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Abstract
In this paper, we analyze the blow-up rates and uniqueness of entire large solutions
to the equation �u = a(x)f (u) +μb(x)|∇u|q, x ∈ R

N (N ≥ 3), where μ > 0, q > 0 and
a,b ∈ Cα

loc(R
N) (α ∈ (0, 1)). The weight a is nonnegative, b is able to change sign in R

N ,
and f ∈ C1[0,∞) is positive and nondecreasing on (0,∞) and rapidly or regularly
varying at infinity. Additionally, we investigate the uniqueness of entire large solutions.
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1 Introduction and the main results
The purpose of this paper is to study the blow-up rates and uniqueness of entire large
solutions to the following elliptic equation:

�u = a(x)f (u) + μb(x)|∇u|q, x ∈ R
N , u(x) > 0, (1.1)

where μ > 0, q ∈ (0, 2] and u is an entire large solution of Eq. (1.1) when it solves Eq. (1.1)
and u(x) → ∞ as |x| → ∞. The nonlinearity f is such that

(f1) f ∈ C1[0,∞), f (0) = 0, f ′(t) ≥ 0 and f (t) > 0 for t > 0 are satisfied; and
(f2) the Keller–Osserman condition

∫ ∞

1

(
F(t)

)–1/2 dt < ∞ (1.2)

holds, and there exists Cf ∈ [1,∞) such that

lim
t→∞

((
F(t)

)1/2)′
∫ ∞

t

(
F(s)

)–1/2 ds = Cf , F(t) =
∫ t

0
f (s) ds. (1.3)

The weight a is such that
(a1) a ∈ Cα

loc(RN ) (α ∈ (0, 1)) is positive in R
N ; and

(a2) there exist k1 ∈K and positive constant λ1 ∈ [2, 2(N – 1)) such that

0 < a1 := lim inf|x|→∞
a(x)

|x|–λ1 k1(|x|) ≤ a2 := lim sup
|x|→∞

a(x)
|x|–λ1 k1(|x|) < ∞,
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where
∫ ∞

t0

k1(s)
s

ds < ∞, if λ1 = 2.

K denotes the set of Karamata functions k defined on [t0,∞) by

k(t) := c exp

(∫ t

t0

y(s)
s

ds
)

, t ≥ t0 > 0

with c > 0 and y ∈ C([t0,∞)) such that limt→∞ y(t) = 0.
The weight b is such that

(b1) b ∈ Cα
loc(RN ) (α ∈ (0, 1)) may change sign in R

N ; and
(b2) there exist k2 ∈K and positive constant λ2 such that

0 < b1 := lim inf|x|→∞
|b(x)|

|x|–λ2 k2(|x|) ≤ b2 := lim sup
|x|→∞

|b(x)|
|x|–λ2 k2(|x|) < ∞,

where K is defined in (a2).
Let Ω be a bounded domain with a C2-boundary in R

N or Ω = R
N . The existence,

nonexistence, uniqueness and asymptotic behavior of large solutions to Eq. (1.1) have
been investigated extensively by many authors in different contexts. When Ω is a bounded
domain, a “large solution” is understood as a solution u of Eq. (1.1) on Ω such that
limx→∂Ω u(x) = ∞.

Now, we review these studies and divide them into the following two sets:
Part I (μ = 0). When Ω is a bounded domain with a C2-boundary, b ≡ 1 in Ω ⊆ R

N

(N = 2) and f (u) = eu; Bieberbach [5] first studied the existence, uniqueness and asymp-
totic behavior of large solutions to Eq. (1.1). In this case, Eq. (1.1) plays an important role
in the theory of Riemannian surfaces of constant negative curvature and in the theory of
automorphic functions. Later, Rademacher [40] used the ideas of Bieberbach to prove that
the results still hold for N = 3. When f (u) = eu and b is continuous and strictly positive on
Ω̄ , Lazer and McKenna [30] extended the above results to a bounded domain Ω in R

N

(N ≥ 1) with a uniform outer sphere. However, Keller [26] and Osserman [39] conducted
systematic research on Eq. (1.1) and obtained the following important results:

(i) If Ω ⊆R
N is a bounded domain, b ≡ 1 on Ω̄ , and f satisfies (f1), then Eq. (1.1) has a

classical large solution if and only if the Keller–Osserman condition (f2) holds.
(ii) If b ≡ 1 in R

N and f satisfies (f1), then Eq. (1.1) has an entire large solution if and
only if the following condition holds:

∫ ∞

1

(
2F(t)

)–1/2 dt < ∞.

