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Abstract
We analyze the positive solutions to

{
–�v = λv(1 – v); �0,
∂v
∂η

+ γ
√

λv = 0; ∂�0,

where �0 = (0, 1) or is a bounded domain in R
n, n = 2, 3, with smooth boundary and

|�0| = 1, and λ, γ are positive parameters. Such steady state equations arise in
population dynamics encapsulating assumptions regarding the patch/matrix
interfaces such as patch preference and movement behavior. In this paper, we will
discuss the exact bifurcation diagram and stability properties for such a steady state
model.
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1 Introduction
Habitat fragmentation creates landscape-level spatial heterogeneity which influences the
population dynamics of the resident species. Of particular interest, fragmentation often
leads to declines in abundance of the species as the fragmented landscape becomes more
susceptible to edge effects between the remnant habitat patches and the lower quality
human-modified “matrix” surrounding these focal patches [1–3]. Studies of movement
behavior in response to different habitat edge conditions clearly demonstrate that the com-
position of the matrix can influence emigration rates, patterns of movement, and within-
patch distributions of a species (e.g., [4–6]). Movement behavior has been shown to be
very species-specific [7], even in the same fragmented habitat.

Even though the task of connecting the wealth of empirical information available about
individual movement and mortality in response to matrix composition to predictions
about patch-level persistence is indeed formidable, the reaction–diffusion framework and
its underlying random walk models have seen some success in addressing this connection
[8]. The reaction–diffusion framework’s major strength is that the model’s dynamics can
be analyzed mathematically, providing important patch-level predictions of population
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persistence, leading to its wide adoption by ecologists ([9, 10], and [11]). This framework
is also ideally suited to handle fragmentation and edge-mediated effects as the partial dif-
ferential equation(s) involved require explicit definition of edge behavior via boundary
conditions ([10] and [2]).

In [12], the authors formalize a framework to facilitate the connection between small-
scale movement and patch-level predictions of persistence through a mechanistic model
based on reaction–diffusion equations. The model is capable of incorporating essential
information about edge-mediated effects such as patch preference, movement behavior
(e.g., emigration rates, patterns of movement, and within-patch distributions), and matrix-
induced mortality at the patch/matrix interface. The authors then mathematically analyze
the model’s predictions of persistence with a general logistic-type growth term. In particu-
lar, the focus of [12] is to provide bounds on demographic attributes and patch size in order
for the model to predict persistence of a species in a given patch based on assumptions
on the patch/matrix interface and to explore their sensitivity to demographic attributes
both in the patch and the matrix, as well as patch size and geometry. The purpose of this
present work is to provide an exact description of the bifurcation curve of positive steady
states to their model when the growth term is logistic. In the following subsections, we
will briefly summarize the modeling framework and boundary condition derivation given
in [12] and present our main results. We provide the proof of these results in Sect. 2.
In Sect. 3, for the case n = 1, we provide an alternative proof of our results in the case
� = (0, 1) via a quadrature method and discuss the evolution of the bifurcation curves as
a model parameter varies. We discuss biological implications of our results in Sect. 4. Fi-
nally, in Appendix 1, we provide the derivation of the boundary condition focused on in
this paper, and in Appendix 2, we provide results on certain eigenvalue problems that we
employ in the proof of our main result.

1.1 Modeling framework
We consider a patch �0 in R

n when n = 1, 2, or 3 with |�0| = 1, where

|�0| =

⎧⎪⎪⎨
⎪⎪⎩

length of �0; n = 1,

area of �0; n = 2,

volume of �0; n = 3.

We assume here that the boundary of �0 (denoted by ∂�0) is smooth. Now, we define the
focal patch as � = {�x|x ∈ �0} yielding

|�| =

⎧⎪⎪⎨
⎪⎪⎩

�; n = 1,

�2; n = 2,

�3; n = 3,

where � is a positive parameter representing the patch size (see [10]). In this way, we are
able to separate the combined effects of patch size (�) and patch geometry (geometry of
�0) on population persistence. In the model, u(t, x) represents the density of a theoreti-
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cal population inhabiting �. Here, the variable t represents time and x represents spatial
location within �. The model is then as follows:

⎧⎪⎪⎨
⎪⎪⎩

ut = D�u + ru(1 – u
K ); t > 0, x ∈ �,

u(0, x) = u0(x); x ∈ �,

D ∂u
∂η

+
√

S0D0
κ

u = 0; t > 0, x ∈ ∂�,

(1)

where the parameter D is the diffusion rate inside the patch, D0 is the diffusion rate in
the matrix surrounding �, r is the patch intrinsic growth rate, S0 is the death rate in the
matrix, and κ is a parameter encapsulating assumptions regarding the patch/matrix inter-
face such as patch preference and movement behavior. Also, ∂u

∂η
represents the outward

normal derivative of u, r is the intrinsic growth rate of the population inside �, K is the
carrying capacity, and u0 is the initial distribution of population density in the patch. The
parameters D, D0, S0, r, K , and κ are always positive. Note that the boundary condition in
(1) is derived in Appendix 1.

The interface scenarios listed in [12] correspond to certain values of the parameter κ as
originally derived in [13]. Recall that in the random walk model, organisms are assumed
to move the step size �x with probability p every �t units of time. The diffusion rate is
then obtained by taking parabolic limits in such a way that

D = lim
�x,�t→0+

p�x2

�t
(2)

is constant (see, for example, [9, 14], and [10]). Table 1 taken directly from [12] lists each
scenario along with their κ-value, name, biological interpretation, and selected references
for each scenario. Note that α will denote the probability that an organism remains in the
patch upon reaching the patch/matrix interface.

Table 1 Listing of interface scenarios with descriptions and selected references from [12]

Scenario name Scenario description κ References

Continuous
density

Organisms move between the patch and the matrix with
equal probability. Step sizes and movement probabilities are
equal in the patch and the matrix.

1 [15]

Type I
Discontinuous
density (DD)

Organisms modify their movement behavior at the
patch/matrix interface and would have a probability α of
remaining in or leaving � different from 50%. Step sizes differ
between the patch and the matrix, whereas movement
probabilities are equal.

α
1–α

√
D0
D [8, 16]

Type II
Discontinuous
density (DD)

Organisms modify their movement behavior at the
patch/matrix interface and would have a probability α of
remaining in or leaving � different from 50%. Step sizes are
equal between the patch and the matrix but movement
probabilities are different.

α
1–α

D0
D [8, 16]

Type III
Discontinuous
density (DD)

Organisms remain in � with probability α different from 50%.
Movement probabilities and step sizes are the same between
the patch and the matrix.

α
1–α [17, 18]
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Table 2 Values of γ for each of the interface scenarios. DD denotes discontinuous density as
described in Table 1. See [12]

Interface scenario γ -value

Continuous density
√

S0D0
rD

Type I DD 1–α
α

√
S0√
r

Type II DD 1–α
α

√
S0D√
rD0

Type III DD 1–α
α

√
S0D0
rD

Now, applying the change of variables t̃ = rt, x̃ = x
�
, v = u

K , and λ = r�2

D , (1) reduces to
(after dropping the tilde):

⎧⎪⎪⎨
⎪⎪⎩

vt = �v + λv(1 – v); t > 0, x ∈ �0,

v(0, x) = v0(x); x ∈ �0,
∂v
∂η

+ γ
√

λv = 0; t > 0, x ∈ ∂�0

(3)

with steady state equation

⎧⎨
⎩–�v = λv(1 – v); �0,

∂v
∂η

+ γ
√

λv = 0; ∂�0,
(4)

where λ is unitless and |�0| = 1. The value of the unitless parameter γ is given in Table 2
listed by interface scenario.

1.2 Statement of the main result
In this paper, we study existence, nonexistence, uniqueness results, and stability proper-
ties for (4). The following definitions of stability and instability presented here come from
Lyapunov stability, which is defined with respect to initial perturbations (see, for example,
[19]). A solution vs(x) of (4) is said to be stable if for every ε > 0 there exists δ > 0 such that
‖v(t, ·) – vs‖∞ < ε for t > 0 whenever ‖v0 – vs‖∞ < δ, where v(t, x) is the solution of (3). If,
in addition, ‖v(t, ·) – vs‖∞ → 0 as t → ∞, then vs is said to be asymptotically stable. In the
case that this holds for all initial functions v(0, x), then vs is said to be globally asymptoti-
cally stable. The steady state vs is said to be unstable if it is not stable. Finally, vs(x) is said
to be an isolated steady state if there exists a neighborhood Nvs of vs in C(�) such that vs

is the only steady state solution in Nvs . To precisely state our results, we first consider the
eigenvalue problem

