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Abstract
In this paper, we will find an explicit optimal lower bound for the first eigenvalue of a
fourth order measure differential equation, motivated by physical problems when
some physically meaningful measurement is fixed. We establish a variational
characterization for the first eigenvalue of the fourth order measure differential
equation and find the explicit optimal lower bound for the first eigenvalue. As an
application, we will find the explicit optimal lower bound for the first eigenvalue of a
vibrating beam which represents the smallest axial compressive force necessary to
cause the beam to buckle.
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1 Introduction
Eigenvalue theory has numerous applications in mathematics and applied sciences. More-
over, problems linking the coefficient of an operator to the sequence of its eigenvalues are
among the most fascinating of mathematical analysis. The sharp estimate of eigenvalues
for ordinary or partial differential equations with different kinds of boundary conditions
are very important in the theory of eigenvalues and play very important roles in the study
of nonlinear differential equations. For both ordinary and partial differential operators,
there have evolved a lot of results [1, 5–7, 9, 14, 18].

In this paper, we will study the optimal lower bound for the lowest eigenvalue in the
more general setting of measure differential equations (MDEs). Let

M(I,R) :=
{
μ : I →R : μ(0+) ∃,μ(t+) = μ(t) ∀t ∈ (0, 1), V(μ, I) < ∞}

be the space of non-normalized R-valued measures of I . Here I = [0, 1] and for any t ∈
[0, 1), μ(t+) := lims↓t μ(s) is the right limit. The space of (normalized) R-valued measures
is

M0(I,R) :=
{
μ ∈M(I,R) : μ(0+) = 0

}
. (1.1)
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We consider the fourth order measure differential equation

dy(3)(t) + λy(2)(t) dt + y(t) dμ(t) = 0, t ∈ [0, 1], (1.2)

for a given a measure μ ∈M0 := M0(I,R) with the asymmetric boundary condition

y(0) = y′′(0) = 0 = y(1) = y′(1). (1.3)

By establishing a variational characterization (3.3) in Sect. 3, we can show existence of an
eigenvalue λ = λ1(μ). Since the eigenvalue λ in (3.3) is characterized by taking minimum
over, we call it the first eigenvalue of (1.2)–(1.3). In this paper, we will solve the following
minimization problem:

L̃(r) := inf
{
λ1(μ) : μ ∈ B0[r]

}
, (1.4)

here

B0[r] :=
{
μ ∈M0(I,R) : ‖μ‖V ≤ r

}
.

To this end, we will first establish a variational characterization for the first eigenvalue
of the fourth order measure differential Eq. (1.2) with boundary (1.3). Then as in [12] for a
second order linear MDE, with the strong continuous dependence results of solutions and
the zeroth eigenvalues of (1.2) on measures μ with the weak∗ topology (see Theorems 2.7
and 3.3), we will find the explicit optimal lower bounds of the first eigenvalue of problem
(1.4) as follows.

Theorem 1.1 Given r ≥ 0, one has

L(r) = λ1(–rδaλ
). (1.5)

Here δaλ
is the Dirac measure at aλ and aλ satisfies the equation E(λ, a) = 0, where δa is as

in (4.3) and

E(λ, a) = –4 sinωa – 4ωa cosωa + 2ω cosω(2a – 1)

+ 2 sinω(2a – 1) – 2ω cosω + 4ωa cosω + 2 sinω. (1.6)

This paper is organized as follows. In Sect. 2, we will recall basic facts on the measure
differential equation (MDE). In Sect. 3, we will use the variational method to establish
the basic theory for the first eigenvalue of the fourth order MDE. In Sect. 4, based on
the minimization characterization of the first eigenvalues we will prove Theorem 1.1. In
Sect. 5, As an application of Theorem 1.1, we will find the explicit optimal lower bound for
the first eigenvalue of a vibrating beam which represents the smallest axial compressive
force necessary to cause the beam to buckle.
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2 Preliminaries
In this section, we will recall some basic facts on MDE.