When Ω is a bounded domain, b ≡ 1 in Ω and f (u) = u
N+2
N–2 with N > 2, Loewner and

Nirenberg [32] were motivated by certain geometric problems to prove that Eq. (1.1) has
a unique positive classical large solution u satisfying

lim
d(x)→0

u(x)
(
d(x)

) N–2
2 =

(
N(N – 2)

4

) N–2
4

.
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Later, Bandle and Marcus [4] further studied the exact asymptotic behavior and unique-
ness of a large solution to Eq. (1.1) when f is convex on (0,∞), i.e., s �→ f (s) is increasing
on (0,∞). However, when b is a large constant, by obtaining good boundary layer esti-
mates for b, Du and Guo [14] proved that the large solution is unique for much weaker
assumptions as regards f , i.e., s �→ f (s) is increasing on (T ,∞) for some large constant T .
For other insights into the existence, uniqueness, multiplicity and asymptotic behavior of
large solutions to Eq. (1.1) with μ = 0 in bounded domains, please refer to [8, 15, 17, 24,
29, 31, 33–36, 50, 52–54] and the references therein.

Now, let us return to entire large solutions of Eq. (1.1) with μ = 0. Oleinik [38] and
Sattinger [44] studied the nonexistence of entire positive solutions of Eq. (1.1). Later, the
existence and asymptotic behavior of entire large solutions was first described by Ni in
[37]. For f (u) = uγ with γ > 1, Cheng and Ni [7] studied the existence and uniqueness of
the maximum positive solution and completely classified all possible positive solutions.
Later, Lair [27], Cîrstea and Rădulescu [10], and Tao and Zhang [46] further investigated
the existence of entire large solutions of Eq. (1.1). In particular, when f exhibits sublinear
growth at infinity, Lair [28] proved that if b satisfies

∫ ∞

0
r
(
φ1(r) – φ2(r)

)
ϕ(r) dr < ∞,

where

ϕ(r) = exp

(
�

∫ r

0
τφ2(τ ) dτ

)

with

φ1(r) := max
|x|=r

b(x), φ2(r) := min|x|=r
b(x),

then Eq. (1.1) has entire large solutions if and only if

∫ ∞

0
rφ2(r) dr = ∞.

In [16], Dupaigne et al. established the existence of a minimum solution u and noted that if
u is an unbounded solution, then it blows up at infinity. In particular, they also showed that
the entire large solution of Eq. (1.1) is unique for some appropriate assumptions as regards
f and b. Inspired by the ideas of the authors in [1, 17, 18], Wan [47, 48] and Wan et al. [49]
used a perturbation method and a truncation technique to study the asymptotic behavior
and uniqueness of entire large solutions of Eq. (1.1). In particular, the authors in [49] found
some necessary and sufficient conditions for these rapidly and regularly varying functions
and proved some sharp uniqueness results for entire large solutions when f belongs to a
more general class of functions.

Part II (μ �= 0). When f (u) = uγ (γ > 1) or f (u) = eu, μ = 1 and the weights a, b ≡ 1 in Ω ,
Bandle and Giarrusso [3] studied the existence and asymptotic behavior of large solutions
to Eq. (1.1). Later, Giarrusso [21] and [22] further extended the above results when f be-
longs to a more general class of functions. When Ω = R