⎧⎨
⎩–�w = λw; �0,

∂w
∂η

+ γ
√

λw = 0; ∂�0.
(5)

It follows that (5) has a principal eigenvalue λ1(γ ) > 0 (see Appendix 2). Taking w as an
eigenfunction such that ‖w‖∞ = 1 and w is nonnegative, we first note that by the maximum
principle w > 0; �0. Now, if w(x0) = 0 on ∂�0, then by Hopf ’s lemma we must have ∂w

∂η
|x0 < 0

and thus ( ∂w
∂η

+ γ
√

λw)|x0 �= 0. Hence, w > 0 in �0. Now, we establish the following.



Goddard II et al. Boundary Value Problems        (2018) 2018:170 Page 5 of 17

Figure 1 An illustration of the bifurcation curve for
(4) as established in Theorem 1. Bifurcation curve (λ
vs ‖u‖∞) of the positive solutions u of (4) as shown
in Theorem 1

Theorem 1 Given any γ > 0:
(a) If λ > λ1(γ ), then the trivial solution of (4) is unstable and there exists a unique

positive solution vλ to (4) which is globally asymptotically stable. Furthermore,
‖vλ‖∞ → 0+ as λ → λ1(γ )+ and ‖vλ‖∞ → 1 as λ → ∞;

(b) If 0 < λ ≤ λ1(γ ), then the trivial solution of (4) is globally asymptotically stable and
there is no positive solution to (4).

Note that λ1(γ ) → 0 as γ → 0+. Theorem 1 is illustrated in Fig. 1. We prove our results
via the method of sub-super solutions and the principle of linearized stability.

2 Proof of Theorem 1
In this section, we provide a proof of our main results given in Theorem 1.

Proof Let λ and γ be fixed, and let σ1 be the principal eigenvalue and φ > 0 in �0 be the
corresponding eigenfunction such that ‖φ‖∞ = 1 to the eigenvalue problem:

⎧⎨
⎩–�φ – λφ = σφ; �0,

∂φ

∂η
+ γ

√
λφ = 0; ∂�0.

(6)

Note that (6) is a linearization of (4) about the trivial solution. We also recall below the
principle of linearized stability (see Lemma 1) given in [20, Theorem 1.1] (but also see [10,
pp. 147–148] for example). Let δ1 be the principal eigenvalue of

⎧⎨
⎩–�φ – λφ = δφ; �0,

∂φ

∂η
+ γ

√
λφ = δφ; ∂�0

(7)

with corresponding normalized eigenfunction φ(x) > 0; �0. See Appendix 2 for justifica-
tion of the existence of the principal eigenvalues of (6) and (7).

Lemma 1 Let δ1 be the principal eigenvalue of (7). Then the following hold:
(a) If δ1 ≥ 0, then the trivial solution of (4) is stable.
(b) If δ1 < 0, then the trivial solution of (4) is unstable.

Note that by Lemma 5 in Appendix 2, we have that sign(δ1(λ,γ )) = sign(σ1(λ,γ )). Thus,
it suffices to only consider the sign of σ1(λ,γ ).
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To prove (a), let λ > λ1(γ ). (By Lemma 4 in Appendix 2, we have that σ1(λ,γ ) < 0 and
hence the zero solution is unstable.) Next we will show the existence of a positive solution
vλ with the property that ‖vλ‖∞ → 0+ as λ → λ1(γ )+. Let ψ := mφ for m > 0 to be chosen
later with φ the principal eigenfunction of (6) corresponding to σ1(λ,γ ). Then we have

–�ψ – λψ(1 – ψ) = m[σ1 + λmφ]φ; �0,

and

∂ψ

∂η
= m

∂φ

∂η
= –mγ

√
λφ = –γ

√
λψ ; ∂�0.

Hence ψ = m1φ with any m1 ∈ (0, – σ1
λ

) is a strict subsolution of (4) (since ‖φ‖∞ = 1), and
ψ = m2φ with

m2 = –
σ1

λ[min�0 φ]

is a supersolution of (4). Clearly m2 > m1, and hence by the method of sub-super solutions
(see [21]), (4) has a positive solution vλ such that m1φ < vλ ≤ m2φ for λ > λ1(γ ). Note here
that when λ → λ1(γ )+, [–σ1] → 0+ while min�0 φ �→ 0 since it approaches the eigenfunc-
tion corresponding to the principal eigenvalue λ1(γ ) of (5), which we discussed earlier.
Thus, m1 → 0+ and m2 → 0+, and, in particular, ‖vλ‖∞ → 0+ as λ → λ1(γ )+.

