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Abstract
In this paper, we will compute critical groups at zero for the Kirchhoff type equation
using the property that critical groups are invariant under homotopies preserving
isolatedness of critical points. Using this results, we can get more nontrivial solutions
when the functional of this equation is coercive.
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1 Introduction
Let � be a bounded domain of RN with sufficiently regular boundary ∂�, and we study
the following Kirchhoff type equation:

⎧
⎨

⎩

–(a + b
∫

�
|∇u|2 dx)�u = f (x, u) in �,

u = 0 on ∂�,
(1.1)

where a, b > 0 are real constants. The problem (1.1) is related to the Kirchhoff’s model, we
refer to [8, 10] for details and further references.

Moreover, if we assume that
(f0) f ∈ C1(� ×R,R), f (x, 0) = 0 and there is c > 0 such that

∣
∣f ′(x, u)

∣
∣ ≤ c

(
1 + |u|γ –2), for some 2 ≤ γ < 2∗ =

⎧
⎨

⎩

+∞, N = 1, 2,
2N

N–2 , N ≥ 3,

then weak solutions of Eq. (1.1) correspond to critical points of the C2 functional I :
H1

0 (�) →R defined by

I(u) =
a
2
‖u‖2 +

b
4
‖u‖4 –

∫

�

F(x, u) dx,

where F(x, u) =
∫ u

0 f (x, t) dt, and H1
0 (�) is the Hilbert space endowed with the norm

‖u‖ = ‖∇u‖2 =
(∫

�

|∇u|2 dx
)1/2

.
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In the sequel, we assume

0 < λ1 < λ2 ≤ · · · ≤ λk ≤ · · ·

are the eigenvalues of –� in H1
0 (�).

In recent years, there have been many papers which have studied the Kirchhoff type
problems by variational methods. When the nonlinearity f is superlinear, the existence
results of solutions can be found in [13, 18, 19, 26], and for the case where the nonlinearity
is asymptotically linear, we refer to [4, 15, 24, 26] for details and further references. For
example, by using the condition

lim
t→0

f (x, t)
at

= p(x),

where 0 ≤ p(x) ∈ L∞(�) and ‖p(x)‖∞ < λ1, one shows [4] that 0 is a local minimizer of I .
Moreover, the authors in [19] assume

a
2
λkt2 + C1t4 ≤ F(x, t) ≤ a

2
λk+1t2 + C2t4, for |t| < δ,

where δ, C1, C2 are positive constants, and they show that the functional I has a local
linking at zero.

In particular, using the Yang index, the authors in [15] consider the eigenvalue problem

⎧
⎨

⎩

–‖u‖2�u = μu3 in �,

u = 0 on ∂�,
(1.2)

and get an unbounded sequence of eigenvalues

0 < μ1 < μ2 ≤ · · · ≤ μk ≤ · · · .

Furthermore, using this sequence of eigenvalues, when the nonlinearity f is superlinear
near zero but asymptotically 4-linear at infinity, in [18] one computes the relevant critical
groups and obtains nontrivial solutions.

In this paper, the main aim is to give some results on the critical groups estimates at
zero for I and its applications to the existence and multiplicity results for equation (1.1)
by Morse theory. Therefore, we recall the following notions (see [2, 14]). We assume that
u0 is an isolated critical point of I , U is an isolated neighborhood of u0, and I(u0) = c ∈R,
the group

C∗(I, u0) = H∗
(
Ic ∩ U , Ic ∩ U \ {u0}

)
, ∗ ∈N0 = {0, 1, 2, . . .},

is called the ∗th critical group of the functional I at u0, where Ic = {u ∈ H1
0 (�) : I(u) ≤ c},

and H∗(·, ·) are the singular relative homological groups with a coefficient group F.
We impose on f the following non-resonance and resonance conditions:
(f1) there exists λ ∈R such that

lim|u|→0

f (x, u)
au

= λ, uniformly in x ∈ �;
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(f2) there exists α > 0 such that

ug(x, u) ≤ 0, for |u| ≤ α, x ∈ �,

where g(x, u) = f (x, u) – aλ1u.
Our results read as follows.

