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Abstract
In this paper, we consider the following third-order singular differential equation with
variable coefficients:

x′′′ + a(t)x = f (t, x) + e(t).

By using the Green’s function of the linear differential equation with constant
coefficients and some fixed point theorems, i.e., Leray–Schauder alternative principle
and Schauder’s fixed point theorem, we prove the existence of positive periodic
solutions of the above equation.
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1 Introduction
Since the 1980s, many researchers began to discuss the singular differential equations.
More concretely, in 1987, Lazer and Solimini [11] investigated the singular equations

x′′ = –
h(t)
xλ

+ f (t) (1.1)

and

x′′ =
g(t)
xλ

+ f (t), (1.2)

where λ > 0, g , h and f are periodic functions with period ω. In [11], the authors said that
the (1.1) has an attractive singularity, whereas (1.2) has a repulsive singularity. For positive
constant functions h, g and a continuous forcing term f , the authors gave the necessary
and sufficient conditions for the existence of periodic solutions of (1.1) and (1.2). One of
the common conditions to guarantee the existence of a positive periodic solution is a so-
called strong force condition (corresponding to the case λ ≥ 1 in (1.1)) or (1.2); see [3,
9, 10, 19, 20, 22] and the references therein. On the other hand, the existence of positive
periodic solutions of the singular differential equations has been established with a weak
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force condition (corresponding to the case 0 < λ < 1 in (1.1) or (1.2)); see [2, 4–7, 12, 13,
16, 18].

From then on, the study of existence of positive periodic solutions for second-order
singular differential equations has attracted many researchers’ attention (see [2, 3, 6, 7, 9,
10, 12, 16, 18, 20]). For example, in 2007 Torres [16] investigated a kind of second-order
non-autonomous singular differential equation,

x′′ + a(t)x = f (t, x) + e(t). (1.3)

By Schauder’s fixed point theorem, the author showed that the additional assumption of
a weak singularity is enough to guarantee the existence of periodic solutions. Afterwards,
Chu and Torres [6] improved the above results and presented a new assumption weaker
than the singular condition in [16]. In 2010, Wang [18] investigated the existence and mul-
tiplicity of positive periodic solutions of the singular systems (1.3) with superlinearity or
sublinearity assumptions at infinity for some e(t). The proof of their results was based on
the Krasnoselskii fixed point theorem.

At the same time, some authors began to consider third-order singular differential equa-
tion. For example, in 2006, Chu and Zhou [8] discussed the third-order singular differential
equation

x′′′ + κ3
∗x = f (t, x), 0 ≤ t ≤ 2π , (1.4)

with periodic boundary conditions x(i)(0) = x(i)(2π ), i = 0, 1, 2. Here κ is a positive constant
and nonlinearity f (t, x) is singular at x = 0. By the Green’s function and a fixed point the-
orem in cones, they obtained the existence of periodic solutions for (1.4) in a small range
of κ∗, and to be concrete κ∗ ∈ (0, 1√

3 ).
All the aforementioned results concern second-order singular differential equations

with variable coefficients or singular third-order differential equations with constant co-
efficients. There are few results on the singular third-order equation with variable coeffi-
cients. Motivated by [6, 8, 16, 18], in this paper, we discuss the existence of positive peri-
odic solutions for the following singular differential equation with variable coefficients:

x′′′ + a(t)x = f (t, x) + e(t), (1.5)

where e(t) ∈ C(R,R) is an ω-periodic function, a(t) ∈ C(R,R+) is an ω-periodic function
and the nonlinear term f (t, x) ∈ C(R×R

+,R). Moreover, f is an ω-periodic function on t
and is of singularity at origin, i.e.,

lim
x→0+

f (t, x) = +∞,
(

or lim
x→0+

f (t, x) = –∞
)

, uniformly in t.

We say (1.5) is of repulsive type (resp. attractive type) if f (t, x) → +∞ (resp. f (t, x) → –∞)
as x → 0+.