Next, we show that this positive solution is, in fact, unique. To see this, we assume that
(4) has two positive solutions v1 and v2. Without loss of generality, we can assume that v2 is
the maximal positive solution (since w = 1 is a global supersolution, this maximal positive
solution must exist when a positive solution exists), and hence v2 ≥ v1 in �0. Supposing
v1 and v2 are distinct, by integration by parts (Green’s second identity), we obtain

∫
�0

[
(�v2)v1 – (�v1)v2

]
dx =

∫
∂�0

[(
∂v2

∂η

)
v1 –

(
∂v1

∂η

)
v2

]
ds

=
∫

∂�0

[
(–γ

√
λv2)v1 – (–γ

√
λv1)v2

]
ds

= 0,

while

∫
�0

[
(�v2)v1 – (�v1)v2

]
dx =

∫
�0

[(
–λv2(1 – v2)

)
v1 +

(
λv1(1 – v1)

)
v2

]
dx

=
∫

�0

λv1v2(v2 – v1) dx

> 0.

This is a contradiction, and hence v1 ≡ v2 and (4) has a unique positive solution vλ for
λ > λ1(γ ).
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Figure 2 An illustration of the bifurcation curve for
(8). Bifurcation curve (λ vs ‖u‖∞) of the positive
solutions u of (8)

Also, to prove the property ‖vλ‖∞ → 1 as λ → ∞, we note that the Dirichlet boundary
value problem

⎧⎨
⎩–�ψ = λψ(1 – ψ); �0,

ψ = 0; ∂�0,
(8)

has a unique positive solution ψλ for λ > λD
1 with ‖ψλ‖∞ < 1 and ‖ψλ‖∞ → 1– as λ → ∞,

where λD
1 > 0 is the principal eigenvalue of

⎧⎨
⎩–�w = λw; �0,

w = 0; ∂�0.
(9)

See Fig. 2 for an illustration of the structure of positive solutions of (8).
Since ∂ψ

∂η
< 0 in �0, clearly ψλ is a subsolution to (4) for λ � 1, and since w = 1 is a

supersolution to (4) for λ > 0, we must have vλ ∈ [ψλ, 1] and hence ‖vλ‖∞ → 1– as λ → ∞.
Now, to show the stability properties of vλ, recall that we have ψ = m1φ is a strict subso-

lution for all m1 ∈ (0, – σ1
λ

) and Z ≡ M is a strict supersolution for all M > 1. This implies
that φ < vλ < Z and φ can be made arbitrarily small and Z can be made arbitrarily large.
This fact combined with a result such as Theorem 6.7 of Chap. 5 in [19] immediately shows
that vλ is globally asymptotically stable, proving (a).

To prove (b), we first show the nonexistence of a positive solution of (4) when λ ≤ λ1(γ )
(which by Lemma 4 in Appendix 2 implies σ1 ≥ 0). Assume to the contrary that v is a
positive solution of (4), then by Green’s second identity, we obtain

∫
�0

[
(�v)φ – (�φ)v

]
dx =

∫
∂�0

[
(–γ

√
λv)φ – (–γ

√
λφ)v

]
ds

= 0,

while∫
�0

[
(�v)φ – (�φ)v

]
dx =

∫
�0

[(
–λv(1 – v)

)
φ + σ1φv + λφv

]
dx

=
∫

�0

[
λv2φ + σ1φv

]
dx

> 0.
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Hence, we have a contradiction and therefore (4) has no positive solution when λ ≤ λ1(γ ).
Finally, since λ ≤ λ1(γ ) implies σ1(λ,γ ) ≥ 0, the trivial solution of (4) is stable. But since
there is no positive solution of (4) for λ ≤ λ1(γ ), the trivial solution must be globally
asymptotically stable. Hence, Theorem 1 is proven. �

3 One-dimensional problem
In the case �0 = (0, 1), equation (4) reduces to the two-point boundary value problem

⎧⎪⎪⎨
⎪⎪⎩

–v′′ = λv(1 – v); (0, 1),

v′(0) = γ
√

λv(0),

v′(1) = –γ
√

λv(1).