Theorem 1.1 Assume that (f0) and (f1) hold. If λ ∈ (λk ,λk+1), then u = 0 is an isolated
critical point of I such that

C∗(I, 0) = δ∗,kF.

Theorem 1.2 Assume that (f0), (f1) and (f2) hold. If λ = λ1, then u = 0 is an isolated critical
point of I such that

C∗(I, 0) = δ∗,0F.

Remark 1 Note that, for the semilinear elliptic equation, i.e., b = 0, Theorem 1.1 can be
found in [2], now we can generalize the same results to Eq. (1.1) with any b > 0. However,
we cannot directly use the methods in [2], because there are many difficulties to get the
critical group estimates for the functional I . For example, although we can get a space
decomposition according to the eigenfunctions which is the basis of linking theorem by
(f1), the second derivative of I in each critical point is complex, so that we are not sure
that the generalized Morse splitting lemma can be used. In spite of these difficulties, we
can obtain critical groups estimates at zero by using the basic properties of critical groups
(see [3]), that is, critical groups are invariant under homotopies preserving isolatedness of
critical points.

Remark 2 Obviously, (f2) is known as one of the sign conditions in resonance problems.
For the results of sign conditions with b = 0 we refer to [9, 11, 16, 17] for details and further
references.

Using Theorem 1.1, we can also obtain some multiplicity results for Eq. (1.1). We make
the following assumption:

(f3) there exist M > 0 and β < aλ1
2 such that

F(x, u) –
b
4
μ1|u|4 ≤ βu2, for |u| ≥ M, x ∈ �,

and our next result reads as follows.

Theorem 1.3 Assume that N ≤ 3, (f0), (f1) and (f3) hold. If λ ∈ (λk ,λk+1) with k ≥ 2, then
Eq. (1.1) has at least three nontrivial solutions.

Remark 3 Using similar conditions, the paper [25] has studied the Kirchhoff type equa-
tions involving the nonlocal fractional p-Laplacian and can get at least two nontrivial so-
lutions by the three-critical point theorem (see [12, Theorem 2.1]). Because of the exact
calculations of the critical groups at zero, our theorem can get more nontrivial solutions.
Then our result is new.
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Remark 4 For the semilinear elliptic equation, if the condition

lim|u|→∞

(

F(x, u) –
1
2
λ1|u|2

)

dx = –∞, x ∈ �, (1.3)

holds, then the functional I with b = 0 is coercive ([7]). For Eq. (1.1), because of the exis-
tence of Laplacian operator, we can also prove that the functional I with b > 0 is coercive
with (f3). For other results of (1.1) we refer to [5, 7, 20–23, 25] and references therein.

This paper is organized as follows. The proofs of Theorems 1.1–1.3 are given in Sects. 2–
4, respectively. In the sequel, we use the letter C to denote a suitable positive constant
whose value may change from line to line.

2 Proof of Theorem 1.1
We first recall some notions and results for Morse theory (see, e.g., [2]). By (f1), the func-
tional I is a C2 functional with Fréchet derivatives

〈
I ′(u), w

〉
= a

∫

�

∇u∇w dx + b‖u‖2
∫

�

∇u∇w dx –
∫

�

f (x, u)w dx, (2.1)

for all u, w ∈ H1
0 (�).

Definition 2.1 If every sequence {un} ⊂ H1
0 (�) with

I(un) being bounded, I ′(un) → 0, as n → ∞,

possesses a convergent subsequence, then the functional I is said to satisfy the Palais–
Smale (for short (P.S)) condition.