As is well known, it is very complicated to calculate the Green’s function of a third-order
linear differential equation with variable coefficients

x′′′(t) + a(t)x(t) = h(t),
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where h ∈ C(R,R+) is an ω-periodic function. In this paper, we first discuss the Green’s
function of the third-order linear differential equation with constant coefficients

x′′′(t) + Mx(t) = h(t), (1.6)

where M := maxt∈[0,ω] a(t). By application of the Green’s function of (1.6) and some fixed
point theorems, i.e. Schauder’s fixed point theorem and a nonlinear alternative principle
of Leray–Schauder, we obtain the existence of a positive periodic solution for (1.5).

The paper is organized as follows: In Sect. 2, the Green’s function for constant coeffi-
cients differential equation (1.6) will be given. Some useful properties for the Green’s func-
tion are shown also. In Sect. 3, we will prove that a weak singularity enables the achieve-
ment of new existence criteria by means of Schauder’s fixed point theorem. Moreover, we
consider the periodic solution of (1.5) with attractive-repulsive singularities. In Sect. 4,
by employing Green’s function of (1.6) and the nonlinear alternative principle of Leray–
Schauder, we prove the existence results of positive periodic solutions of (1.5), which are
applicable to the case of a strong singularity as well as to the case of a weak singularity.
Our new results generalize some recent results contained in [8].

2 Preliminary
2.1 Constant coefficients differential equation
In this section, we discuss the Green’s function of the third-order differential equations

⎧⎨
⎩

x′′′ + Mx = h(t),

x(0) = x(ω), x′(0) = x′(ω), x′′(0) = x′′(ω),
(2.1)

where M := maxt∈[0,ω] a(t). We will use it to investigate the existence of a positive peri-
odic solution for (1.5). In the following, we introduce Green’s functions of (2.1) and some
properties, which can be found in [14].

Lemma 2.1 (see [14]) The equation (2.1) has an unique ω-periodic solution

x(t) =
∫ ω

0
G(t, s)h(s) ds, (2.2)

where

G(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 exp( 1
2 M

1
3 (t–s))[sin(

√
3

2 M
1
3 (t–s)– π

6 )–exp( 1
2 M

1
3 ω) sin(

√
3

2 M
1
3 (t–s–ω)– π

6 )]

3M
2
3 (1+exp(M

1
3 ω)–2 exp( 1

2 M
1
3 ω) cos(

√
3

2 M
1
3 ω))

+ exp(M
1
3 (s–t))

3M
2
3 (1–exp(–M

1
3 ω))

, 0 ≤ s < t ≤ ω,

2 exp( 1
2 M

1
3 (t+ω–s))[sin(

√
3

2 M
1
3 (t+ω–s)– π

6 )–exp( 1
2 M

1
3 ω) sin(

√
3

2 M
1
3 (t–s)– π

6 )]

3M
2
3 (1+exp(M

1
3 ω)–2 exp( 1

2 M
1
3 ω) cos(

√
3

2 M
1
3 ω))

+ exp(M
1
3 (s–t–ω))

3M
2
3 (1–exp(–M

1
3 ω))

, 0 ≤ t ≤ s ≤ ω.

(2.3)

Now we present some properties of the Green’s functions for (2.1). Denote

A =
1

3M 2
3 (exp(M 1

3 ω) – 1)
, B =

3 + 2 exp(– M
1
3 ω
2 )

3M 2
3 (1 – exp(– M

1
3 ω
2 ))2

.
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Lemma 2.2 (see [14])
∫ ω

0 G(t, s) ds = 1
M and if M < 64π3

81
√

3ω3 holds, then 0 < A ≤ G(t, s) ≤ B
for all (t, s) ∈ [0,ω] × [0,ω].

On the other hand, let M = �3, then (2.1) is transformed into

⎧
⎨
⎩

y′(t) + �y(t) = h(t),

y(0) = y(ω),
(2.4)

and

⎧⎨
⎩

x′′(t) – �x′(t) + �2x(t) = y(t),

x(0) = x(ω), x′(0) = x′(ω).
(2.5)

Moreover, the solutions of (2.4) can be written as

y(t) =
∫ ω

0
G1(t, s)h(s) ds, (2.6)

where

G1(t, s) =

⎧⎨
⎩

e–�(t–s)

1–e–ω� , 0 ≤ s ≤ t ≤ ω,
e–�(ω+t–s)

1–e–ω� , 0 ≤ t < s ≤ ω.