(10)

From Theorem 1, (10) has a unique positive solution when λ > λ1(γ ) and no positive
solution when λ < λ1(γ ), where λ1(γ ) is the principal eigenvalue of

⎧⎪⎪⎨
⎪⎪⎩

–v′′ = λv; (0, 1),

v′(0) = γ
√

λv(0),

v′(1) = –γ
√

λv(1).

(11)

A straightforward calculation will show that λ1(γ ) = 4( π
2 – tan–1( 1

γ
))2. Note that as γ → 0+,

λ1(γ ) → 0 and as γ → ∞, λ1(γ ) → π2 = λD
1 .

We now use the quadrature method introduced by Laetsch in [22] and further extended
in [23–26], and [27]. Suppose that u is a positive solution with u( 1

2 ) = ρ (say) and u(0) = q
(say). Note that since (10) is autonomous, the solution must be symmetric about t = 1

2 and
take the form shown in Fig. 3.

Multiplying the differential equation in (10) by u′ and integrating yields

u′(t) =
√

2λ
(
F(ρ) – F

(
u(t)

))
; t ∈

[
0,

1
2

]
,

where F(z) =
∫ z

0 s(1 – s) dt. Further integration yields

∫ u(t)

q

ds√
F(ρ) – F(s)

=
√

2λt; t ∈
[

0,
1
2

]
,

Figure 3 Shape of positive solutions to (10).
Illustration of the typical shape of a positive solution
to (10)
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and hence, setting t → 1
2 , we obtain

√
λ =

√
2
(∫ ρ

q

ds√
F(ρ) – F(s)

)
.

Now the boundary conditions require that ρ and q satisfy

F(ρ) =
2F(q) + γ 2q2

2
. (12)

Note that given ρ ∈ (0, 1), there exists unique q = q(ρ) ∈ (0,ρ) satisfying (12), and we can
show that

G(ρ) =
√

2
∫ ρ

q(ρ)

ds
F(ρ) – F(s)

is well-defined and continuous on (0, 1).
Further, given ρ ∈ (0, 1), for λ satisfying

√
λ = G(ρ) =

√
2
∫ ρ

q(ρ)

ds√
F(ρ) – F(s)

, (13)

(10) has a positive solution of the form given in Fig. 3 defined by

∫ u(t)

q(ρ)

ds√
F(ρ) – F(s)

=
√

2λt; t ∈
[

0,
1
2

)
.

Hence (13) describes the bifurcation diagram for positive solutions of (10). Using Mathe-
matica computation, we provide below this bifurcation diagram for several values of γ . In
particular, we illustrate the evolution of the bifurcation diagram as γ → 0+ and γ → ∞ in
Figs. 4 and 5, respectively. Note that when γ → 0+, we approach the Neumann boundary
condition case, and when γ → ∞, we approach the Dirichlet boundary condition case.

4 Biological implications of our results
These model results give important predictions on population persistence at the patch
level based solely on demographic parameters, e.g., patch diffusion rate and intrinsic
growth rate, as well as matrix diffusion rate and death rate. We note that our analysis
covers all four of the interface scenarios listed in Table 1. Although the exact definition of

Figure 4 Bifurcation curves for (10) as γ → ∞. The
curves correspond (from left to right) to γ = 1,
γ = 10, and γ = 100. Note that as γ → ∞, the
bifurcation curves approach π 2, which is the first
eigenvalue of the Dirichlet problem
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Figure 5 Bifurcation curves for (10) as γ → 0+. The
curves correspond (from left to right) to γ = 0.1,
γ = 0.5, and γ = 1. Note that as γ → 0+, the
bifurcation curves approach 0, which is the first
eigenvalue of the Neumann problem

γ depends upon the interface scenario given (see Table 2), the qualitative behavior of the
persistence of the organism is the same as γ varies. Notice that the principal eigenvalue
σ1(λ,γ ) of (6) plays a crucial role in determining the dynamics of the model. In fact, it
represents the fastest possible growth rate for the linear growth model corresponding to
(3) (see [3] or [10]).