N , f (u) = uγ (γ > 1) and μb = ±1
in R

N , Lair investigated the existence of entire large solutions of Eq. (1.1). When f satisfies
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(f1), Ghergu and Rădulescu [19] established the existence and nonexistence of entire large
solutions of an one-dimensional logistic problem. When Ω is a smooth bounded domain
or Ω = RN , Ghergu and Rădulescu [20] studied the existence and nonexistence of large
solutions of Eq. (1.1) provided the nonlinearity f satisfies sups≥1 f (s)/s < ∞ and the weight
μb ≡ –1 on Ω . In particular, they supplied, for the case Ω = RN , a necessary and sufficient
condition for the existence of a positive solution that blows up at infinity. In a different
direction, Cîrstea and Rădulescu [9, 11–13] first introduced Karamata regular variation
theory to study the boundary behavior and uniqueness of large solutions of Eq. (1.1) in
a bounded domain. This contributed to knowledge in some new directions and enabled
us to obtain a significant amount of information about the qualitative behavior of large
solutions in a general framework. Using this approach, Zhang [51] and Huang et al. [25]
determined the exact asymptotic behavior of large solutions to Eq. (1.1) with μ = ±1 in a
bounded domain.

Recently, Rhouma and Drissi [42] studied the existence of positive radial solutions and
entire large solutions to a class of p-Laplacian equations. Santos et al. [43] studied the
existence of entire large solutions to a class of variable-index Laplacian equations. Alves,
Santos and Zhou [2] established a new comparison principle to investigate the existence of
entire large solutions to Eq. (1.1) that depend on a nonnegative real parameter. Moreover,
inspired by the idea of Mitidieri and Pohozaev [34], they established the nonexistence
of entire large solutions by constructing a test function, which is null in the exterior of
appropriate balls in R

N .
Motivated by the work of [2] and [47–49], in this paper, we determine the exact asymp-

totic behavior of entire large solutions to Eq. (1.1) at infinity in R
N , and we show that the

convection term μb(x)|∇u(x)|q does not affect the asymptotic behavior under certain con-
ditions. Moreover, we prove that the entire large solution is unique using its asymptotic
behavior.

Our results are summarized as follows.

Theorem 1.1 Let f satisfy (f1)–(f2) with (q – 1)Cf < 1, weight a satisfy (a1)–(a2), weight
b satisfy (b1)–(b2), and λ2 > λ1(2–q)

2 . Moreover, we further assume that one of the following
conditions holds:

(S1) b ≤ 0 in R
N and q ∈ (0, 2]; and

(S2) b can change sign in R
N , q = 1 and min{λ1,λ2} ≥ 2. In particular, if λ2 = 2, we need

to verify that

∫ ∞

t0

k2(s)
s

ds < ∞.

Then any entire large solution u of problem (1.1) satisfies

ξ
1–Cf
2 ≤ lim inf|x|→∞

u(x)
ψ((

∫ ∞
|x| s1–λ1 k1(s) ds)1/2)

≤ lim sup
|x|→∞

u(x)
ψ((

∫ ∞
|x| s1–λ1 k1(s) ds)1/2)

≤ ξ
1–Cf
1 , (1.4)
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where ψ is uniquely determined by

∫ ∞

ψ(t)

(
2F(s)

)–1/2 ds = t, t > 0, (1.5)

and

ξi =
(

4aiCf

(λ1 – 2)(Cf – 1) + 2(N – 2)

)1/2

, i = 1, 2.

In particular, if Cf = 1 in (f2), then any entire large solution u of problem (1.1) satisfies

lim|x|→∞
u(x)

ψ((
∫ ∞
|x| s1–λ1 k1(s) ds)1/2)

= 1. (1.6)

Remark 1.1 In Theorem 1.1, (S1) and (S2) are auxiliary conditions that guarantee the ex-
istence of entire large solutions to Eq. (1.1) (please refer to [2]).

Remark 1.2 In Theorem 1.1, Cf (q – 1) < 1 implies that if Cf = 1, then q �= 2.

Theorem 1.2 Let a satisfy (a1), b satisfy (b1) and the following condition:
(b3) b ≥ 0 in R

N , q ≥ 1 or b ≤ 0 in R
N , 0 < q < 1.

Additionally, let f satisfy (f1) and the following condition:
(f3) t �→ f (t)

t is nondecreasing on (0,∞).
Assume that u1 and u2 are arbitrary entire large solutions of Eq. (1.1) that satisfy

lim|x|→∞
u1(x)
u2(x)

= 1.