Lemma 2.3 (see [15]) The boundary problem (2.5) is equivalent to the integral equation

x(t) =
∫ ω

0
G2(t, s)y(s) ds,

where

G2(t, s) =

⎧⎪⎪⎨
⎪⎪⎩

2e
�
2 (t–s)[sin

√
3

2 �(ω–t+s)+e– �ω
2 sin

√
3

2 �(t–s)]
√

3�(e
�ω
2 +e– �ω

3 –2 cos
√

3
2 �ω)

, 0 ≤ s ≤ t ≤ ω,

2e
�
2 (ω+t–s)[sin

√
3

2 �(s–t)+e– �ω
2 sin

√
3

2 �(ω–s+t)]
√

3�(e
�ω
2 +e– �ω

3 –2 cos
√

3
2 �ω)

, 0 ≤ t < s ≤ ω.

Moreover, for G2(t, s), if � < 2π√
3ω

, then we have the estimates

0 ≤ l1 :=
2 sin(

√
3

2 �ω)√
3�(e

�ω
2 + 1)2

≤ G2(t, s) ≤ 2√
3 sin(

√
3

2 �ω)
:= L1, ∀s, t ∈ [0,ω].

According to the above lemmas, the solution of (2.1) can be written as

x(t) =
∫ ω

0
G2(t, τ )

∫ ω

0
G1(τ , s)h(s) ds dτ =

∫ ω

0

∫ ω

0
G2(t, τ )G1(τ , s)h(s) ds dτ

=
∫ ω

0

[∫ ω

0
G2(t, s)G1(s, τ ) ds

]
h(τ ) dτ =

∫ ω

0

[∫ ω

0
G2(t, τ )G1(τ , s) dτ

]
h(s) ds.
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Thus, let

G∗(t, s) =
∫ ω

0
G2(t, τ )G1(τ , s) dτ , (2.7)

we can get

x(t) =
∫ ω

0
G∗(t, s)h(s) ds. (2.8)

Lemma 2.4 Assume that M < 8π3

3
√

3ω3 holds, then G∗(t, s) ≥ 0 for all (t, s) ∈ [0,ω] × [0,ω].

Proof From Lemma 2.3, we know G2(t, s) ≥ 0. Since G1(t, s) > 0, from (2.7) we can see that
G∗(t, s) ≥ 0 for all (t, s) ∈ [0,ω] × [0,ω]. �

2.2 Variable coefficients differential equation
In this section, we consider the variable coefficients differential equations

⎧⎨
⎩

x′′′ + a(t)x = h(t),

x(0) = x(ω), x′(0) = x′(ω), x′′(0) = x′′(ω),
(2.9)

where h ∈ C(R,R+) is an ω-periodic function and a(t) ∈ C(R,R+) is the same ω-periodic
functions in (1.5). Obviously, the calculation of the Green’s function of (2.9) is very com-
plicated. To overcome this difficulty, we will make a shift on the linear term.

Let X = {φ ∈ C(R,R) : φ(t + ω) = φ(t)} with the maximum norm ‖φ‖ = maxt∈[0,ω] |φ(t)|.
Obviously, X is a Banach space. Denote

M := max
t∈[0,ω]

a(t), m := min
t∈[0,ω]

a(t),

then (2.9) can be rewritten as

x′′′ + Mx =
(
M – a(t)

)
x + h(t). (2.10)

Define the operators T , H : X → X by

(Th)(t) =
∫ ω

0
G(t, s)h(s) ds, (Hx)(t) =

(
M – a(t)

)
x.

Clearly, T , H are completely continuous. Furthermore, we see that (Th)(t) > 0 if M <
64π3

81
√

3ω3 . At the same time we have ‖H‖ ≤ M – m. By Lemma 2.1, the solution of (2.10)
can be written in the form

x(t) = (Th)(t) + (THx)(t).