Proposition 2.2 ([3]) Assume τ ∈ [0, 1], let �τ ∈ C1(H1
0 (�)) and

u0 ∈ K(�τ ) =
{

u ∈ H1
0 (�) : �′

τ (u) = 0
}

.

If U ⊂ H1
0 (�) is a closed neighborhood of u0 such that

(i) �τ satisfies the (P.S) condition in U for all τ ∈ [0, 1],
(ii) K(�τ ) ∩ U = {u0} for all τ ∈ [0, 1],

(iii) the mapping τ → �τ is continuous between [0, 1] and C1(U),
then we have

C∗(�0, u0) = C∗(�1, u0), ∗ ∈N0.

Lemma 2.3 Assume that (f0) and (f1) hold. If λ ∈ (λk ,λk+1) then u = 0 is an isolated critical
point of I .

Proof Clearly, by f (x, 0) = 0 we have u = 0 is a critical point of I . To see that u = 0 is isolated,
we argue by contradiction: assume that there exists a sequence (un) in H1

0 (�) \ {0} such
that

⎧
⎨

⎩

un → 0, in H1
0 (�),

I ′(un) = 0, ∀n ≥ 1.
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Now, we set for all n ≥ 1, vn = un/‖un‖, and passing to a further subsequence we can
assume that

⎧
⎪⎪⎨

⎪⎪⎩

vn ⇀ v, weakly in H1
0 (�),

vn → v, strongly in L2(�),

vn(x) → v(x), a.e. x ∈ �.

(2.2)

From (2.1), for all n ≥ 1 and w ∈ H1
0 (�), we have

0 =
〈I ′(un), w〉

a‖un‖
=

∫

�

∇vn∇w dx +
b
a
‖un‖2

∫

�

∇vn∇w dx –
∫

�

f (x, un)
a‖un‖ w dx. (2.3)

By (f1) we have

f (x, un)
a‖un‖ =

f (x, un)
aun

un

‖un‖ ⇀ λv in L2(�), (2.4)

so the sequence( f (x,un)
a‖un‖ ) is bounded in L2(�).

Choosing w = vn – v in (2.3) and using the Hölder inequality we get

(

1 +
b
a
‖un‖2

)∫

�

∇vn∇(vn – v) dx ≤
∥
∥
∥
∥

f (x, un)
a‖un‖

∥
∥
∥
∥

2
‖vn – v‖2,

and the latter tends to 0 as n → ∞. Therefore we have vn → v in H1
0 (�) and in particular

‖v‖ = 1.
Since ‖un‖ → 0 (n → ∞) and (2.2) holds, when we pass to the limit in (2.3) again and

using (2.4), we get

∫

�

∇v∇w dx = λ

∫

�

vw dx,

which implies that λ is an eigenvalue of –� with v as an associated eigenfunction, contrary
to the assumption λ ∈ (λk ,λk+1). The proof is completed. �

Proof of Theorem 1.1 From Lemma 2.3, we know that u = 0 is an isolated critical point
of I . Next, we will use Proposition 2.2 to compute the critical groups of zero.

(1) First we define the C2 functional

Ia(u) =
a
2
‖u‖2 –

∫

�

F(x, u) dx,

then, by (f1) with λ ∈ (λk ,λk+1), we know that u = 0 is an isolated nondegenerate critical
point of Ia such that (see [2])

C∗(Ia, 0) = δ∗,kF. (2.5)
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(2) Now define a homotopy by setting for u ∈ H1
0 (�),

Js(u) = sI(u) + (1 – s)Ia(u), s ∈ [0, 1]. (2.6)

Then, by (f0), Js ∈ C1(H1
0 (�),R) and satisfies (P.S) condition on the bounded domain in

H1
0 (�) for any s ∈ [0, 1]. Clearly, u = 0 is a critical point for all s ∈ [0, 1]. We claim that

there is a neighborhood U of 0 such that u = 0 is the only critical point of Js in U for all
s ∈ [0, 1].

