
Ye et al. Boundary Value Problems        (2018) 2018:177 
https://doi.org/10.1186/s13661-018-1097-5

R E S E A R C H Open Access

On the Darboux problem involving the
distributional Henstock–Kurzweil integral
Guoju Ye1, Rong Cheng1*, Wei Liu1 and Hui Mei2

*Correspondence:
chengr94@163.com
1College of Science, Hohai
University, Nanjing, China
Full list of author information is
available at the end of the article

Abstract
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1 Introduction
The Darboux problems have been studied by many authors (see [1–3]). In [2], the authors
used a fixed point theorem and some properties of measure of weak noncompactness to
prove the existence of pseudo-solutions for the Darboux problem in a Banach space E:

⎧
⎪⎪⎨

⎪⎪⎩

∂2u
∂x ∂y (x, y) = g(x, y, u(x, y)), (x, y) ∈ �,

u(x, 0) = 0,

u(0, y) = 0,

(1)

where � = {(x, y) : 0 ≤ x ≤ a1, 0 ≤ y ≤ a2}, g is Pettis-integrable but not necessarily
Bochner integrable, and ∂2u

∂x ∂y denotes the second-order mixed pseudo-derivative.
In this paper, instead of the pseudo-derivative, we use the distributional derivative to

establish the existence of solutions for the following Darboux problem involving the dis-
tributional Henstock–Kurzweil integral (DHK-integral):

⎧
⎪⎪⎨

⎪⎪⎩

∂xyu(x, y) = g(x, y, u(x, y)) + f (x, y), (x, y) ∈ �,

u(x, 0) – ψ1(x, u) = h1(y),

u(0, y) – ψ2(y, u) = h2(x),

(2)

where ∂xy denotes the second-order mixed distributional derivative, g is Henstock–
Kurzweil integral (HK-integral), ψi, hi are continuous, f is DHK-integrable.

If there exists a continuous function F ∈ C0(Q̄) on Q such that f is the distributional
derivative of F (the definition of C0(Q̄) will be introduced in Sect. 2), then the distribution
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f is DHK-integrable on Q. In other words, F is the primitive function of f . So we can see
from the definition of DHK-integral that the DHK-integral is a kind of integration that is
more extensive than the Riemann integral, Lebesgue integral, Henstock–Kurzweil integral
and Denjoy integral (see [4–9]).

In order to prove the existence of solutions of the Darboux problem involving the distri-
butional Henstock–Kurzweil integral, the method associated with the technique of mea-
sure of noncompactness and the Darbo fixed point theorem will be used.

This paper is organized as follows. In Sect. 2, we recall some fundamental concepts and
basic results of the DHK-integral and measure of noncompactness. In Sect. 3, we apply
the Darbo fixed point theorem [10, Theorem 2] related to measure of noncompactness
to verify the existence of solutions of Eq. (2). In Sect. 4, we give an example to illustrate
Theorem 3.3 in this paper.

2 Preliminaries
In this section, we provide preliminary material with respect to the DHK-integral and the
measure of noncompactness.

2.1 DHK integral
Let Q be an open rectangle (a, b) × (c, d) in the plane R

2, and D(Q) be a subset of C∞(Q)
such that each φ ∈D(Q) has a compact support in Q. The continuous linear functional on
D(Q) is called a distribution on Q.

We denote by ∂ = ∂xy = ∂yx the mixed distributional derivative, by ∂1 and ∂2 the distribu-
tional derivatives with respect to x and y, respectively, and by ‘

∫
’ the DHK-integral.

Let

C0(Q̄) =
{

F ∈ C(Q̄) : F(a, y) = F(x, c) = 0 for (x, y) ∈ Q̄
}

,

where Q̄ is the closure of Q.
Obviously, C0(Q̄) is a closed subspace of C(Q̄) endowed with the norm ‖F‖∞ =

max{|F(x, y)| : (x, y) ∈ Q̄, F(x, y) ∈ C(Q̄)}.
We define the distributional Henstock–Kurzweil integral:

DHK(Q) =
{

f ∈D′(Q)|f = ∂F , F ∈ C0(Q̄)
}

.