Therefore, we have

‖TH‖ ≤ ‖T‖‖H‖ ≤ M – m
M

= 1 –
m
M

< 1,
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using the fact
∫ ω

0 G(t, s) ds = 1
M . Hence the solution of (2.10) can be written as

x(t) = (I – TH)–1(Th)(t).

Define an operator P : X → X,

(Ph)(t) = (I – TH)–1(Th)(t),

it is obvious that x(t) = (Ph)(t) is the unique periodic solution of (2.9) for any h(t).
Moveover, we have the following.

Lemma 2.5 P is completely continuous and

(Th)(t) ≤ (Ph)(t), ∀t ∈R and ‖Ph‖ ≤ M
m

‖Th‖. (2.11)

Proof By the Neumann expansion of P, we have

P = (I – TH)–1T

=
(
I + TH + (TH)2 + · · · + (TH)n + · · · )T

= T + THT + (TH)2T + · · · + (TH)nT + · · · . (2.12)

Since T and H are completely continuous, P is completely continuous. Since Th(t) > 0 for
any t, we get

(Th)(t) ≤ (Ph)(t).

Noting that ‖TH‖ < 1, we get

‖Ph‖ ≤ M
m

‖Th‖. �

For the singular differential equation with variable coefficients considered in this paper,

x′′′ + a(t)x = f (t, x) + e(t),

where e(t) ∈ C(R,R) is an ω-periodic function, a(t) ∈ C(R,R+) is an ω-periodic function
and the nonlinear term f (t, x) ∈ C(R×R

+,R), we define an operator Q : X → X,

(Qx)(t) = P
(
f (t, x) + e(t)

)
.

According to Lemma 2.5, it is easy to verify the following remark.

Remark 1 Q is completely continuous in X.
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3 Weak singularity
In this section, we establish the existence of positive periodic solutions for third-order
differential equation (1.5) by using Schauder’s fixed point theorem [21].

We write d(t) � 0 if d(t) ≥ 0 for a.e. t ∈ [0,ω] and d(t) > 0 on a set of positive measure.
For a given function e(t) ∈ C[0,ω], we denote the essential supremum and infimum by e∗

and e∗ if they exist. Define the function γ : R →R,

γ (t) =
∫ ω

0
G(t, s)e(s) ds,

which is the unique ω-periodic solution of

x′′′(t) + Mx(t) = e(t).

3.1 Case (I) γ∗ = 0
Theorem 3.1 Suppose that M < 64π3

81
√

3ω3 holds. Furthermore, assume that the following con-
ditions hold:

(H1) For each L > 0, there exists a continuous function φL � 0 such that f (t, x) ≥ φL(t) for
all (t, x) ∈ [0,ω] × (0, L].

(H2) There exist continuous, non-negative functions g(x), h(x) and ζ (t) such that

0 ≤ f (t, x) ≤ ζ (t)
(
g(x) + h(x)

)
for all (t, x) ∈ [0,ω] × (0,∞),

and g(x) > 0 is non-increasing and h(x) is non-decreasing in x ∈ (0,∞).
(H3) There exists a positive constant R > 0 such that R > (ΦR)∗ and

R ≥ M
m

((
g
(
(ΦR)∗

))(
1 +

h(R)
g(R)

))
Λ∗ + ‖γ ‖),

where

ΦR(t) =
∫ ω

0
G(t, s)(φR)(s) ds, Λ(t) =

∫ ω

0
G(t, s)ζ (s) ds, ‖γ ‖ = max

t∈[0,ω]

∣∣γ (t)
∣∣.

If γ∗ = 0, then (1.5) has at least one positive periodic solution.

Proof It is obvious that an ω-periodic solution of (1.5) is just a fixed point of the operator
equation

x(t) = (Qx)(t). (3.1)

Let R be the positive constant satisfying (H3) and denote

r := (ΦR)∗,

then we have R > r > 0. Now define

Ω =
{

x ∈ X : r ≤ x(t) ≤ R for all t
}

. (3.2)

Obviously, Ω is a closed convex set. Next we will prove Q(Ω) ⊂ Ω .
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In fact, for each x ∈ Ω and for all t ∈ [0,ω], using the fact that G(t, s) > 0 for all (t, s) ∈
[0,ω] × [0,ω], together with condition (H1) and Lemma 2.5, we have

(Qx)(t) = P(f
(
t, x(t) + e(t)

)

≥ T
(
f
(
t, x(t)

)
+ e(t)

)

=
∫ ω

0
G(t, s)f

(
s, x(s)

)
ds + γ (t)

≥
∫ ω

0
G(t, s)φR(s) ds + γ (t)

≥ (ΦR)∗ := r > 0.