Then u1 ≡ u2 in R
N .

The outline of this paper is as follows. The proofs of Theorem 1.1 and Theorem 1.2 are
given in Sects. 2 and 3. Then we list some bases for Karamata regular variation theory and
present some auxiliary results in Appendices 1 and 2.

2 Proof of Theorem 1.1
In this section, we prove Theorem 1.1.

Proof Let ε ∈ (0, b1/2) and

τ1 =
(
ξ 2

1 – εξ 2
1 /b1

)1/2, τ2 =
(
ξ 2

2 + εξ 2
2 /b2

)1/2.

We see that

(1/2)1/2ξ1 < τ1 < τ2 < (3/2)1/2ξ2

and

lim
ε→0

τ1 = ξ1, lim
ε→0

τ2 = ξ2.
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For any constant R > t0, we define

ΩR :=
{

x ∈R
N : |x| > R

}
,

where t0 is given by the definition of K in (a2).
From (f1)–(f2) with (q – 1)Cf < 1, (a1)–(a2) and (b1)–(b2) with λ2 > λ1(2–q)

2 , Proposi-
tions 3–4, and Lemma B.2(iii), we see that there exists a sufficiently large Rε > 0 and a
sufficiently small δε > 0 corresponding to ε > 0 such that, for (x, r) ∈ ΩRε × (0, 2δε),

|x|2–λ1 k1(|x|)∫ ∞
|x| s1–λ1 k1(s) ds

+ 2(N – λ1) +
2|x|k′

1(|x|)
k1(|x|) > 0, (2.1)

∣∣∣∣τ
2
i
4

|x|2–λ1 k1(|x|)∫ ∞
|x| s1–λ1 k1(s) ds

–
τ 2

i (λ1 – 2)
4

∣∣∣∣ +
∣∣∣∣–τ 2

i
4

( |x|2–λ1 k1(|x|)∫ ∞
|x| s1–λ1 k1(s) ds

+ 2(N – λ1)

+
2|x|k′

1(|x|)
k1(|x|)

)
ψ ′(r)

rψ ′′(r)
–

(2(N – 1) – λ1)τ 2
i

4Cf

∣∣∣∣ < ε/3, (2.2)

∣∣∣∣μ
(

τi

2

)q b(x)
|x|–λ2 k2(|x|)

(–ψ ′(r))q(
∫ ∞
|x| s1–λ1 k1(s) ds)

–q
2 |x|q(1–λ1)+λ1–λ2 kq

1 (|x|)
ψ ′′(r)

k2(|x|)
k1(|x|)

∣∣∣∣

= μ

(
τi

2

)q b(x)
|x|–λ2 k2(|x|)

k2(|x|)
k1(|x|) · (–ψ ′(r))

rψ ′′(r)
· r

(
–ψ ′(r)

)q–1 ·
(∫ ∞

|x|
s1–λ1 k1(s) ds

) –q
2

× |x|q(1–λ1)+λ1–λ2 kq
1
(|x|) < ε/3 (2.3)

and

|x|–λ1 k1
(|x|)(a1 – ε/3) < a(x) < |x|–λ1 k1

(|x|)(a2 + ε/3). (2.4)

Take

σ ∈ (0, δε) with σ < (1/2)1/2ξ1

(∫ ∞

Rε

s1–λ1 k1(s) ds
)1/2

and let u be an arbitrary entire large solution of problem (1.1).
Define

Dσ
– := ΩRε \ Ωσ

– , Dσ
+ := ΩRε \ Ωσ

+ ,

where

Ωσ
– :=

{
x ∈ ΩRε : τ1

(∫ ∞

|x|
s1–λ1 k1(s) ds

)1/2

≤ σ

}
(2.5)

and

Ωσ
+ :=

{
x ∈ ΩRε+r0 : ψ

(
τ2

(∫ ∞

|x|
s1–λ1 k1(s) ds

)1/2

+ σ

)
≤ u(x)

}
, (2.6)
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where r0 is a sufficiently large constant that Ωσ
+ is an exterior domain of the ball with

Rε + r0 as the radius and the origin as the center. By the definitions of Ωσ±, we see that Dσ±
are annular domains.