Definition 2.1 ([11, Lemma 2]) If f ∈D′(Q), then

F1(x, y) + F1(a, c) – F1(a, y) – F1(x, c)

= F2(x, y) + F2(a, c) – F2(a, y) – F2(x, c)

for all F1, F2 ∈ C0(Q̄), (x, y) ∈ Q̄. Moreover, there exists a unique Ff ∈ DHK(Q) such that

Ff (a, y) = Ff (x, c) = 0,

∀x ∈ [a, b], y ∈ [c, d].

This leads to the next definition.
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Definition 2.2 A distribution f is DHK-integrable on Q if f ∈ DHK(Q).

The DHK-integral of f on Q is given by
∫

Q f = Ff (b, d), where Ff is given by Definition 2.1.
We consider the structure of space DHK(Q). For f ∈ DHK(Q), endowed with the norm

‖f ‖ = sup

{∣
∣
∣
∣

∫

(a,x)×(c,y)
f
∣
∣
∣
∣ : (x, y) ∈ Q̄

}

.

Lemma 2.3 ([11, Theorem 1]) The normed space (DHK(Q),‖ · ‖) is complete, separable
and isomorphic to (C0(Q̄),‖ · ‖∞).

Before stating a Fubini-type theorem for DHK-integral which will be used later, we in-
troduce some definitions.

Definition 2.4 Let f ∈ DHK(Q), x ∈ [a, b], y ∈ [c, d]. We define

∫ x

a
f (ξ , ·) dξ = ∂2Ff (x, ·) in D′((c, d)

)
,

∫ y

c
f (·,η) dη = ∂1Ff (·, y) in D′((a, b)

)
.

It is clear that

∫ x

a
f (s, ·) ds ∈ DHK

(
(c, d)

)
,

∫ y

c
f (·, t) dt ∈ DHK

(
(a, b)

)
,

where DHK((a, b)) and DHK((c, d)) are, respectively, the spaces of DHK-integrable distribu-
tions on (a, b) and (c, d), i.e.

DHK
(
(a, b)

)
=

{
f ∈D′((a, b)

)|f = ∂F , F ∈ C0(Q̄)
}

,

where C0(Q̄) = {F ∈ C([a, b]) : F(a) = 0}, and f is the distributional derivative of F .

Lemma 2.5 ([11, Theorem 4]) For all f ∈ DHK(Q), we have

∫

Q
f =

∫ b

a

(∫ d

c
f (·,η) dη

)

=
∫ d

c

(∫ b

a
f (ξ , ·) dξ

)

.

Lemma 2.6 ([4, Theorem 4.3]) If the following conditions are satisfied:
(i) fn(x) → f (x) almost everywhere in [a, b] as n → ∞ where each fn is Henstock

integrable on [a, b].
(ii) g(x) ≤ fn(x) ≤ h(x) for almost all x ∈ [a, b] and all n. If g and h are also Henstock

integrable on [a, b],
then f is Henstock integrable on [a, b] and

∫ b

a
fn →

∫ b

a
f as n → ∞.
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2.2 Measure of noncompactness
In this subsection, we recall the definition and some basic properties concerning measure
of noncompactness [10]. Let (E,‖ · ‖) be a real Banach space with zero element 0, B(x, r)
be the closed ball in E centered at x and of radius r, and Br be the ball B(0, r). Denote by
X, convX the closure and the closed convex hull of a nonempty subset X of E, respectively.
Finally, denote by mE and nE the family of all nonempty and bounded subsets of E and the
subfamilies of all relatively compact subsets, respectively.