On the other hand, by conditions (H2), (H3) and Lemma 2.5, we have

(Qx)(t) = P
(
f
(
t, x(t)

)
+ e(t)

)

≤ M
m

max
t∈[0,ω]

∣∣T(
f
(
t, x(t)

)
+ e(t)

)∣∣

=
M
m

max
t∈[0,ω]

∣∣∣∣
∫ ω

0
G(t, s)

(
f
(
s, x(s)

)
+ e(s)

)
ds

∣∣∣∣

=
M
m

max
t∈[0,ω]

∣∣∣∣
∫ ω

0
G(t, s)f

(
s, x(s)

)
ds + γ (t)

∣∣∣∣

≤ M
m

{
max

t∈[0,ω]

∣∣∣∣
∫ ω

0
G(t, s)f

(
s, x(s)

)
ds

∣∣∣∣ + ‖γ ‖
}

≤ M
m

max
t∈[0,ω]

∣∣∣∣
∫ ω

0
G(t, s)ζ (t)

(
g
(
x(s)

)
+ h

(
x(s)

))
ds

∣∣∣∣ +
M
m

‖γ ‖

≤ M
m

(
g(r)

(
1 +

h(R)
g(R)

)
Λ∗ + ‖γ ‖

)
≤ R.

In conclusion, Q(Ω) ⊂ Ω . From Remark 1, we know that Q is compact in Ω . Therefore,
the proof is completed by Schauder’s fixed point theorem. �

Corollary 3.2 Suppose that M < 64π3

81
√

3ω3 holds. Assume the following condition holds:
(F1) There exist continuous functions d(t), d̂(t) � 0 and 0 < ρ < 1 such that satisfy

0 ≤ d̂(t)
xρ

≤ f (t, x) ≤ d(t)
xρ

, for all x > 0, and a.e. t.

If γ∗ = 0, then (1.5) has at least one positive periodic solution.

Proof Take

φL(t) =
d̂(t)
Lρ

, ζ (t) = d(t), g(x) =
1
xρ

, h(x) = 0,

then conditions (H1) and (H2) are satisfied and the existence condition (H3) becomes

R >
Ψ̂∗
Rρ

= r,
M
m

((
Rρ

Ψ̂∗

)ρ

Ψ ∗ + ‖γ ‖
)

≤ R, (3.3)
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where Ψ̂ =
∫ ω

0 G(t, s)d̂(s) ds, Ψ =
∫ ω

0 G(t, s)d(s) ds, for some R > 0. Note that Ψ̂∗ > 0, since
0 < ρ < 1, we can choose R > 0 large enough so that (3.3) is satisfied. By Theorem 3.1, we
can complete the proof. �

3.2 Case (II) γ∗ > 0
Theorem 3.3 Suppose that M < 64π3

81
√

3ω3 holds. And f (t, x) satisfies (H2). Furthermore, as-
sume that the following condition holds:

(H4) There exists R > 0 such that

M
m

(
g(γ∗)

(
1 +

h(R)
g(R)

)
Λ∗ + γ ∗

)
≤ R.

If γ∗ > 0, then (1.5) has at least one positive periodic solution.

Proof We shall adopt the same strategy and notation as in the proof of Theorem 3.1. Let
R be the positive constant satisfying (H4) and r = γ∗, then R > r > 0 since R > γ ∗. Next we
prove that Q(Ω) ⊂ Ω .

For each x ∈ Ω and for all t ∈ [0,ω], by the non-negative sign of G(t, s) and f (t, x) we
have

(Qx)(t) = P
(
f
(
t, x(t)

)
+ e(t)

)

≥ T
(
f
(
t, x(t)

)
+ e(t)

)

=
∫ ω

0
G(t, s)f

(
s, x(s)

)
ds + γ (t)

≥ γ∗ = r > 0.