Let

uε(x) = ψ

(
τ1

(∫ ∞

|x|
s1–λ1 k1(s) ds

)1/2

– σ

)
, x ∈ Dσ

–,

and

uε = ψ

(
τ2

(∫ ∞

|x|
s1–λ1 k1(s) ds

)1/2

+ σ

)
, x ∈ Dσ

+ .

Indeed, we can always adjust the above δε > 0 to ensure that

(3/2)1/2ξ2

(∫ ∞

|x|
s1–λ1 k1(s) ds

)1/2

< δε , x ∈ ΩRε .

By a straightforward calculation combined with (2.1)–(2.4), we see that, for x ∈ Dσ
– ,

�uε – a(x)f (uε) – μb(x)|∇uε|q

= ψ ′′
(

τ1

(∫ ∞

|x|
s1–λ1 k1(s) ds

)1/2

– σ

)
|x|–λ1 k

(|x|)
[

τ 2
1
4

|x|2–λ1 k1(|x|)∫ ∞
|x| s1–λ1 k1(s) ds

+
τ 2

1
4

( |x|2–λ1 k1(|x|)∫ ∞
|x| s1–λ1 k1(s) ds

+ 2(N – λ1) +
2|x|k′

1(|x|)
k1(|x|)

)

× –ψ ′(τ1(
∫ ∞
|x| s1–λ1 k1(s) ds)1/2 – σ )

τ1(
∫ ∞
|x| s1–λ1 k1(s) ds)1/2ψ ′′(τ1(

∫ ∞
|x| s1–λ1 k1(s) ds)1/2 – σ )

–
a(x)

|x|–λ1 k1(|x|)

–
(–ψ ′(τ1(

∫ ∞
|x| s1–λ1 k1(s) ds)1/2 – σ )q(

∫ ∞
|x| s1–λ1 k1(s) ds)

–q
2 |x|q(1–λ1)+λ1–λ2 kq

1 (|x|)
ψ ′′(τ1(

∫ ∞
|x| s1–λ1 k1(s) ds)1/2 – σ )

× k2(|x|)
k1(|x|)μ

(
τ1

2

)q b(x)
|x|–λ2 k2(|x|)

]

≤ ψ ′′(r)|x|–λ1 k1
(|x|)

[
τ 2

1
4

( |x|2–λ1 k1(|x|)∫ ∞
|x| s1–λ1 k1(s) ds

– (λ1 – 2)
)

–
τ 2

1
4

( |x|2–λ1 k1(|x|)∫ ∞
|x| s1–λ1 k1(s) ds

+ 2(N – λ1) +
2|x|k′

1(|x|)
k1(|x|)

)
ψ ′(r)

rψ ′′(r)
–

(2(N – 1) – λ1)τ 2
1

4Cf

–
(

a(x)
|x|–λ1 k1(|x|) – a1

)
+ τ 2

1

(
2(N – 2) + (Cf – 1)(λ1 – 2)

4Cf

)
– a1

]
≤ 0,

where

r = τ1

∫ ∞

|x|
s1–λ1 k1(s) ds – σ ,

i.e., uε is a supersolution of Eq. (1.1) in Dσ
– .



Li and Wan Boundary Value Problems        (2018) 2018:179 Page 8 of 14

Similarly, we can show that uε is a subsolution of Eq. (1.1) in D+
σ . We assert that there

exists a large constant M > 0 independent of σ such that

u(x) ≤ uε(x) + M, x ∈ Dσ
– (2.7)

and

uε(x) ≤ u(x) + M, x ∈ ΩRε . (2.8)

In fact, we can choose a positive constant M independent of σ such that x ∈ {x ∈ R
N : |x| =

Rε}

u(x) ≤ uε(x) + M (2.9)

and

uε(x) ≤ u(x) + M. (2.10)

Because

u(x) < uε = ∞, x ∈
{

x ∈R
N : τ1

(∫ ∞

|x|
s1–λ1 k1(s) ds

)1/2

= σ

}
,

we can always choose a sufficiently small ρ > 0 such that

sup
x∈Dσ–

u(x) ≤ uε(x), x ∈ Dσ
– \ D̃σ

–, (2.11)

where

D̃σ
– = ΩRε \ Ω̃σ

–

with

Ω̃σ
– =

{
x ∈ ΩRε : τ1

(∫ ∞

|x|
s1–λ1 k1(s)

)1/2

≤ σ (1 + ρ)
}

.