By the Riesz representation theorem [8], (M0(I,R),‖·‖V) is the same as the dual space of
the Banach space (C(I,R),‖·‖∞) of continuousR-valued functions of I with the supremum
norm ‖ · ‖∞, where we write for V( m)uI , as ‖μ‖V is the total variation of μ (over I),

V(μ, I) := sup

{ n–1∑

i=0

∣∣μ(ti+1) – μ(ti)
∣∣ : 0 = t0 < t1 < · · · < tn–1 < tn = 1, n ∈N

}

.

In fact, μ ∈ (M0(I,R),‖ · ‖V) defines μ∗ ∈ (C(I,R),‖ · ‖∞)∗ by

μ∗(f ) =
∫

I
f (t) dμ(t), f ∈ C(I,R), (2.1)

which refers to the Riemann–Stieltjes integral, or the Lebesgue–Stieltjes integral [2].
Moreover, one has

‖μ‖V = V(μ, I) = sup

{∫

I
f dμ : f ∈ C(I,R),‖f ‖∞ = 1

}
.

Lemma 2.1 ([15]) Let ν ∈M0(I,R). Define

ν̂(t) :=

⎧
⎨

⎩
–|ν(0)| for t = 0,

V(ν, (0, t]) for t ∈ (0, 1].
(2.2)

Then ν̂ ∈M0(I,R) satisfies ‖ν‖V = ν̂(1) – ν̂(0) and

∣∣∣∣

∫

[a,b]
f (s) dν(s)

∣∣∣∣ ≤
∫

[a,b]

∣∣f (s)
∣∣dν̂(s) ∀f ∈ C(I,R), [a, b] ⊂ I. (2.3)

For the general theory of the Riemann–Stieltjes integral and the Lebesgue–Stieltjes in-
tegral, see, e.g., [2].

Let � : I → R be �(t) ≡ t. Then � yields the Lebesgue measure of I and the Lebesgue in-
tegral. More generally, any F ∈L1(I,R) induces an absolutely continuous measure defined
by

μF (t) :=
∫

[0,t]
F(s) ds, t ∈ I. (2.4)

In this case, one has

‖μF‖V = ‖F‖1 = ‖F‖L1(I,R) (2.5)

and
∫

I0

f (t) dμF (t) =
∫

I0

f (t)F(t) dt =
∫

I0

f (t) dμF (t)

for any f ∈ C(I,R) and subinterval I0 ⊂ I .
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In the space M0(I,R) of measures, one has the usual topology induced by the norm
‖ · ‖V. Due to the duality relation, one has also the following weak∗ topology w∗.

Definition 2.2 Let μ0,μn ∈ M0(I,R), n ∈ N. We say that μn is weakly∗ convergent to μ0

iff, for each f ∈ C(I,R), one has

lim
n→∞

∫

I
f dμn =

∫

I
f dμ0,

which refers to the limit of Riemann–Stieltjes integral.
As for the compactness of balls B0[r] in weak∗ topology, we have the following result.

Lemma 2.3 ([8]) Let r > 0. Then B0[r] ⊂ (M0(I,R), w∗) is sequentially compact.

Definition 2.4 A function y : I →R is called a solution to Eq. (1.2) on the interval I if
• y ∈ C(I,R), and
• there exist (y0, y1, y2, y3) ∈R

4 and functions y(1), y(2), y(3) : [0, 1] →R such that the
following are satisfied:

y(t) = y0 +
∫

[0,t]
y(1)(s) ds, t ∈ [0, 1], (2.6)

y(1)(t) = y1 +
∫

[0,t]
y(2)(s) ds, t ∈ [0, 1], (2.7)

y(2)(t) = y2 +
∫

[0,t]
y(3)(s) ds, t ∈ [0, 1], (2.8)

y(3)(t) =

⎧
⎨

⎩
y3, t = 0,

y3 –
∫

[0,t] λy(2)(s) ds –
∫

[0,t] y(s) dμ(s), t ∈ (0, 1].
(2.9)

The initial condition of MDE (1.2) can be written as

(
y(0), y(1)(0), y(2)(0), y(3)(0)

)
= (y0, y1, y2, y3). (2.10)

Since we have assumed that y ∈ C := C([0, 1],R), the right-hand sides of (2.6), (2.7), (2.8)
are the Lebesgue integrals and (2.9) is the Lebesgue–Stieltjes integral, respectively.