On the other hand, from Lemma 2.5, we have

(Qx)(t) = P
(
f
(
t, x(t)

)
+ e(t)

)

≤ M
m

max
t∈[0,ω]

∣∣∣∣
∫ ω

0
G(t, s)f

(
s, x(s)

)
ds + γ (t)

∣∣∣∣

≤ M
m

{
max

t∈[0,ω]

∣∣∣∣
∫ ω

0
G(t, s)f

(
s, x(s)

)
ds

∣∣∣∣ + γ ∗
}

,

since γ∗ > 0, we know γ (t) > 0, then ‖γ ‖ = γ ∗. Therefore, by (H2) and (H4), we have

(Qx)(t) ≤ M
m

{
max

t∈[0,ω]

∣∣∣∣
∫ ω

0
G(t, s)f

(
s, x(s)

)
ds

∣∣∣∣ + γ ∗
}

≤ M
m

{
max

t∈[0,ω]

∣∣∣∣
∫ ω

0
G(t, s)ζ (s)

(
g
(
x(s)

)
+ h

(
x(s)

))
ds

∣∣∣∣ + γ ∗
}

≤ M
m

(
g(r)

(
1 +

h(R)
g(R)

)
Λ∗ + γ ∗

)
≤ R.

In conclusion, Q(Ω) ⊂ Ω . From Remark 1, it is easy to show that Q is compact in Ω .
Therefore, by Schauder’s fixed point theorem, our result is proven. �
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Corollary 3.4 Suppose that M < 64π3

81
√

3ω3 holds. Assume the following condition holds:
(F2) There exist a continuous function d(t) � 0 and a constant ρ > 0 such that satisfy

0 ≤ f (t, x) ≤ d(t)
xρ

, for all x > 0, and a.e. t.

If γ∗ > 0, then (1.5) has at least one positive periodic solution.

Proof Take

ζ (t) = d(t), g(x) =
1
xρ

, h(x) = 0,

then condition (H2) is satisfied and the existence condition (H4) is also satisfied if we take
R > 0 with

R ≥ M
m

(
Ψ ∗

(γ∗)ρ
+ γ ∗

)
.

By Theorem 3.3, the result is obvious. �

Corollary 3.5 Suppose that M < 64π3

81
√

3ω3 holds. Assume the following condition holds: (F3)
There exist a continuous function d(t) � 0 and constants ρ > 0, 0 ≤ η < 1 that satisfy

0 ≤ f (t, x) ≤ d(t)
xρ

+ d(t)xη, for all x > 0, and a.e. t.

If γ∗ > 0, then (1.5) has at least one positive periodic solution.

Proof Take

ζ (t) = d(t), g(x) =
1
xρ

, h(x) = xη,

then condition (H2) is satisfied and the existence condition (H4) is also satisfied if we take
R > 0 with

R ≥ M
m

(
Ψ ∗

(
1

(γ∗)ρ
+ (R)η

)
+ γ ∗

)
.

Using Theorem 3.3, the proof is complete. �

On the other hand, condition (H2) implies that the nonlinearity f (t, x) is non-negative
for all values (t, x), which is quite a hard restriction. In the following, we will show how to
avoid this restriction for γ∗ > 0.

Theorem 3.6 Assume that M < 64π3

81
√

3ω3 holds. Furthermore, assume that the following con-
ditions hold:

(H ′
2) There exist continuous, non-negative functions g(x) and ζ (t), such that

f (t, x) ≤ ζ (t)g(x) for all (t, x) ∈ [0,ω] × (0,∞),

and g(x) > 0 is non-increasing in x ∈ (0,∞).
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(H ′
3) Let us define

R :=
M
m

(
g(γ∗)Λ∗ + γ ∗),

and assume that f (t, x) ≥ 0 for all (t, x) ∈ [0,ω] × (0, R].
If γ∗ > 0, then (1.5) has at least one positive periodic solution.

Proof Let R be the positive constant satisfying (H ′
3) and r = γ∗, then R > r > 0 since R > γ ∗.