Combining (2.9) with (2.11), we obtain

u(x) ≤ uε(x) + M, x ∈ ∂
(
D̃σ

–
)
.

In contrast, we conclude, using (2.10) and the definition of Ωσ
+ (please refer to (2.6)), that

uε(x) ≤ u(x) + M, x ∈ ∂
(
Dσ

+
)
.

We note that u and uε are both subsolutions in D̃σ
– and Dσ

+ . Therefore, using (f1), we
see that uε + M and u + M are supersolutions in D̃σ

– and Dσ
+ , respectively. It follows by

Lemma B.3 that

u(x) ≤ uε(x) + M, x ∈ D̃σ
– (2.12)
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and

uε(x) ≤ u(x) + M, x ∈ Dσ
+ . (2.13)

Indeed, (2.12) combined with (2.11) implies that (2.7) holds, and (2.13) and (2.6) together
imply that (2.8) holds.

Now, using (2.7) and (2.8), we show that, for any x ∈ ΩRε , the following hold:

u(x)
ψ(τ1(

∫ ∞
|x| s1–λ1 k1(s) ds)1/2)

≤ 1 +
M

ψ(τ1(
∫ ∞
|x| s1–λ1 k1(s) ds)1/2)

;

u(x)
ψ(τ2(

∫ ∞
|x| s1–λ1 k1(s) ds)1/2)

≥ 1 –
M

ψ(τ2(
∫ ∞
|x| s1–λ1 k1(s) ds)1/2)

.
(2.14)

By the definition of Dσ
– , we see that, for fixed x1 ∈ ΩRε , there exists a sufficiently small σ1

such that x1 ∈ Dσ1
– . However, we know that, for any σ < σ1, Dσ1

– � Dσ
– . This finding implies

that x1 ∈ Dσ
– . This fact, combined with (2.7) and (2.8), shows that

u(x1) ≤ ψ

(
τ1

(∫ ∞

|x1|
s1–λ1 k1(s) ds

)1/2

– σ

)
+ M (2.15)

and

ψ

(
τ2

(∫ ∞

|x1|
s1–λ1 k1(s) ds

)1/2

+ σ

)
≤ u(x1) + M. (2.16)

Since (2.15)–(2.16) hold for any σ < σ1, using the rank preservation of the limit of the
function ψ , we obtain

u(x1) ≤ ψ

(
τ1

(∫ ∞

|x1|
s1–λ1 k1(s) ds

)1/2)
+ M

and

ψ

(
τ2

(∫ ∞

|x1|
s1–λ1 k1(s) ds

)1/2)
≤ u(x1) + M.

These findings imply that, for any x ∈ ΩRε , the conditions in (2.14) hold.
Consequently, by Lemma B.2(ii), we have

lim sup
|x|→∞

u(x)
ψ(τ1(

∫ ∞
|x| s1–λ1 k1(s) ds)1/2)

≤ 1,

lim inf|x|→∞
u(x)

ψ(τ2(
∫ ∞
|x| s1–λ1 k1(s) ds)1/2)

≥ 1.