Definition 2.7 ([12]) Let (E, d) be a metric space and X a bounded subset of E. The Haus-
dorff measure of noncompactness (μ-measure or ball measure of noncompactness) of the
set X, denoted by μ(X) is defined to be the infimum of the set of all reals ε > 0 such that X
can be covered by a finite number of balls of sets with diameters < ε, that is,

μ(X) = inf{ε > 0 : X has a finite ε-net in E}. (3)

The function μ is called the Hausdorff measure of noncompactness.

Definition 2.8 ([10]) A mapping μ : mE →R+ is said to be a measure of noncompactness
in E if it satisfies the following conditions:

(1) The family kerμ = {X ∈mE : μ(X) = 0} is nonempty and kerμ ⊆ nE .
(2) if X ⊆ Y ⇒ μ(X) ≤ μ(Y ).
(3) μ(convX) = μ(X) = μ(X).
(4) μ(λX + (1 – λ)Y ) ≤ λμ(X) + (1 – λ)μ(Y ) for λ ∈ [0, 1).
(5) If (Xn) is a sequence of closed sets from mE such that Xn+1 ⊆ Xn(n ≥ 1) and if

limn→∞ μ(Xn) = 0, then the intersection set X∞ =
⋂∞

n=1 Xn is nonempty.

In what follows, we will work in the space C(�) consisting of all real valued continuous
functions on �. The space C(�) is equipped with the supremum norm

‖u‖ = sup
{∣
∣u(x, y)

∣
∣ : (x, y) ∈ �

}
.

For each u ∈ C(�), we define

ω(u, ε) = sup
{∣
∣u(x2, y2) – u(x1, y1)

∣
∣ : |x2 – x1| ≤ ε, |y2 – y1| ≤ ε

}
.

Obviously, ω(u, ε) → 0, as ε → 0, since u is uniformly continuous on �. Moreover, if this
limit relation holds uniformly for u running over some bounded set X ⊂ C(�), then X is
equicontinuous, and vice versa. Therefore, we have the following.

Lemma 2.9 ([13, Theorem 2.2]) On the space C(�), the measure of noncompactness (3) is
equivalent to

μ(X) = lim
ε→0

sup
u∈X

ω(u, ε) (4)

for all bounded sets X ⊂ C(�).
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Lemma 2.10 ([10, Theorem 2, Darbo]) Let Ω be a nonempty, bounded, closed and convex
subset of a Banach space E and let T : Ω → Ω be a continuous mapping. Assume that there
exists a constant k ∈ [0, 1) such that

μ
(
T(X)

) ≤ kμ(X)

for any X ⊂ Ω . Then T has a fixed point.

3 Main results
In this section, we shall prove the existence of solutions of Eq. (2).

Firstly, we give the following assumptions:
(D1) The functions ψi : [0, ai]×R →R are continuous, and there exist nonnegative con-

stants ci > 0(i = 1, 2) such that, for each u, v ∈ C(�),

∣
∣ψ1(x, u) – ψ1(x, v)

∣
∣ ≤ c1

(|u – v|),
∣
∣ψ2(y, u) – ψ2(y, v)

∣
∣ ≤ c2

(|u – v|), c1 + c2 < 1.

Let M1 = sup{|ψ1(x, 0)| : x ∈ [0, a1]}, M2 = sup{|ψ2(y, 0)| : y ∈ [0, a2]}.
(D2) The functions h1 : [0, a2] → R, h2 : [0, a1] → R are continuous, and h1(0) = h2(0),

let M3 = sup{|h1(y)| : y ∈ [0, a2]}, M4 = sup{|h2(x)| : x ∈ [0, a1]}.
(D3) The function f is DHK-integrable on �, and M5 = sup(x,y)∈�{| ∫ x

0
∫ y

0 f (s, t) dt ds|}.
(D4) The function g : � × R → R is HK-integrable, for each (x, y) ∈ �, z 
→ g(x, y, z) is

continuous, and there exists HK-integral function g–, g+ : � →R such that

g1(·, ·) ≤ g(·, ·, z) ≤ g+(·, ·),

and M6 = sup(x,y)∈�{| ∫ x
0

∫ y
0 g–(s, t) dt ds| + | ∫ x

0
∫ y

0 g+(s, t) dt ds|}.
(D5) There exists r > 0 such that

M1 + M2 + 2M3 + M4 + M5 + M6 + (c1 + c2)r ≤ r.