Because solutions of (1.2)–(2.10) are defined via fixed point equations, there are many
methods to prove the existence and uniqueness of solutions. For example, one can find a
proof from [4, 13, 16] based on the Kurzweil–Stieltjes integral, which applies also to the
first order linear MDE.

Lemma 2.5 For each (y0, y1, y2, y3) ∈R
4, problem (1.2)–(2.10) has the unique solution y(t)

defined on [0, 1].

For p ∈ [1,∞], let Lp := Lp([0, 1],R) be the Lebesgue space of real-valued functions with
the Lp norm ‖ · ‖p. For n ∈N, let Wn,p := W n,p([0, 1],R) and

Wn,p
0 := W n,p

0
(
[0, 1],R

)
=

{
y ∈Wn,p : y(0) = y(1) = 0

}
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be the usual Sobolev spaces with the norm ‖ · ‖Wn,p . For p = 2, Wn,2 and Wn,2
0 are denoted

simply by Hn and Hn
0 , respectively, with the norm ‖ · ‖Hn .

By the properties of the Lebesgue integral and the Lebesgue–Stieltjes integral, some
regularity results for solutions y(t) are as follows.

Corollary 2.6 Let y(t) be the solution of (1.2). Then y ∈ H3 and y(3) ∈ M := M([0, 1],R).
Hence,

y(1)(t) = y′(t) ∈ C1 := C1([0, 1],R
)
, y(2)(t) = y′′(t) ∈AC := AC

(
[0, 1],R

)
,

and y(3)(t) = y′′′(t) a.e. t ∈ [0, 1]. Here ′ denotes the derivative with respect to t.

We use y(t, y0, y1, y2, y3) to denote the unique solution of (1.2)–(2.10). Let

ϕ1(t) := y(t, 1, 0, 0, 0), ϕ2(t) := y(t, 0, 1, 0, 0),

ϕ3(t) := y(t, 0, 0, 1, 0), ϕ4(t) := y(t, 0, 0, 0, 1),

called the fundamental solutions of (1.2). By the linearity of (1.2) and the uniqueness of
the solution, one has, for t ∈ [0, 1],

⎛

⎜⎜⎜
⎝

y(t, y0, y1, y2, y3)
y(1)(t, y0, y1, y2, y3)
y(2)(t, y0, y1, y2, y3)
y(3)(t, y0, y1, y2, y3)

⎞

⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎝

ϕ1(t) ϕ2(t) ϕ3(t) ϕ4(t)
ϕ

(1)
1 (t) ϕ

(1)
2 (t) ϕ

(1)
3 (t) ϕ

(1)
4 (t)

ϕ
(2)
1 (t) ϕ

(2)
2 (t) ϕ

(2)
3 (t) ϕ

(2)
4 (t)

ϕ
(3)
1 (t) ϕ

(3)
2 (t) ϕ

(3)
3 (t) ϕ

(3)
4 (t)

⎞

⎟⎟⎟
⎠

⎛

⎜⎜⎜
⎝

y0

y1

y2

y3

⎞

⎟⎟⎟
⎠

.

In [12], the authors have obtained the continuity of solutions in measures for the second
order linear MDE. For the fourth order linear MDE, we can argue in a similar way to prove
the following conclusion.

Theorem 2.7 Let y(t,μ) be the solution of (1.2)–(2.10). Then the following solution map-
pings are continuous:

(
M0, w∗) → (

C,‖ · ‖∞
)
, μ → y(·,μ), (2.11)

(
M0, w∗) → (

C,‖ · ‖∞
)
, μ → y(1)(·,μ), (2.12)

(
M0, w∗) → (

C,‖ · ‖∞
)
, μ → y(2)(·,μ), (2.13)

(
M0, w∗) → (

M, w∗), μ → y(3)(·,μ). (2.14)

By Corollary 2.6, we have the following corollary.