For Cf ∈ [1,∞), it follows by Lemma B.2(iv) that

lim sup
|x|→∞

u(x)
ψ((

∫ ∞
|x| s1–λ1 k1(s) ds)1/2)
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= lim sup
|x|→∞

u(x)
ψ(τ1(

∫ ∞
|x| s1–λ1 k1(s) ds)1/2)

· lim|x|→∞
ψ(τ1(

∫ ∞
|x| s1–λ1 k1(s) ds)1/2)

ψ((
∫ ∞
|x| s1–λ1 k1(s) ds)1/2)

≤ τ
1–Cf
1 ;

lim inf|x|→∞
u(x)

ψ((
∫ ∞
|x| s1–λ1 k1(s) ds)1/2)

= lim inf|x|→∞
u(x)

ψ(τ2(
∫ ∞
|x| s1–λ1 k1(s) ds)1/2)

· lim|x|→∞
ψ(τ2(

∫ ∞
|x| s1–λ1 k1(s) ds)1/2)

ψ((
∫ ∞
|x| s1–λ1 k1(s) ds)1/2)

≥ τ
1–Cf
2 .

Letting ε → 0, we obtain (1.4). �

3 Proof of Theorem 1.2
In this section, we prove Theorem 1.2.

Proof Since

lim|x|→∞
u1(x)
u2(x)

= 1,

for arbitrary fixed ε > 0, there exists a sufficiently large Rε such that

(1 – ε)u2(x) ≤ u1(x) ≤ (1 + ε)u2(x), x ∈ ΩRε . (3.1)

Set

u+(x) = (1 + ε)u2(x), u–(x) = (1 – ε)u2(x), x ∈R
N .

A simple calculation shows that

�u+ = (1 + ε)�u2 = (1 + ε)a(x)f (u2) + μ(1 + ε)b(x)|∇u2|q,

�u– = (1 – ε)�u2 = (1 – ε)a(x)f (u2) + μ(1 – ε)b(x)|∇u2|q.

By (f3), we have

(1 + ε)f (u2) ≤ f
(
(1 + ε)u2

)
, (1 – ε)f (u2) ≥ f

(
(1 – ε)u2

)
.

In contrast, we apply (b1) and (b3) and conclude that

(1 + ε)b(x)|∇u2|q ≤ b(x)
∣∣(1 + ε)∇u2

∣∣q, (1 + ε)b(x)|∇u2|q ≤ b(x)
∣∣(1 + ε)∇u2

∣∣q.

It follows by combining these with (a1) that

�u+ ≤ a(x)f
(
u+)

+ μb(x)
∣∣u+∣∣q; �u– ≥ a(x)f

(
u–)

+ μb(x)
∣∣u–∣∣q, x ∈R

N .
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Let u0 be the unique solution of

�u = a(x)f (u) + μb(x)|∇u|q, x ∈ Ω0, u|∂Ω0 = u1,

where Ω0 = R
N \ ΩRε . Using the comparison principle, we obtain

u–(x) ≤ u0(x) ≤ u+(x), x ∈ Ω0. (3.2)

Noting that u0 = u1 on Ω0 and combining (3.1) with (3.2), we obtain

(1 – ε)u2(x) ≤ u1(x) ≤ (1 + ε)u2(x), x ∈R
N . (3.3)

Letting ε → 0 completes the proof. �

Appendix 1
In this section, we introduce some preliminaries to Karamata regular variation theory.

Definition A.1 ([45], Definition 1.1) A positive continuous function f defined on [a,∞)
for some a > 0 is called regularly varying at infinity with index ρ , written as f ∈ RV ρ , if for
each ξ > 0 and some ρ ∈R,

lim
s→∞

f (ξ s)
f (s)

= ξρ . (A.1)

In particular, when ρ = 0, f is called slowly varying at infinity.

Clearly, if f ∈ RV ρ , then L(s) := f (s)/sρ is slowly varying at infinity.
Some basic examples of functions that are slowly varying at infinity are
(i1) every measurable function on [a,∞) with a positive limit at infinity;
(i2) (ln s)β and (ln(ln s))β , β ∈R; and
(i3) e(ln s)p , 0 < p < 1.

Definition A.2 ([52], Definition 2.1) A positive continuous function f defined on [a,∞)
for some a > 0 is called rapidly varying to infinity at infinity if for each ρ > 0

lim
s→∞

f (s)
sρ

= ∞

Some basic examples of functions that are rapidly varying to infinity at infinity are
(ii1) es and ees ;
(ii2) ee(ln s)p , esp and eesp

, p > 0;
(ii3) spe(ln s)p and (ln s)βe(ln s)p , p > 1, β ∈ R; and
(ii4) (ln s)βesp and sβesp , p > 0, β ∈ R.