By contradiction, we assume that there exist sequences sn ∈ [0, 1] and (un) in H1
0 (�)\ {0}

such that
⎧
⎨

⎩

un → 0, in H1
0 (�),

Jsn
′(un) = 0, ∀n ≥ 1.

(2.7)

If we set vn = un/‖un‖, then passing to a further subsequence we can assume that

⎧
⎪⎪⎨

⎪⎪⎩

vn ⇀ v, weakly in H1
0 (�),

vn → v, strongly in L2(�),

vn(x) → v(x), a.e. x ∈ �.

For any w ∈ H1
0 (�), using (2.6) and (2.7) we get

0 =
〈Jsn

′(un), w〉
a‖un‖

=
∫

�

∇vn∇w dx +
snb
a

‖un‖2
∫

�

∇vn∇w dx

–
∫

�

f (x, un)
aun

vnw dx. (2.8)

Using the methods in the proof of Lemma 2.3, we deduce that vn → v in H1
0 (�) and

‖v‖ = 1. Passing to the limit in (2.8) again we get a contradiction.
(3) Now, by the homotopy invariance of the critical groups in Proposition 2.2, we have

C∗(J0, 0) = C∗(Ia, 0) = C∗(I, 0) = C∗(J1, 0). (2.9)

Then (2.5) and (2.9) give

C∗(I, 0) = δ∗,kF.

The proof is completed. �

3 Proof of Theorem 1.2
Now, we give the proof of Theorem 1.2.

Lemma 3.1 Assume that (f0), (f1) and (f2) hold. If λ = λ1, then u = 0 is an isolated critical
point of I .
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Proof By contradiction, assume that ‖un‖ → 0, I ′(un) = 0 and un �≡ 0, then by the elliptic
estimates we have

‖un‖C(�) → 0, as n → ∞,

this together with (f2) and un �≡ 0 gives

aλ1

∫

�

|un|2 dx ≤ a
∫

�

|∇un|2 dx

= –b‖un‖4 + aλ1

∫

�

|un|2 dx +
∫

�

g(x, un)un dx

< aλ1

∫

�

|un|2 dx, for n large enough,

which is a contradiction. Then u = 0 is an isolated critical point of the functional I . �

Assume that θ ∈ C1(R, [–α,α]) is a non-decreasing mapping with

θ (u) =

⎧
⎨

⎩

u if |u| ≤ α/2,

±α if ± u ≥ α,
(3.1)

where α is defined in (f2). We define a functional �τ ∈ C1(H1
0 (�),R) by setting (see for

example [6, Lemma 4.4])

�τ (u) =
a
2
‖u‖2 +

b
4
‖u‖4 –

aλ1

2

∫

�

|u|2 dx –
∫

�

G
(
x, (1 – τ )u + τθ (u)

)
dx,

where G(x, u) =
∫ u

0 g(x, t) dt, and τ ∈ [0, 1]. Moreover, for any τ ∈ [0, 1], by (f0) we also know
that �τ (u) satisfies (P.S) condition on any bounded domain in H1

0 (�).

Proof of Theorem 1.2 By Lemma 3.1, we know that u = 0 is an isolated critical point of I .
(1) First, we want to prove that there is a ball Bε(0) with ε > 0 small enough such that

K(�τ ) ∩ Bε(0) = {0}, ∀τ ∈ [0, 1]. (3.2)

By contradiction, we assume there exist sequences τn ∈ [0, 1] and un ∈ H1
0 (�) \ {0} such

that

�′
τn (un) = 0, un → 0 (n → ∞).

By the elliptic estimates we have

‖un‖C(�) → 0, as n → ∞,

which implies that, for n big enough,

un ∈ Bε(0), and ‖un‖C(�) ≤ α/2,
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then θ (un) = un and �0(un) = �τn (un) by definition (3.1). Now, for n big enough, we get

I ′(un) = �′
0(un) = �′

τn (un) = 0,

which is a contradiction with the fact that u = 0 is an isolated critical point of I in
Lemma 3.1. Then (3.2) is true.