Corollary 2.8 The solution mapping

(
M0, w∗) → (

C2,‖ · ‖H2
)
, μ → y(·,μ), (2.15)

is continuous, where C2 := C2([0, 1],R).
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3 Variational characterization for the first eigenvalue of MDE
In this section, we will use the variational method to establish the basic theory for the first
eigenvalue of the fourth order MDE. Though the question what is the complete struc-
ture of eigenvalues of problem (1.2)–(1.3) remains open to us, it is a standard result that
any (possible) eigenvalue λ ∈R of problem (1.2)–(1.3) with eigenfunction u ∈H3

0x0x must
satisfy

λ =

∫
[0,1](u

′′)2 dt +
∫

[0,1] u2 dμ(t)
∫

[0,1](u′)2 dt
, (3.1)

where

H3
0x0x :=

{
y ∈H3 : y(0) = y′′(0) = y(1) = y′(1) = 0

}
. (3.2)

In the following theorem, we show that problem (1.2)–(1.3) does admit the first eigen-
value and we explicitly present the minimization characterizations as follows.

Theorem 3.1 Let μ ∈M0, problem (1.2)–(1.3) admits the lowest eigenvalue λ1(μ), which
has the following minimization characterizations:

λ1(μ) = min
u∈H3

0x0x\{0}

∫
[0,1](u

′′)2 dt +
∫

[0,1] u2 dμ(t)
∫

[0,1](u′)2 dt
. (3.3)

Here M0 is as in (1.1).

Proof Denote

R(u) :=

∫
[0,1](u

′′)2 dt +
∫

[0,1] u2 dμ(t)
∫

[0,1](u′)2 dt
, (3.4)

where

u ∈H2
0x :=

{
y ∈H2 : y(0) = y(1) = y′(1) = 0

}
. (3.5)

With the standard estimate we have

‖u‖2
∞ ≤

(∫

[0,1]

∣∣u′∣∣dt
)2

≤
∫

[0,1]
u′u′ dt

= uu′|10 –
∫

[0,1]
uu′′ dt ≤

∫

[0,1]

∣∣uu′′∣∣dt

≤ ‖u‖2
∥∥u′′∥∥

2,

i.e.,

∥∥u′′∥∥
2 ≥ ‖u‖2

∞/‖u‖2. (3.6)
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Since

∫

[0,1]
u2 dμ(t) ≥ –‖μ‖V‖u‖2

∞ = –
‖μ‖V‖u‖2√

2
·
√

2‖u‖2∞
‖u‖2

≥ –
1
2

(‖μ‖2
V‖u‖2

2
2

+
2‖u‖4∞
‖u‖2

2

)
. (3.7)

Thus, we have from (3.6) and (3.7)

R(u) ≥ –
‖μ‖2

V
4

∀0 �= u ∈H2
0x. (3.8)

Due to (3.8), one has

λ1 := inf
u∈H2

0x\{0}
R(u) > –∞. (3.9)

Take a sequence {un} ⊂H2
0x such that

∥∥u′
n
∥∥∞ = 1 and lim

n→+∞ R(un) = λ1. (3.10)

Then
∫

[0,1]

(
u′′

n
)2 dt = R(un)

∫

[0,1]
u′

n
2 dt –

∫

[0,1]
u2

n dμ(t) ≤ ∣∣R(un)
∣∣ + ‖μ‖V

is bounded and {un} ⊂ H2
0x is bounded. As H2

0x is a Hilbert space and is compactly em-
bedded into C1, there exists a non-zero u0 ∈H2

0x such that

un → u0 in
(
H2

0x, w
)

and un → u0 in
(
C1,‖ · ‖C1

)
,

going to a subsequence if necessary. Thus

∫

[0,1]

(
u′′

0
)2 dt = lim

n→+∞

∫

[0,1]
u′′

0u′′
n dt ≤ lim inf

n→+∞

(∫

[0,1]

(
u′′

0
)2 dt

)1/2(∫

[0,1]

(
u′′

n
)2 dt

)1/2

.

This implies that

R(u0) ≤ lim infn→+∞
∫

[0,1](u
′′
n)2 dt +

∫
[0,1] u2

0 dμ(t)
∫

[0,1] u′
0

2 dt

= lim inf
n→+∞

∫
[0,1](u

′′
n)2 dt +

∫
[0,1] u2

n dμ(t)
∫

[0,1] u′
n

2 dt

= lim inf
n→+∞ R(un) = λ1.