As indicated in Theorem 1 (and the proof therein), when λ ≤ λ1(γ ) we have that
σ1(λ,γ ) ≥ 0, and the only nonnegative steady state of (3) is the trivial one, u ≡ 0. In this
case, the model predicts extinction for any nonnegative initial population density profile.
In fact, loses due to mortality in the matrix outpace the reproductive rate in the patch.
Thus, the theoretical organism cannot colonize the patch, and any remnant population in
the patch will become extinct. However, when λ > λ1(γ ), we have that σ1(λ,γ ) < 0 and (3)
admits a unique steady state that is positive in � such that all positive initial population
density profiles will propagate to this steady state over time. In this case, the global nature
of the stability of the positive steady state gives a fairly strong notion of persistence of the
species. The patch is large enough in this case to shield a sufficient proportion of the popu-
lation from mortality induced by the hostile matrix. This prediction leads to a formula for
minimum patch size of the population given as �∗(γ ) =

√
D
r λ1(γ ). Note that this formula

can be numerically estimated and depends upon parameters in the patch (diffusion rate
and intrinsic growth rate), parameters in the matrix via γ (diffusion rate and death rate),
and the geometry of the patch �0.

This notion of a minimum patch size agrees with the well-known notion of a minimum
core area (in the case of n = 2) requirement. Note that λ1(γ ) can be viewed as a quantifica-
tion of the loss of the population due to interactions with the hostile matrix where γ en-
capsulates parameters regarding the hostile matrix. Also, it is easy to see that λ1(γ ) → λD

1

as γ → ∞, and this reveals an important model prediction of the existence of a maximum
possible effect of population loss due to the hostile matrix. Patches with a lethal matrix can
still guarantee a prediction of persistence as long as the patch size is larger than

√
D
r λD

1 ,
where the maximum effect of the lethal matrix on the population is quantified in λD

1 . This
minimum patch size approaches infinity if either (1) the patch diffusion rate is arbitrarily
large, since a large diffusion rate ensures that a very high proportion of the population will
encounter loss at the patch/matrix interface, or (2) the intrinsic growth rate is arbitrarily
small, which for a fixed patch diffusion rate will imply that the population is not able to
recover the loss associated with interaction with hostile matrix.
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Appendix 1: Derivation of the boundary condition in (1)
Here, we summarize the derivation of the boundary condition in (1) from [12]. Their ap-
proach combines the ideas from [8] and [3] under the patch/matrix interface conditions
given in these respective papers. The boundary condition in (1), namely

D
∂u
∂η

+
√

S0D0

κ
u = 0; t > 0, x ∈ ∂�, (14)

allows modeling of the effects of movement behavior changes in response to the patch/
matrix interface and hostility of the matrix surrounding the patch. To see this, [12] com-
bines the approach of modeling the effects of a hostile matrix in [15] with the interface
conditions given in [8]. Following the derivation in [15], let us consider a one-dimensional
patch � = (0,�) (� > 0 denotes the patch size) surrounded by an infinite “sea” of hostile
territory. The population density w is subject to the following growth law exterior to �:

wt = D0wxx – S0w, (15)

where D0 is a positive parameter representing the diffusion rate and S0 is a positive pa-
rameter representing the death rate of the organism in the matrix. Continuity of flux is
a natural condition that will imply all organisms leaving the patch will enter the matrix
and organisms leaving the matrix will enter the patch (see [8]). Thus, no organisms are
introduced or lost at the interface. However, a discontinuity is introduced in the density
at the patch/matrix interface to account for changes in movement behavior. Now, let D be
the diffusion rate inside � and follow the random walk derivation given in [8] to yield the
interface conditions:

D
∂u
∂η

= D0
∂w
∂η0

; t > 0, x ∈ {0,�}, (16)

u = κw; t > 0, x ∈ {0,�}, (17)

where κ is a positive, unitless parameter, η is the outward normal direction for the patch,
and η0 is the inward normal direction for the matrix. The only steady state solution to (15)

which is nonnegative and bounded for x < 0 is of the form w(x) = C1e

√
S0
D0

x
; x ≤ 0, where

C1 ≥ 0 is a constant (see [15]). Hence, applying the interface conditions (16) and (17) to
this solution yields

–Dux(t, 0) +
√

S0D0

κ
u(t, 0) = 0; t > 0. (18)

A similar argument for x = � also yields

Dux(t,�) +
√

S0D0

κ
u(t,�) = 0; t > 0, (19)

or equivalently,

D
∂u
∂η

+
√

S0D0

κ
u = 0; t > 0, x ∈ {0,�}. (20)
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For domains in higher dimensions with arbitrary boundary shapes, easily extending such
a derivation is not possible. In this paper, we make the assumption that (2) is a reasonable
approximation of the boundary behavior of an organism, where the parameter S0 can be
interpreted as a death rate in the matrix, D0 as the diffusion rate in the matrix, and κ as a
measure of the discontinuous “jump” in density at the patch/matrix interface.