(2) Next, we want to prove

C∗(�1, 0) = δ∗,0F. (3.3)

Indeed, from (3.1), we know |θ (u)| ≤ α for u ∈ H1
0 (�), then (f2) gives

�1(u) =
a
2
‖u‖2 +

b
4
‖u‖4 –

aλ1

2

∫

�

|u|2 dx –
∫

�

G
(
x, θ (u)

)
dx

≥ –
∫

�

G
(
x, θ (u)

)
dx

≥ 0,

which implies that 0 is a local minimizer of �1, so (3.3) is true.
(3) Now, by (3.2), (3.3) and the homotopy invariance of the critical groups in Proposi-

tion 2.2, we have

C∗(I, 0) = C∗(�0, 0) = C∗(�1, 0) = δ∗,0F.

The proof is completed. �

4 Proof of Theorem 1.3
We introduce two truncated energy functionals by setting

I±(u) =
a
2
‖u‖2 +

b
4
‖u‖4 –

∫

�

F±(x, u) dx, u ∈ H1
0 (�),

where F±(x, u) =
∫ u

0 f±(x, s) ds and

f±(x, t) =

⎧
⎨

⎩

f (x, t) ±t ≥ 0,

0 ±t < 0.

Clearly I± ∈ C1(H1
0 (�),R). Obviously, a nonzero critical point u± of I± is a nontrivial non-

negative (non-positive) solution of problem (1.1). Indeed, for any w ∈ H1
0 (�) we have

0 =
〈
I ′

+(u+), w
〉

= a
∫

�

∇u+∇w dx + b‖u+‖2
∫

�

∇u+∇w dx –
∫

�

f+(x, u+)w dx.

Choosing w = u–
+ = min{u+, 0}, we get ‖u–

+‖ = 0. Therefore, u+ ≥ 0 for a.e. x ∈ �. The case
for I– is similar.

Lemma 4.1 If (f0) and (f3) hold, then I and I± satisfy the (P.S) condition.
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Proof It suffices to show that I and I± are coercive on H1
0 (�). The following method is

similar to [7]. For the functional I , by contradiction, there is a sequence {un} ⊂ H1
0 (�)

such that

I(un) ≤ C, as ‖un‖ → ∞. (4.1)

If we set vn = un
‖un‖ , then ‖vn‖ = 1 and there is a v0 ∈ H1

0 (�) such that

⎧
⎪⎪⎨

⎪⎪⎩

vn ⇀ v0, weakly in H1
0 (�),

vn → v0, strongly in L4(�),

vn(x) → v0(x), a.e. x ∈ �.

(4.2)

From the condition (f3), we get

∫

�

(

F(x, u) –
bμ1

4
|u|4

)

dx ≤ β

∫

�

u2 dx + C, for any u ∈ H1
0 (�), x ∈ �, (4.3)

this together with (4.1) gives

C
‖un‖4 ≥ I(un)

‖un‖4 ≥ a
2
‖un‖–2 +

b
4
‖vn‖4 –

bμ1

4

∫

�

|vn|4 dx –
C + C‖un‖2

‖un‖4 ,

then we obtain

lim sup
n→∞

‖vn‖4 ≤ μ1

∫

�

|v0|4 dx.

On the other hand, by the variational characterization of μ1 and the lower semiconti-
nuity of the norm we get

μ1

∫

�

|v0|4 dx ≤ ‖v0‖4 ≤ lim inf
n→∞ ‖vn‖4,

which implies that

lim
n→∞‖vn‖4 = ‖v0‖4

and

‖v0‖4 = μ1

∫

�

|v0|4 dx.

Therefore

vn → v0 strongly in H1
0 (�).