Combining with (3.9), one has

R(u0) = λ1 = min
u∈H2

0x\{0}
R(u). (3.11)
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Take any

φ ∈ C∞
c :=

{
φ ∈ C∞(

[0, 1]
)

: suppφ ⊂ (0, 1)
}

.

Then u0 + sφ ∈H2
0x\{0} for all s ∈R with |s| small enough.

As a function of s, it follows from (3.11) that R(u0 + sφ) takes a minimum at s = 0.
Thus

0 =
dR(u0 + sφ)

ds

∣∣∣∣
s=0

=
2

(
∫

[0,1] u′
0

2 dt)2

(∫

[0,1]
u′

0
2 dt

(∫

[0,1]
u′′

0φ
′′ dt +

∫

[0,1]
u0φ dμ(t)

)

–
(∫

[0,1]

(
u′′

0
)2 dt +

∫

[0,1]
u2

0 dμ(t)
)∫

[0,1]
u′

0φ
′ dt

)

=
2

∫
[0,1] u2

0 dt

(∫

[0,1]
u′′

0φ
′′ dt +

∫

[0,1]
u0φ dμ(t) – λ1

∫

[0,1]
u′

0φ
′ dt

)
. (3.12)

Here (3.11) is used and the derivative is found using definition (3.4) for R(u).
Since φ ∈ C∞

c , one has

φ′(t) =
∫

[0,t]
φ′′(s) ds

and

φ(t) =
∫

[0,t]

(∫

[0,s]
φ′′(τ ) dτ

)
ds =

∫

[0,t]
(t – s)φ′′(s) ds.

Then
∫

[0,1]
u′

0(t)φ′(t) dt =
∫

[0,1]

(∫

[0,t]
u′

0(t)φ′′(s) ds
)

dt

=
∫

[0,1]

(∫

(s,1]
u′

0(t) dt
)

φ′′(s) ds

=
∫

[0,1]

(∫

(t,1]
u′

0(s) ds
)

φ′′(t) dt

and
∫

[0,1]
u0(t)φ(t) dμ(t) =

∫

[0,1]

(∫

[0,t]
(t – s)u0(t)φ′′(s) ds

)
dμ(t)

=
∫

[0,1]

(∫

(s,1]
(t – s)u0(t) dμ(t)

)
φ′′(s) ds

=
∫

[0,1]

(∫

(t,1]
(s – t)u0(s) dμ(s)

)
φ′′(t) dt.

Substituting into (3.12), we obtain

∫

[0,1]

(
u′′

0(t) +
∫

(t,1]
(s – t)u0(s) dμ(s) – λ1

∫

(t,1]
u′

0(s) ds
)

φ′′(t) dt = 0
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for all φ ∈ C∞
c . Hence u0(t) satisfies

u′′
0(t) +

∫

(t,1]
(s – t)u0(s) dμ(s) – λ1

∫

(t,1]
u′

0(s) ds = ct + ĉ a.e. t ∈ [0, 1], (3.13)

where c and ĉ are constants. Note that

∫

[0,t]

(∫

[0,τ ]
u0(s) dμ(s)

)
dτ =

∫

[0,t]
(t – s)u0(s) dμ(s)

=
∫

(t,1]
(s – t)u0(s) dμ(s) +

∫

[0,1]
(t – s)u0(s) dμ(s)

=
∫

(t,1]
(s – t)u0(s) dμ(s) + c1t + ĉ1,

where c1 and ĉ1 are constants. Hence Eq. (3.13) can be rewritten as

u′′
0(t) +

∫

[0,t]

(∫

[0,τ ]
u0(s) dμ(s)

)
dτ – λ1

∫

(t,1]
u′

0(s) ds = c2t + ĉ2 a.e. t ∈ [0, 1], (3.14)

where c2 = c – c1 and ĉ2 = ĉ – ĉ1 By the properties of Lebesgue integral and Lebesgue–
Stieltjes integral, one knows from (3.14) that u′′

0(t) is absolutely continuous and satisfies

u′′′
0 (t) +

∫

[0,t]
u0(s) dμ(s) + λ1

∫

[0,t]
u′′

0(s) ds = c̃ a.e. t ∈ [0, 1]. (3.15)

Equation (3.15) implies that u0 ∈ H3
0x0x and λ1 is necessarily an eigenvalue of problem