Theorem 3.1 Under the assumptions (D1)–(D5), Eq. (2) is equivalent to the integral equa-
tion

u(x, y) = ψ1(x, u) + h1(y) + ψ2(y, u) + h2(x) – h1(0) +
∫ x

0

∫ y

0
f (s, t) dt ds

+
∫ x

0

∫ y

0
g
(
s, t, u(s, t)

)
dt ds, (x, y) ∈ �. (5)

Proof For all (x, y) ∈ �, by the properties of the distributional derivative, we have

∫ y

0
∂stu(s, t) dt =

∫ y

0
g
(
s, t, u(s, t)

)
dt +

∫ y

0
f (s, t) dt. (6)

Since

∂su(s, y) – ∂su(s, 0) =
∫ y

0
g
(
s, t, u(s, t)

)
dt +

∫ y

0
f (s, t) dt, (7)
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then
∫ x

0
∂su(s, y) ds =

∫ x

0
∂su(s, 0) ds +

∫ x

0

∫ y

0
g
(
s, t, u(s, t)

)
dt ds +

∫ x

0

∫ y

0
f (s, t) dt ds. (8)

We obtain

u(x, y) = u(x, 0) + u(0, y) – u(0, 0) +
∫ x

0

∫ y

0
g
(
s, t, u(s, t)

)
dt ds +

∫ x

0

∫ y

0
f (s, t) dt ds

= ψ1(x, u) + h1(y) + ψ2(y, u) + h2(x) – h1(0) +
∫ x

0

∫ y

0
f (s, t) dt ds

+
∫ x

0

∫ y

0
g
(
s, t, u(s, t)

)
dt ds. (9)

On the other hand, it is not difficult to see that Eq. (2) holds by taking the derivative of
both sides of (9). This completes the proof. �

To simplify, we define an operator F on C(�) by

Fu(x, y) = ψ1(x, u) + h1(y) + ψ2(y, u) + h2(x) – h1(0) +
∫ x

0

∫ y

0
f (s, t) dt ds

+
∫ x

0

∫ y

0
g
(
s, t, u(s, t)

)
dt ds, (x, y) ∈ �. (10)

Then we have the following statement.

Theorem 3.2 Under the assumptions (D1)–(D5), the operator F given in (10) has at least
one fixed point in the space C(�).

Proof (i) For any u ∈ C(�), with ‖u‖ ≤ r,

∣
∣Fu(x, y)

∣
∣ ≤ ∣

∣ψ1(x, u)
∣
∣ +

∣
∣h1(y)

∣
∣ +

∣
∣ψ2(y, u)

∣
∣ +

∣
∣h2(x)

∣
∣ +

∣
∣h1(0)

∣
∣ +

∣
∣
∣
∣

∫ x

0

∫ y

0
f (s, t) dt ds

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ x

0

∫ y

0
g
(
s, t, u(s, t)

)
dt ds

∣
∣
∣
∣

≤ ∣
∣ψ1(x, u) – ψ1(x, 0)

∣
∣ +

∣
∣ψ1(x, 0)

∣
∣ + M3 +

∣
∣ψ2(y, u) – ψ2(y, 0)

∣
∣ +

∣
∣ψ2(y, 0)

∣
∣

+ M4 + M3 + M5 +
∣
∣
∣
∣

∫ x

0

∫ y

0
g–(s, t) dt ds

∣
∣
∣
∣ +

∣
∣
∣
∣

∫ x

0

∫ y

0
g+(s, t) dt ds

∣
∣
∣
∣

≤ M1 + M2 + 2M3 + M4 + M5 + M6 + (c1 + c2)‖u‖
≤ r.