Definition A.3 ([54], Definition 2.2) A positive continuous function f defined on (0, a]
for some a > 0 is called rapidly varying to infinity at zero if for each ρ > 0

lim
s→0+

h(s)sρ = ∞.
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Obviously, if we replace the variable s in functions (ii1)–(ii4) with the variable s–1, we
obtain basic examples of functions that are rapidly varying to infinity at zero.

In addition, it is not difficult to understand that a positive continuous function g defined
on (0, a) for some a > 0 is regularly varying at zero with index ρ (written as g ∈ RVZρ ) if
s → g(1/s) ∈ RV –ρ . Similarly, g is called rapidly varying at zero if s → g(1/s) is rapidly
varying at infinity.

Proposition 1 (Uniform convergence theorem; [41], Proposition 0.5) If f ∈ RV ρ , then
(A.1) holds uniformly for ξ ∈ [c1, c2] with 0 < c1 < c2.

Proposition 2 (Representation theorem; [45], Theorem 1.2; [41], Corollary, p. 17) A func-
tion L is slowly varying at infinity if and only if it can be written in the form

L(s) = ϕ(s) exp

(∫ s

a1

y(τ )
τ

dτ

)
, s ≥ a1,

for some a1 ≥ a, where the functions ϕ and y are continuous and s → ∞, y(s) → 0 and
ϕ(s) → c0 with c0 > 0. If ϕ ≡ c0, then L is said to be normalized slowly varying at infinity
and

f (s) = sρ L̂(s), s ≥ a1

is said to be normalized regularly varying at infinity with index ρ (written as f ∈ NRV ρ ).

A function f ∈ C1[a1,∞) for some a1 > 0 belongs to NRV ρ if and only if

lim
s→∞

sf ′(s)
f (s)

= ρ.

Proposition 3 (Asymptotic behavior; [6], Propositions 1.5.8 and 1.5.10) If a function L is
slowly varying at infinity, then, for s → ∞,

∫ ∞

s
τρL(τ ) dτ ∼ (–ρ – 1)–1τ 1+ρL(τ ), for ρ < –1.

Proposition 4 ([6], Proposition 1.3.6) If a function L is slowly varying at zero, then, for
s → +∞,

sρL(s) → +∞, s–ρL(s) → 0, for ρ > 0.

Appendix 2
In this section, we collect some useful results.

Lemma B.1 ([53], Lemma 2.2) Let f satisfy (f1).
(i) If f satisfies (f2), then Cf ≥ 1.

(ii) (f2) holds for Cf ∈ (1, +∞) if and only if f ∈ RV Cf +1
Cf –1

.

(iii) If (f2) holds for Cf = 1, then f is rapidly varying to infinity at infinity.
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Lemma B.2 ([53], Lemma 2.3) Let f satisfy (f1)–(f2) and ψ be the solution of problem (1.5).
Then

(i) ψ ′(t) = –(2F(ψ(t)))1/2, ψ ′′(t) = f (ψ(t)), ψ(t) > 0, t > 0;
(ii) limt→0+ ψ(t) = ∞;

(iii) limt→0+
tψ ′′(t)
ψ ′(t) = –Cf ; and

(iv) limt→0+
tψ ′(t)
ψ(t) = 1 – Cf , where Cf ∈ [1,∞).

Lemma B.3 (Comparison principle; [23], Theorems 10.1, 10.2) Let Ψ (x, s, ξ ) satisfy the
following two conditions:

(D1) Ψ is nonincreasing in s for all (x, ξ ) ∈ Ω ×R
N ; and

(D2) Ψ is continuously differentiable with respect to the variable ξ in Ω × (0,∞) ×R
N .

If u, v ∈ C(Ω̄) ∩ C2(Ω) satisfies �u + Ψ (x, u,∇u) ≥ �v + Ψ (x, v,∇v) in Ω and u ≤ v on ∂Ω ,
then u ≤ v in Ω .
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