(1.2)–(1.3) with the eigenfunction u0. Because of (3.11) and the fact that u0 ∈ H3
0x0x, λ1 =

λ1(μ), which is characterized as in (3.3) and we know that λ1(μ) must be the smallest
eigenvalue of problem (1.2)–(1.3). �

Let us introduce the following ordering for measures. We say that measures μ2 ≥ μ1 if

∫

[0,1]
f (t) dμ2(t) ≥

∫

[0,1]
f (t) dμ1(t) for all f ∈ C+ :=

{
f ∈ C : f (t) ≥ 0, t ∈ [0, 1]

}
.

As a consequence of (3.3) in Theorem 3.1, we can obtain the following result.

Corollary 3.2 One has

μ2 ≥ μ1 ⇒ λ1(μ2) ≥ λ1(μ1),

for μ1,μ2 ∈M0.

Now the continuity of the first eigenvalue in measures with the weak∗ topology can be
proved by the same arguments as those in [10].

Theorem 3.3 λ1(μ) is continuous in μ with weak∗ topology in M0.



Lijuan and Gang Boundary Value Problems        (2018) 2018:188 Page 10 of 15

4 The optimal lower bound of the first eigenvalue of MDE
In this section, we will solve the minimization problem (1.4) explicitly for the lowest eigen-
value λ1. To this end, we use the lemma that follows.

Lemma 4.1 Given r > 0, consider the following minimization problem:

L̃(r) := inf
{
λ1(μ) : μ ∈ B0[r]

}
= min

{
λ1(μ) : μ ∈ B0[r]

}
. (4.1)

One has

L̃(r) = inf
a∈(0,1)

λ1(–rδa), (4.2)

where for a ∈ (0, 1]

δa(t) =

⎧
⎨

⎩
0 for t ∈ [0, a),

1 for t ∈ [a, 1],
(4.3)

is the unit Dirac measure at t = a.

Proof Given μ ∈ B0[r], we take an eigenfunction y(t) associated with λ1(μ) which satisfies
the normalization condition ‖y′‖2 = 1. There exists a ∈ (0, 1) such that

‖y‖∞ = max
t∈[0,1]

∣∣y(t)
∣∣ =

∣∣y(a)
∣∣.

We have

λ1(μ) =
∫

[0,1]

(
y′′)2 dt +

∫

[0,1]
y2 dμ(t)

≥
∫

[0,1]

(
y′′)2 dt – ‖μ‖V‖y‖2

∞

≥
∫

[0,1]

(
y′′)2 dt – ry2(a)

=
∫

[0,1]

(
y′′)2 dt +

∫

[0,1]
y2 d

(
–rδa(t)

)

≥ λ1(–rδa). (4.4)

Here the last inequality in (4.4) follows from characterization (3.3) for λ1(–rδa) since
‖y′‖2 = 1. Hence

L̃(r) = inf
a∈(0,1)

λ1(–rδa). �

The proof of Theorem 1.1 Let us explicitly find the first eigenvalue for Dirac measures
–rδa, where a ∈ (0, 1) and r ≥ 0. To this end, we need to solve the following equation:

dy(3)(t) + λy(2)(t) dt – ry(t) dδa(t) = 0, t ∈ [0, 1]. (4.5)
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One knows that a solution y(t) of (4.5) satisfies the classical ODE

y′′′′(t) + λy′′(t) = 0 (4.6)

for t on the intervals [0, a) and (a, 1]. At t = a, one has the following relations:

⎧
⎨

⎩
y(a+) = y(a–), y′(a+) = y′(a–),

y′′(a+) = y′′(a–), y′′′(a+) = y′′′(a–) + ry(a–).
(4.7)

From the first two conditions of (1.3), let us consider the initial value

(
y(0), y′(0), y′′(0), y′′′(0)

)
= (0, c, 0, ĉ) �= 0,

and we obtain

y(t) = ct + ĉ
(

1
ω2 t +

–1
ω3 sinωt

)
= c1t + c2 sinωt (4.8)

for t ∈ [0, a) and (c1, c2) �= 0. Here,

ω :=

⎧
⎨

⎩

2√
λ ∈R for λ ≥ 0,

2√|λ|i ∈C for λ < 0.
(4.9)

By (4.7), we have

y(a+) = c1a + c2 sinωa, y′(a+) = c1 + c2ω cosωa,

y′′(a+) = –c2ω
2 sinωa, y′′′(a+) = –c2ω

3 cosωa + r(c1a + c2 sinωa).