This implies that F maps the space Br into Br , where Br = {u ∈ C(�) : ‖u‖ ≤ r}, r is a
constant appearing in assumption (D5).

(ii) We prove that the operator F is continuous on Br . For arbitrary u ∈ Br and ε > 0, now
let un ∈ Br with ‖un – u‖ < ε, then we have

∣
∣Fun(x, y) – Fu(x, y)

∣
∣
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≤ ∣
∣ψ1(x, un) – ψ1(x, u)

∣
∣ +

∣
∣ψ2(y, un) – ψ2(y, u)

∣
∣

+
∣
∣
∣
∣

∫ x

0

∫ y

0
g
(
s, t, un(s, t)

)
dt ds –

∫ x

0

∫ y

0
g
(
s, t, u(s, t)

)
dt ds

∣
∣
∣
∣. (11)

Now by the uniform continuity of the function ψi(i = 1, 2) on the set [0, ai] × [–r, r], we
infer that

lim
n→∞ψ1(x, un) = ψ1(x, u), lim

n→∞ψ2(y, un) = ψ2(y, u).

According to (D4) and Lemma 2.6, we have

lim
n→∞

∫ x

0

∫ y

0
g
(
s, t, un(s, t)

)
dt ds =

∫ x

0

∫ y

0
g
(
s, t, u(s, t)

)
dt ds.

From estimate (11), for each (x, y) ∈ �, we get

∣
∣Fun(x, y) – Fu(x, y)

∣
∣ ≤ ε.

Hence, we conclude that the operator F is continuous on Br .
(iii) Let us take an arbitrary nonempty subset V of the ball Br . Fix ε > 0, choose arbitrarily

(x1, y1), (x2, y2) ∈ � such that |x2 – x1| ≤ ε, |y2 – y1| ≤ ε. Then for arbitrary u ∈ V , we get

∣
∣Fu(x2, y2) – Fu(x1, y1)

∣
∣

≤ ∣
∣ψ1

(
x2, u(x2, y2)

)
– ψ1

(
x1, u(x1, y1)

)∣
∣ +

∣
∣h1(y2) – h1(y1)

∣
∣

+
∣
∣ψ2

(
y2, u(x2, y2)

)
– ψ2

(
y1, u(x1, y1)

)∣
∣ +

∣
∣h2(x2) – h2(x1)

∣
∣

+
∣
∣
∣
∣

∫ x2

0

∫ y2

0
f (s, t) dt ds –

∫ x1

0

∫ y1

0
f (s, t) dt ds

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ x2

0

∫ y2

0
g
(
s, t, u(s, t)

)
dt ds –

∫ x1

0

∫ y1

0
g
(
s, t, u(s, t)

)
dt ds

∣
∣
∣
∣

≤ ∣
∣ψ1

(
x2, u(x2, y2)

)
– ψ1

(
x1, u(x2, y2)

)∣
∣ +

∣
∣ψ1

(
x1, u(x2, y2)

)
– ψ1

(
x1, u(x1, y1)

)∣
∣

+ ω(h1, ε) +
∣
∣ψ2

(
y2, u(x2, y2)

)
– ψ2

(
y1, u(x2, y2)

)∣
∣

+
∣
∣ψ2

(
y1, u(x2, y2)

)
– ψ2

(
y1, u(x1, y1)

)∣
∣ + ω(h2, ε)

+
∣
∣
∣
∣

∫ x1

0

∫ y2

y1

f (s, t) dt ds +
∫ x2

x1

∫ y2

0
f (s, t) dt ds

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ x1

0

∫ y2

y1

g
(
s, t, u(s, t)

)
dt ds +

∫ x2

x1

∫ y2

0
g
(
s, t, u(s, t)

)
dt ds

∣
∣
∣
∣

≤ ω(ψ1, ε) + c1
(∣
∣u(x2, y2) – u(x1, y1)