Appendix 2: Results for eigenvalue problems (5), (6), and (7)
First we consider the eigenvalue problem

⎧⎨
⎩–�z = λz; �0,

∂z
∂η

= μz; ∂�0
(21)

for given μ ∈R. We recall the following result from [28].

Lemma 2 For each μ ∈ R, (21) has a principal eigenvalue λ̄1(μ), and the eigencurve
λ̄1(μ) ⊂R

2 is Lipschitz continuous, strictly decreasing, and concave. Furthermore, λ̄1(0) = 0
and the eigenfunction associated with any point on λ̄1(μ) is strictly positive in �0.

We now state and prove a result regarding the limiting value of λ̄1(μ) as μ → –∞. Fig-
ure 6 illustrates Lemma 3.

Lemma 3 λ̄1(μ) → λD
1 as μ → –∞, where λD

1 is the principal eigenvalue of (9).

Proof We note that, for any μ ∈R, we may characterize λ̄1(μ) by

λ̄1(μ) = min
u∈H1(�0)\{0}

∫
�0

|∇u|2 dx – μ
∫
∂�0

u2 ds∫
�0

u2 dx
. (22)

Let λD
1 be the principal eigenvalue of (9) with corresponding normalized eigenfunction

φD
1 chosen such that

∫
�0

φD
1 = 1. Testing (22) with u = 1 and u = φD

1 shows that

λ̄1(μ) ≤ –μ
|∂�0|
|�0|

and

λ̄1(μ) ≤ λD
1 ,

Figure 6 Plot of μ vs λ̄1(μ). The curve illustrates the
fact that λ̄1(μ) → λD

1 as μ → –∞
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respectively. Taking a sequence μn → –∞ such that the corresponding eigenfunctions un,
without loss of generality, satisfy

∫
�0

u2
n dx = 1, we observe that

λ̄1(μn) =
∫

�0

|∇un|2 dx – μn

∫
∂�0

u2
n ds.

Since μn < 0, we have 0 = λ̄1(0) < λ̄1(μn) < λD
1 . By Lemma 2, limμ→–∞ λ̄1(μ) = λ̄1(–∞) ≤ λD

1

for some λ̄1(–∞) ∈R. Without loss of generality, we may assume –μn
∫
∂�0

u2
n ds → α ≥ 0,

and thus
∫
∂�0

u2
n → 0.

Since {un} is bounded in H1(�0), we may select a subsequence so that un ⇀ u in H1(�0),
un → u in L2(�0) and in L2(∂�0). It follows that

∫
�0

u2 dx = 1 and
∫
∂�0

u2 ds = 0, and hence
u ∈ H1

0 (�0).
By the weak lower semicontinuity of

∫
�0

|∇u|2 dx, we get that

∫
�0

|∇u|2 dx + α ≤ lim inf
n→∞

(∫
�0

|∇un|dx – μn

∫
∂�0

u2
n ds

)
= λ̄1(–∞) ≤ λD

1 .

But by Poincare’s inequality, we have λD
1 ≤ ∫

�0
|∇u|2 dx, and hence we must have α = 0 and

λ̄1(–∞) = λD
1 . Furthermore,

∫
�0

|∇u|2 dx = λD
1 , and thus, without loss of generality, u = φD

1 .
Moreover, limn→∞

∫
�0

|∇un|2 dx =
∫
�0

|∇u|2 dx, and hence un → u = φD
1 in H1(�). �

Next, we consider the eigenvalue problem (5), namely

⎧⎨
⎩–�w = λw; �0,

∂w
∂η

+ γ
√

λw = 0; ∂�0
(23)

for given γ > 0. It is easy to see that the principal eigenvalue λ1(γ ) of (23) is nothing but the
y-coordinate of the intersection of the curves λ̄1(μ) and μ2

γ 2 (see Fig. 7). It is also straight-
forward to show that λ1(γ ) is an increasing function of γ , λ1(γ ) → λD

1 as γ → ∞, and
λ1(γ ) → 0 as γ → 0 (see Fig. 8). Next, we consider the eigenvalue problem (6), namely, for
given λ > 0 and γ > 0,

⎧⎨
⎩–�ψ – λψ = σψ ; �0,

∂ψ

∂η
+ γ

√
λψ = 0; ∂�0.

