground state of (1.3) is unique up to translations in
space and dilations, which is also denoted by R. A similar assumption has been used for
the ground state of the classical second-order nonlinear Schrödinger equation in [30].
First, we show the variational characteristics of R.

Lemma 4.1 Let D = 4. If v ∈ H2 satisfies ‖�v‖2 = ‖�R‖2 and H(v) = 0, then v(x) is of the
following form:

v(x) = R(λx + x0) for some λ > 0, x0 ∈R
4, (4.1)

where R is a ground state of (1.3).
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Proof According to the hypothesis H(v) = 0, we see that
∫ |v|2 dx = 1

2
∫ |v|4 dx. Hence, in-

ject this into the following functional:

I(v) :=
(
∫ |v|2 dx)(

∫ |�v|2 dx)
∫ |v|4 dx

=
1
2
‖�v‖2

2 =
1
2
‖�R‖2

2 =
1
2
‖R‖2

2 = I∗,

which implies that v is a minimizer of I(v). According to Zhu, Zhang, and Yang’s result in
[37], we can deduce that v(x) is of the form v(x) = R(λx + x0) by the uniqueness of R. �

The main tool to study the limit of the blow-up solutions for Eq. (1.1) is the profile de-
composition established by Zhu, Zhang, and Yang in [37]. This argument has been applied
to study the stability of standing waves (see [5, 6, 33]).

Proposition 4.2 Let D = 4 and {vn}+∞
n=1 be a bounded sequence in H2. Then there exist

a subsequence of {vn}+∞
n=1(still denoted {vn}+∞

n=1), a family {xj
n}+∞

j=1 of sequences in R
4, and a

sequence {V j}+∞
j=1 in H2 such that

(i) for every k 
= j, |xk
n – xj

n| → +∞ as n → +∞;
(ii) for every l ≥ 1 and every x ∈R

4, vn(x) =
∑l

j=1 V j(x – xj
n) + vl

n(x) with
liml→+∞ lim supn→+∞ ‖vl

n‖q = 0 for every q ∈ (2, +∞).
Moreover, as n → +∞, we have

‖vn‖2
2 =

l∑

j=1

∥∥V j∥∥2
2 +

∥∥vl
n
∥∥2

2 + o(1),

‖�vn‖2
2 =

l∑

j=1

∥
∥�V j∥∥2

2 +
∥
∥�vl

n
∥
∥2

2 + o(1),

∥∥
∥∥
∥

l∑

j=1

V j(x – xj
n
)
∥∥
∥∥
∥

4

4

=
l∑

j=1

∥∥V j(x – xj
n
)∥∥4

4 + o(1), (4.2)

where o(1) := on(1) → 0 as n → +∞.

Remark 4.3 By using the inequality

∣∣
∣∣
∣

∣∣
∣∣
∣

l∑

j=1

aj

∣∣
∣∣
∣

p+1

–
l∑

j=1

|aj|p+1

∣∣
∣∣
∣
≤ C

∑

j 
=k

|aj||ak|p

for p > 1, we can prove that the mixed terms in ‖∑l
j=1 V j(x – xj

n)‖p+1
p+1 vanish. Thus, (4.2) is

true.

In terms of Hmidi and Keraani’s argument in [13] and Zhu, Zhang, and Yang’s argument
in [37], we prove the following refined compactness result by Proposition 4.2.

Lemma 4.4 Let D = 4 and {vn}+∞
n=1 be a bounded sequence in H2 such that

lim sup
n→+∞

‖vn‖2 ≤ M and lim sup
n→+∞

‖vn‖4 ≥ N > 0. (4.3)
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Then there exists a sequence {xn}+∞
n=1 of R4 such that up to a subsequence

vn(x + xn) ⇀ V (x) weakly in H2 (4.4)

with ‖�V‖2
2 ≥ ‖�R‖2

2N4

2M2 , and R is a ground state of (1.3).

Proof The proof of Lemma 4.4 is fully similar to that of Theorem 1.1 in [37]. The key is
injecting the decomposition: vn(x) =

∑l
j=1 V j(x – xj

n) + vl
n(x) into (4.3). Indeed, from (4.2),

we deduce that as n → +∞, l → +∞,

N4 ≤ lim sup
n→+∞

(∥
∥∥
∥∥

l∑

j=1

V j(x – xj
n
)
∥
∥∥
∥∥

4

+
∥∥vl

n(x)
∥∥

4

)4

≤
+∞∑

j=1

∥∥V j∥∥4
4.