∣
∣
)

+ ω(h1, ε) + ω(ψ2, ε)

+ c2
(∣
∣u(x2, y2) – u(x1, y1)

∣
∣
)

+ ω(h2, ε)

+
∣
∣
∣
∣

∫ x1

0

∫ y2

y1

f (s, t) dt ds +
∫ x2

x1

∫ y2

0
f (s, t) dt ds

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ x1

0

∫ y2

y1

g
(
s, t, u(s, t)

)
dt ds +

∫ x2

x1

∫ y2

0
g
(
s, t, u(s, t)

)
dt ds

∣
∣
∣
∣, (12)
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where

ω(ψ1, ε) = sup
{∣
∣ψ1(x2, u) – ψ1(x1, u)

∣
∣ : u ∈ [–r, r], |x2 – x1| ≤ ε

}
,

ω(h1, ε) = sup
{∣
∣h1(y2) – h1(y1)

∣
∣ : |y2 – y1| ≤ ε

}
,

ω(ψ2, ε) = sup
{∣
∣ψ2(y2, u) – ψ2(y1, u)

∣
∣ : u ∈ [–r, r], |y2 – y1| ≤ ε

}
,

ω(h2, ε) = sup
{∣
∣h2(x2) – h2(x1)

∣
∣ : |x2 – x1| ≤ ε

}
.

By (D1)–(D2), ψi(i = 1, 2), h1, h2 are uniformly continuous on [0, ai], [0, a2], [0, a1] respec-
tively, so

ω(ψi, ε) → 0, ω(hi, ε) → 0 as ε → 0.

Further, by the condition (D4), we have the following inequalities:

∣
∣
∣
∣

∫ x1

0

∫ y2

y1

g
(
s, t, u(s, t)

)
dt ds +

∫ x2

x1

∫ y2

0
g
(
s, t, u(s, t)

)
dt ds

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ x1

0

∫ y2

y1

g–(s, t) dt ds
∣
∣
∣
∣ +

∣
∣
∣
∣

∫ x1

0

∫ y2

y1

g+(s, t) dt ds
∣
∣
∣
∣

+
∣
∣
∣
∣

∫ x2

x1

∫ y2

0
g–(s, t) dt ds

∣
∣
∣
∣ +

∣
∣
∣
∣

∫ x2

x1

∫ y2

0
g+(s, t) dt ds

∣
∣
∣
∣.

Since g–, g+ are HK-integrable, the primitives of g–, g+ are continuous and so are uniformly
continuous on �.

Moreover, the fact that f ∈ DHK also implies that the primitive of f is uniformly contin-
uous on �.

From (12), we get

∣
∣Fu(x2, y2) – Fu(x1, y1)

∣
∣ ≤ c1ω(u, ε) + c2ω(u, ε), as ε → 0. (13)

Since u is an arbitrary element of V in (13), we obtain

ω(FV , ε) ≤ c1ω(u, ε) + c2ω(u, ε).

Hence,

lim
ε→0

supω(FV , ε) ≤ (c1 + c2) lim
ε→0

supω(u, ε). (14)

It follows from (14) and Lemma 2.9 that

μ(FV )) ≤ (c1 + c2)μ(V ). (15)

According to Lemma 2.10, F has at least one fixed point in the space Br . The proof is
therefore complete. �

According to Theorem 3.2 and (10) the definition of the operator F , we have:
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Theorem 3.3 Under the assumptions (D1)–(D5), Eq. (2) has at least one solution in the
space C(�).

4 Application
Example 4.1 Consider the following Darboux problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂2u
∂x ∂y (x, y) = x2e–y sin u(x,y)

2 + yR′(x) + xR′(y), (x, y) ∈ [0, 1] × [0, 1],

u(x, 0) – ( x
4(1+x2) + u(x,y)

4+x2 ) = 1
4+y2 ,

u(0, y) – 1
2 arctan[ u(x,y)

8+√y + 2y
1+y2 ] = 1

2 arctan x + 1
4 ,

(16)

where R′(x) is the distributional derivative of the Riemann function R(x) = Σ∞
n=1

sin n2πx
n2 .