By using this as the initial value at t = a, we obtain from ODE (4.6)

y(t) = c1t + c2 sinωt +
(
r(c1a + c2 sinωa)

)( 1
ω2 (t – a) +

–1
ω3 sinω(t – a)

)
(4.10)

and

y′(t) = c1 + c2ω cosωt +
(
r(c1a + c2 sinωa)

)( 1
ω2 +

–1
ω2 cosω(t – a)

)

for t ∈ (a, 1]. Now the last two conditions y(1) = y′(1) = 0 of (1.3) imply the following linear
system for (c1, c2):

⎧
⎨

⎩
c1 + c2 sinω + r(c1a + c2 sinωa)( 1

ω2 (1 – a) + –1
ω3 sinω(1 – a)) = 0,

c1 + c2ω cosω + (r(c1a + c2 sinωa))( 1
ω2 + –1

ω2 cosω(1 – a)) = 0.
(4.11)

In order that system (4.11) has non-zero solutions (c1, c2), the corresponding determi-
nant of (4.11) is necessarily zero. This yields the following equation:

G(λ, a) = r, (4.12)
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where G : (–∞,π2
0 ] × (0, 1) → [0, +∞) is defined as

G(λ, a) :=

⎧
⎨

⎩

2ω3(– sinω+ω cosω)
G̃(ω,a) for λ �= 0,

12
a2(a+3)(1–a)3 for λ = 0,

(4.13)

where

G̃(ω, a) : = –4ωa sinωa + ω sin(2ωa – ω) + cosω – cos(2ωa – ω)

– 2ω2a cosω + ω sinω + 2ω2a2 cosω + 2ωa sinω,

π0 (≈ 4.4934) is the minimal positive root of the equation x cos x – sin x = 0. Then, by the
existence of the first eigenvalue, we conclude

λ1(–rδa) = min
{
λ ∈ R : G(λ, a) – r = 0

}
.

It is easy to check that G(λ, a) is a well-defined real function of (λ, a) ∈ (–∞,π2
0 ] × (0, 1)

with G(π2
0 , a) = 0 and G(λ, a) = G(λ, 1 – a). Moreover, the following properties of G(λ, a)

can be proved with a standard calculation.
(P1) When a ∈ (0, 1) is fixed, G(λ, a) is decreasing in λ ∈ (–∞,π2

0 ];
(P2) when λ ∈ (–∞,π2

0 ] is fixed, G(λ, a) is decreasing in a ∈ (0, aλ), where aλ ∈ (0, 1) is
such that

G(λ, aλ) = min
a∈(0,1)

G(λ, a)

and E(λ, aλ) = 0, where E : (–∞,π2
0 ] × (0, 1) →R is defined as in (1.6).

Since

lim
a→0

G(λ, a) = lim
a→1

G(λ, a) = +∞,

there exists aλ ∈ (0, 1) such that

G(λ, aλ) = min
a∈(0,1)

G(λ, a),

which is equivalent to

G̃(ω, aλ) = max
a∈(0,1)

G̃(ω, a).

Thus one has 0 = ∂
∂a G̃(ω, a)|a=aλ

and ∂2

∂a2 G̃(ω, a)|a=aλ
> 0 which implies E(λ, aλ) = 0.

By properties (P1) and (P2), we have

λ1(–rδaλ
) = inf

a∈(0,1)
λ1(–rδa),

with which one has

L̃(r) = λ1(–rδaλ
). �
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Remark 4.2 In [11, 17], the authors have solved the minimization problem of eigenval-
ues of the second order equation and pointed out that the critical measure of the Dirich-
let eigenvalues is located at the center a = 1

2 . By the conclusion of Theorem 1.1 one can
check that aλ �= 1

2 with a straightforward calculation, which illustrates the very interesting
phenomenon that the minimizing measure will no longer be located at the center of the
interval (i.e. a = 1

2 ) when the boundary condition is asymmetric.