(24)

Once again, it is easy to see that the principal eigenvalue σ1(λ,γ ) of (24) exists and must
satisfy

λ + σ1(λ,γ ) = λ̄1(–
√

λγ ) (25)

(see Fig. 9). Furthermore, the following result holds.

Lemma 4 If λ < λ1(γ ), then σ1(λ,γ ) > 0, and if λ = λ1(γ ), then σ1(λ,γ ) = 0. Also, if λ >
λ1(γ ), then σ1(λ,γ ) < 0.

Proof Note that if λ < λ1(γ ) then –
√

λγ > –
√

λ1(γ )γ . Now, μ2

γ 2 < λ1(μ) for –
√

λ1(γ )γ <

μ < 0 since μ2

γ 2 is a convex function, while λ1(μ) is a concave function (see Fig. 9). But
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Figure 7 Illustration of the existence of λ1(γ ). The
plot illustrates the existence of λ1(γ )

Figure 8 Illustration of monotonicity of λ1(γ ) when
γ2 > γ1. The plot illustrates that λ1(γ ) is an
increasing function. Note that γ2 > γ1

Figure 9 Illustration of the existence of σ1(λ,γ ). The
plot illustrates the existence of σ1(λ,γ )

λ = (–
√

λγ )2

γ 2 . Hence, taking μ = –
√

λγ , we obtain

λ < λ̄1(–
√

λγ ) (26)

and by (25) we have σ1(λ,γ ) > 0. A similar argument for the case when λ > λ1(γ ) gives
that σ1(λ,γ ) < 0. Note that λ = λ1(γ ) implies that we have equality in (26), and thus,
σ1(λ,γ ) = 0. �

Now, for fixed λ and γ , we consider the eigenvalue problem

⎧⎨
⎩–�φ – λφ = δφ; �0,

∂φ

∂η
+ γ

√
λφ = δφ; ∂�0.

(27)
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Figure 10 Illustration of the existence of δ̃1(λ,γ ).
The plot illustrates the existence of δ̃1(λ,γ )

Notice that letting δ̃ = δ –
√

λγ implies that (27) becomes

⎧⎨
⎩–�φ = (λ +

√
λγ + δ̃)φ; �0,

∂φ

∂η
= δ̃φ; ∂�0

(28)

and the principal eigenvalue δ̃1(λ,γ ) is nothing but the x-coordinate of the intersection of
the curves λ̄1(δ̃) and δ̃ + (λ +

√
λγ ) (see Fig. 10). Hence the principal eigenvalue δ1(λ,γ ) of

(27) exists and is given by

δ1(λ,γ ) = δ̃1(λ,γ ) +
√

λγ . (29)

We next establish a relationship between the signs of δ1(λ,γ ) and σ1(λ,γ ) in the follow-
ing result.

Lemma 5 sign(δ1(λ,γ )) = sign(σ1(λ,γ )).

Proof Let φ1 and φ2 be corresponding positive eigenfunctions in (27) and (28). Then, by
Green’s second identity, we have that

∫
�0

[
(�φ1)φ2 – (�φ2)φ1

]
dx =

∫
∂�0

[
∂φ1

∂η
φ2 –

∂φ2

∂η
φ1

]
ds, (30)

which implies

[
δ1(λ,γ ) – σ1(δ,γ )

]∫
�0

φ1φ2 dx = –δ1(λ,γ )
∫

∂�0

φ2φ1 ds. (31)

Now, it immediately follows that σ1(λ,γ ) = 0 if and only if δ1(λ,γ ) = 0, and if δ1(λ,γ ) �= 0,
then we have

σ1(λ,γ ) – δ1(λ,γ )
δ1(λ,γ )

> 0. (32)

Thus, if δ1(λ,γ ) > 0, then we must have that σ1(λ,γ ) > δ1(λ,γ ) > 0, and if δ1(λ,γ ) < 0, then
σ1(λ,γ ) < δ1(λ,γ ) < 0. Hence the result. �

Finally, combining Lemmas 4 and 5, the following lemma immediately follows.

Lemma 6 If λ < λ1(γ ), then δ1(λ,γ ) > 0. Also, if λ > λ1(γ ), then δ1(λ,γ ) < 0.
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