With the following choices, it is evident that Eq. (16) is a special case of Eq. (2) with

g
(
x, y, u(x, y)

)
= x2e–y sin

u(x, y)
2

,

f (x, y) = yR′(x) + xR′(y),

ψ1(x, u) =
x

4(1 + x2)
+

u(x, y)
4 + x2 ,

ψ2(y, u) =
1
2

arctan

[
u(x, y)
8 + √y

+
2y

1 + y2

]

,

h1(y) =
1

4 + y2 ,

h2(x) =
1
2

arctan x +
1
4

,

� = [0, 1] × [0, 1].

Now we show that all the conditions of Theorem 3.2 are satisfied for Eq. (16).
(i) Obviously, ψi(i = 1, 2) are continuous, and suppose that (x, y) ∈ [0, 1] × [0, 1] and

u, v ∈ C(�). Then we can get the following estimate:

∣
∣ψ1(x, u) – ψ1(x, v)

∣
∣ ≤ 1

4 + x2 |u – v| ≤ 1
4
|u – v|, so c1 =

1
4

,

∣
∣ψ2(y, u) – ψ2(y, v)

∣
∣ ≤ 1

2
· 1

8 + √y
|u – v| ≤ 1

16
|u – v|, so c2 =

1
16

,

M1 = sup
{∣
∣ψ1(x, 0)

∣
∣ : x ∈ [0, 1]

}
=

1
8

,

M2 = sup
{∣
∣ψ2(y, 0)

∣
∣ : y ∈ [0, 1]

}
=

π

8
.

(ii) Clearly, the functions hi are continuous, h1(0) = h2(0) = 1
4 , and

M3 = sup
{∣
∣h1(y)

∣
∣ : y ∈ [0, 1]

}
=

1
4

, M4 = sup
{∣
∣h2(x)

∣
∣ : x ∈ [0, 1]

}
=

π

8
+

1
4

.

(iii) The function f is DHK-integrable on �, and

M5 = sup
(x,y)∈�

∣
∣
∣
∣

∫ x

0

∫ y

0
f (s, t) dt ds

∣
∣
∣
∣ < 2.
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(iv) The function g is continuous, and

–x2e–y � g
(
x, y, u(x, y)

) � x2e–y,

if we put g–(x, y) = –x2e–y, g+(x, y) = x2e–y, then we have

M6 = sup
(x,y)∈�

{∣
∣
∣
∣

∫ x

0

∫ y

0
g–(s, t) dt ds

∣
∣
∣
∣ +

∣
∣
∣
∣

∫ x

0

∫ y

0
g+(s, t) dt ds

∣
∣
∣
∣

}

=
2
3

–
2
3e

.

(v) It is easy to check that for each number r ≥ 5, we have the following inequality:

M1 + M2 + 2M3 + M4 + M5 + M6 + (c1 + c2)r < r.

Consequently, all the conditions of Theorem 3.2 are satisfied and Eq. (16) has at least one
solution in the space C(�).

Remark 4.2 It is well known that the function R(x) given by Riemann is continuous but
pointwise differentiable nowhere on [0, 1] (see, e.g.,[14]), then the distributional derivative
R′(x) in Eq. (16) is neither HK nor Lebesgue integrable. Hence, this example is not covered
by any result using HK or Lebesgue integral. Thus, Theorem 3.3 is more extensive.

5 Conclusions
In this research, by using the method associated with the technique of measure of non-
compactness and the Darbo fixed points theorem, we studied the existence of solutions
for the Darboux problem involving the distributional Henstock–Kurzweil integral, and we
obtained the existence of at least one solution for the Darboux problem we considered.
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