5 Application to ODE
The eigenvalue problem of a vibrating beam described by the fourth order ODE

y′′′′(t) + λy′′(t) + F(t)y(t) = 0, t ∈ [0, 1], (5.1)

with the boundary condition (1.3) describes a vibrating beam which is subject to an axial
compressive load λ that causes it to buckle. It is well known that (5.1)–(1.3) admits a se-
quence of eigenvalues λ1(F) < λ2(F) < · · · < λm(F) < · · · . Associated with each eigenvalue,
there is only one linear independent eigenfunction (see [3]). Specifically, λ1(F) is called the
first eigenvalue and represents the smallest axial compressive load. People are concerned
with the lowest eigenvalues λ1(F) which represents the smallest axial compressive force
necessary to cause the beam to buckle. To get their sharp lower bounds one has to solve
the following minimization problem:

L(r) := inf
{
λ1(F) : F ∈ B1[r]

}
. (5.2)

Here B1[r] := {F ∈L1 : ‖F‖1 ≤ r}, r > 0.
We usually do not know if minimization problem (5.2) can be attained by some F from

B1[r] since the L1 balls B1[r] lack compactness even in the weak topology of L1. Precisely,
these extremal value problems cannot be solved directly by variational methods, because
eigenvalues λn(F) are implicit functionals of potentials F , the space L1 is infinite dimen-
sional, and the balls B1[r] with radius r in L1 are non-compact non-smooth sets.

As an application of results of Theorem 1.1, we can overcome the difficulties described
above by building a relationship between the minimization problem of the first eigenvalue
for the ODE and the one for the MDE. With the conclusion we obtained for MDE we give
the explicit optimal lower bound for the first eigenvalue of the vibrating beam (5.1) with
boundary condition (1.3).

In general, a measure cannot be a limit of smooth measures in the norm ‖ · ‖V. However,
in the w∗ topology, the following conclusion holds.

Lemma 5.1 ([9]) Given μ0 ∈ M0(I,R), there exists a sequence of measures {μn} ⊂
C∞(I,R) ∩M0(I,R) such that

μn → μ0 in
(
M0(I,R), w∗).

Moreover, if μ0 is increasing (decreasing) on I , then the sequence {μn} above can be chosen
such that, for each n ∈N, μn is increasing (deceasing) on I and ‖μn‖V = ‖μ0‖V.

Finally, because of Lemma 5.1 and Theorem 3.3, we can obtain the relationship between
the minimization problems of ODE and of MDE as follows.
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Theorem 5.2 Given r ≥ 0, one has that

L(r) = L̃(r). (5.3)

Proof Given F ∈ B1[r], the measure μF ∈M0 is defined as

μF (t) :=
∫

[0,t]
F(s) ds, t ∈ I (5.4)

and we see that μF ∈ B0[r] is absolutely continuous with respect to the Lebesgue measure.
So for any F ∈ B1[r],

L̃(r) ≤ λ1(μF ) = λ1(F),

which implies that

L̃(r) ≤ L(r). (5.5)

On the other hand, there exists μ̄ ∈ B0[r] such that λ1(μ̄) = L̃(r). By the monotonicity of
λ1(μ), without loss of generality, we can assume that μ̄ = – ˆ̄μ is decreasing. By Lemma 5.1,
there exists a sequence of measures {μ̄n} ⊂ C∞ ∩M0 such that

dμ̄n(t)
dt

= F̄n(t),

‖μ̄n‖V = ‖F̄n‖1 = ‖μ̄‖V ≤ r,

μ̄n → μ̄ in
(
M0, w∗).

Therefore, by Theorem 3.3, we have

L̃(r) = λ1(μ̄) = lim
n→∞λ1(μ̄n) = lim

n→∞λ1(F̄n) ≥ lim
n→∞ L(r) = L(r). (5.6)

Now (5.5) and (5.6) imply that L(r) = L̃(r). �

Remark 5.3 To compute L(r), it suffices to solve the following optimization problem:

min f (λ, a) = λ

subject to the constraints

G(λ, a) – r = 0, 0 < a < aλ,

where G(λ, a) as in (4.13).
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