The left proof is similar to the proof of Theorem 1.1 in [37], and is omitted. �

Applying Lemma 4.4, we obtain the following limiting profile of blow-up solutions for
Eq. (1.1) in Theorem 1.2: for the blow-up solution of the Cauchy problem (1.1)–(1.2) satis-
fying limt→T ‖u(t)‖2 = +∞ and ‖�u(t)‖2 = ‖�R‖2, where 0 < T < +∞ is the blow-up time,
we prove that u(t, x) remains close to the ground state R in H2 up to scaling and translation
in the nonradial case, where R is the ground state of (1.3).

Proof of Theorem 1.2 By the assumptions, for any tn → T as n → +∞, take

λ2
n :=

‖u(tn, x)‖2

‖R‖2
→ +∞ as n → +∞, (4.5)

and Un = u(tn,λnx). We note that

⎧
⎨

⎩
‖Un‖2 = 1

λ2
n
‖u(tn)‖2 = ‖R‖2,

‖�Un‖2 = ‖�u(tn)‖2 = ‖�R‖2.
(4.6)

Therefore, {Un}+∞
n=1 is a uniformly bounded sequence in H2 and {Un}+∞

n=1 has a weakly con-
vergent subsequence {Un}+∞

n=1 (still denoted by {Un}+∞
n=1). And for the subsequence {Un}+∞

n=1,
we deduce that

H(Un) =
1
λ4

n

(
E
(
(u0, u1)

)
–

1
2

∥
∥∥
∥

∂

∂t
u(tn)

∥
∥∥
∥

2

2
–

1
2
∥∥�u(tn)

∥∥2
2

)

≤ 1
λ4

n
E
(
(u0, u1)

) → 0 as n → +∞. (4.7)

Meanwhile, from (2.2), we see that ‖�Un‖2 = ‖�R‖2 implies

H(Un) ≥ 1
2

(
1 –

‖�Un‖2
2

‖�R‖2
2

)
‖Un‖2

2 ≥ 0. (4.8)

Then we get limn→+∞ H(Un) = 0 and limn→+∞ ‖Un‖4
4 = 2‖R‖2

2. By applying Lemma 4.4 to
the sequence {Un}+∞

n=1 (here, we take M2 = ‖R‖2
2, N4 = 2‖R‖2

2), there exist {yn}+∞
n=1 ⊂ R

4 and
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U(x) ∈ H2 such that

Un(x + yn) ⇀ U(x) weakly in H2 as n → +∞ (4.9)

with ‖�U‖2 ≥ ‖�R‖2. But by the lower semi-continuity of norm, we get ‖�U‖2 ≤
lim infn→+∞ ‖�Un(x + yn)‖2 = ‖�R‖2, and so we get ‖�U‖2 = ‖�R‖2 = ‖�Un(x + yn)‖2.
And from the Brézis–Lieb lemma, we get

lim
n→+∞

∥
∥�

(
Un(x + yn) – U(x)

)∥∥
2 = 0. (4.10)

Applying (2.2) to Un(x + yn) – U , there exists C > 0 such that

∥
∥Un(x + yn) – U

∥
∥4

4 ≤ C
∥
∥Un(x + yn) – U

∥
∥2

2

∥
∥�

(
Un(x + yn) – U

)∥∥2
2.

Inject (4.6) and ‖Un(x + yn) – U(x)‖2 ≤ 2‖R‖2 into the above estimate.

Un(x + yn) → U(x) strongly in L4 as n → +∞. (4.11)

Then we have proved that limn→+∞ H(Un(x + yn)) = H(U) = 0, which implies that ‖U‖2
2 =

‖R‖2
2, and so, from the Brézis–Lieb lemma, (4.6), and (4.9), we see that

Un(x + yn) → U(x) strongly in H2 as n → +∞.

Now, collecting the properties of U = U(x), we see that

U ∈ H2, ‖U‖2 = ‖R‖2, ‖�U‖2 = ‖�R‖2 and H(U) = 0.

Applying the variational characteristic of the ground state (see Lemma 4.1), there exist
λ0 > 0 and x0 ∈ R

4 such that U(x) = U(λ0x + x0), and so we can obtain (1.6) by redefining
λ(t) and x(t). �
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