Then we get |v0| �= 0 for a.e. x ∈ �, and by (4.2) we also have

∣
∣un(x)

∣
∣ → +∞, a.e. x ∈ �. (4.4)
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Using β < aλ1
2 , (4.3) and (4.4) give

I(un) ≥ a
2

∫

�

|∇un|2 dx –
∫

�

(

F(x, un) –
bμ1

4
|un|4

)

dx

≥ aλ1

2

∫

�

|un|2 dx – β

∫

�

|un|2 dx – C

→ +∞, as n → ∞,

this is a contradiction with (4.1).
The case of I+ (I–) is similar. �

Let e1 > 0 be the eigenfunction associated with λ1.

Lemma 4.2 If (f1) with k ≥ 2 holds, then there exists t > 0 such that I±(±te1) < 0.

Proof By (f0) and (f1), for ε > 0 with λk – ε > λ1 there exists 2 < ν ≤ 2∗ such that

F(x, u) ≥ a
2

(λk – ε)u2 – C|u|ν , ∀u ∈R, x ∈ �.

Then we get

I+(te1) ≤ aλ1|t|2
2

∫

�

|e1|2 dx +
b|t|4

4
‖e1‖4

–
a(λk – ε)t2

2

∫

�

|e1|2 dx + C|t|ν
∫

�

|e1|ν dx

≤ –C|t|2 + C|t|4 + C|t|ν ,

< 0, as t > 0 small.

The other case is similar. �

Proof of Theorem 1.3 I, I± are coercive on H1
0 (�) and satisfy the (P.S) condition by

Lemma 4.1. From Lemma 4.2, the functional I has a positive critical point u1 and a negative
critical point u2 such that

C∗(I, u1) = C∗(I, u2) = δ∗,0F.

Using the mountain pass lemma in [1], we know that equation has a solution u3 such that
(see [2])

C1(I, u3) �= 0.

Moreover, using (f1) with k ≥ 2, Theorem 1.1 gives

C∗(I, 0) = δ∗,kF,

which implies that u3 �= 0. The proof is completed. �



Wang et al. Boundary Value Problems        (2018) 2018:184 Page 11 of 12

5 Conclusions
There are many difficulties if we want to obtain critical groups estimates for the Kirch-
hoff type equation; for example, we are not sure if the generalized Morse splitting lemma
can be used. Then in this paper, by using the basic properties that critical groups are in-
variant under homotopies preserving the isolatedness of critical points, we can compute
critical groups at zero when we impose on f the non-resonance and resonance conditions.
Moreover, using these critical groups estimates our theorem can get more nontrivial so-
lutions. The main results presented in this paper improve and generalize many results in
[4, 19, 25].

Acknowledgements
The authors thank Professor Jiabao Su for many valuable discussions and suggestions.

Funding
This paper is supported by the NSFC (11771302, 11601353, 1174013), the fund of Beijing Education Committee
(KM201710009012, 6943), the fund of North China University of Technology (XN018010, XN012).

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Author details
1College of Sciences, North China University of Technology, Beijing, China. 2School of Mathematical Sciences, Capital
Normal University, Beijing, China. 3Department of Mathematics, Beijing University of Chemical Technology, Beijing, China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 4 September 2018 Accepted: 3 December 2018

References
1. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical points theory and applications. J. Funct. Anal. 14,

349–381 (1973)
2. Chang, K.-C.: Infinite Dimensional Morse Theory and Multiple Solution Problems. Birkhäuser, Boston (1993)
3. Chang, K.-C., Ghoussoub, N.: The Conley index and the critical groups via an extension of Gromoll–Meyer theory.

Topol. Methods Nonlinear Anal. 7, 77–93 (1996)
4. Cheng, B., Wu, X.: Existence results of positive solutions of Kirchhoff problems. Nonlinear Anal. 71, 4883–4892 (2009)
5. Fiscella, A., Pucci, P.: P-Fractional Kirchhoff equations involving critical nonlinearities. Nonlinear Anal., Real World Appl.

35, 350–378 (2017)
6. Iannizzotto, A., Liu, S., Perera, K., Squassina, M.: Existence results for fractional p-Laplacian problems via Morse theory.

Adv. Calc. Var. 9, 101–125 (2016)
7. Jiu, Q., Su, J.: Existence and multiplicity results for Dirichlet problems with p-Laplacian. J. Math. Anal. Appl. 281,

587–601 (2003)
8. Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)
9. Li, S.-J., Willem, M.: Applications of local linking to critical point theory. J. Math. Anal. Appl. 189, 6–32 (1995)
10. Lions, J.L.: On some questions in boundary value problems of mathematical physics. In: Contemporary

Developments in Continuum Mechanics and Partial Differential Equations. Proc. Internat. Sympos., Inst. Mat. Univ.
Fed. Rio de Janeiro, Rio de Janeiro. North-Holland Math. Stud., vol. 30, pp. 284–346. North-Holland, Amsterdam (1978)

11. Liu, J.-Q.: A Morse index for a saddle point. Syst. Sci. Math. Sci. 2, 32–39 (1989)
12. Liu, J.-Q., Su, J.: Remarks on multiple nontrivial solutions for quasi-linear resonant problems. J. Math. Anal. Appl. 258,

209–222 (2001)
13. Mao, A., Zhang, Z.: Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition.

Nonlinear Anal. 70, 1275–1287 (2009)
14. Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems. Springer, Berlin (1989)
15. Perera, K., Zhang, Z.: Nontrivial solutions of Kirchhoff-type problems via the Yang index. J. Differ. Equ. 221, 246–255

(2006)
16. Su, J.: Semilinear elliptic boundary value problems with double resonance between two consecutive eigenvalues.

Nonlinear Anal. 48, 881–895 (2002)
17. Su, J.: Existence and multiplicity results for classes of elliptic resonant problems. J. Math. Anal. Appl. 273, 565–579

(2002)



Wang et al. Boundary Value Problems        (2018) 2018:184 Page 12 of 12

18. Sun, J., Liu, S.: Nontrivial solutions of Kirchhoff type problems. Appl. Math. Lett. 25, 500–504 (2012)
19. Sun, J., Tang, C.: Existence and multiplicity of solutions for Kirchhoff type equations. Nonlinear Anal. 74, 1212–1222

(2011)
20. Sun, M.: Multiplicity of solutions for a class of the quasilinear elliptic equations at resonance. J. Math. Anal. Appl. 386,

661–668 (2012)
21. Sun, M., Zhang, M., Su, J.: Critical groups at zero and multiple solutions for a quasilinear elliptic equation. J. Math. Anal.

Appl. 428, 696–712 (2015)
22. Sun, Y.: Indirect boundary integral equation method for the Cauchy problem of the Laplace equation. J. Sci. Comput.

71, 469–498 (2017)
23. Xiang, M., Zhang, B., Qiu, H.: Existence of solutions for a critical fractional Kirchhoff type problem in R

N . Sci. China
Math. 60, 1647–1660 (2017)

24. Yang, Y., Zhang, J.: Nontrivial solutions of a class of nonlocal problems via local linking theory. Appl. Math. Lett. 23,
377–380 (2010)

25. Zhang, B., Molica Bisci, G., Xiang, M.: Multiplicity results for nonlocal fractional p-Kirchhoff equations via Morse theory.
Topol. Methods Nonlinear Anal. 49, 445–461 (2017)

26. Zhang, Z., Perera, K.: Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow. J. Math.
Anal. Appl. 317, 456–463 (2006)


	Multiplicity results for the Kirchhoff type equation via critical groups
	Abstract
	MSC
	Keywords

	Introduction
	Proof of Theorem 1.1
	Proof of Theorem 1.2
	Proof of Theorem 1.3
	Conclusions
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