Using the same method in the proof of Theorem 3.3, it is easy to prove that T(Ω) ⊂ Ω .
We omit it. Then, by Schauder’s fixed point theorem, we complete the proof. �

Corollary 3.7 Assume M < 64π3

81
√

3ω3 holds. Assume the following condition hold:
(F4) there exist constants ρ,η,μ > 0 such that satisfy

f (t, x) =
1
xρ

– μxη, for all x > 0, and a.e. t.

If γ∗ > 0, then (1.5) has at least one positive periodic solution for each 0 ≤ μ < μ′, where μ′

is some positive constant.

Proof The nonlinearity is f (t, x) = 1
xρ – μxη , and therefore (H ′

2) holds with ζ (t) = 1, g(x) =
1

xρ . Define R = M
m ( Υ ∗

(γ∗)ρ + γ ∗). Note that f (t, x) ≥ 0 if and only if xρ+η ≤ 1/μ. Therefore,
(H ′

3) is verified for any μ < (R)–(ρ+η). As a consequence, the result holds for μ′ = ( M
m ( Υ ∗

(γ∗)ρ +
γ ∗))–(ρ+η). �

In the following, we will investigate (1.5) with attractive–repulsive singularities.

Corollary 3.8 Assume that 3
√

3ωM
1
3

4π
< 1 holds and the nonlinearity in (1.5) is

f (t, x) =
1
xα

–
κ

xβ
,

where α > β > 0 and κ > 0 is a positive parameter. If γ∗ > 0 and κ ∈ [0,κ1], where

κ1 =
(

M
m

(
1

M(γ∗)α
+ γ ∗

))β–α

,

then (1.5) has at least one positive periodic solution.

Proof To apply Theorem 3.6, we take

g(x) =
1
xα

, ζ (t) ≡ 1.

It is obvious that the condition (H2)′ holds. Take R > 0 with

R =
M
m

(
1

M(γ∗)α
+ γ ∗

)
,

where 1
M =

∫ ω

0 G(t, s) ds.
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Next, we prove f (t, x) ≥ 0 for all (t, x) ∈ [0,ω] × (0, R]. In fact, since α > β > 0 and κ ∈
[0,κ1], we have

κ ≤
(

M
m

(
1

M(γ∗)α
+ γ ∗

))β–α

= Rβ–α ≤ xβ–α ∀x ∈ (0, R].

Therefore, we get f (t, x) ≥ 0 for all (t, x) ∈ [0,ω] × (0, R]. Then condition (H ′
3) is satis-

fied. �

3.3 Case (III) γ ∗ < 0
Theorem 3.9 Assume that M < 64π3

81
√

3ω3 holds and f (t, x) satisfies (H1) and (H2). Further-
more, assume that the following condition holds:

(H5) There exists R > 0 such that R > (ΦR)∗ + γ∗ > 0 and

M
m

g
(
(ΦR)∗ + γ∗

)(
1 +

h(R)
g(R)

)
Λ∗ ≤ R.

If γ ∗ < 0, then (1.5) has at least one positive periodic solution.

Proof This theorem can be proved in the same way as Theorem 3.1.
Let R be a positive constant satisfying (H5) and r = (ΦR)∗ + γ∗, then R > r > 0 since R >

(ΦR)∗ + γ∗. Next we will prove that Q(Ω) ⊂ Ω .
For each x ∈ Ω and for all t ∈ [0,ω], from (H1), (H5) and Lemma 2.5, we have

(Qx)(t) = P
(
f
(
t, x(t)

)
+ e(t)

) ≥ T
(
f
(
t, x(t)

)
+ e(t)

)

=
∫ ω

0
G(t, s)f

(
s, x(s)

)
ds + γ (t) ≥

∫ ω

0
G(t, s)φR(s) ds + γ (t)

≥ (ΦR)∗ + γ∗ = r > 0.

On the other hand, from Lemma 2.5, we have

(Qx)(t) = P
(
f
(
t, x(t)

)
+ e(t)

) ≤ M
m

max
t∈[0,ω]

∣∣T(
f
(
t, x(t)

)
+ e(t)

)∣∣

=
M
m

max
t∈[0,ω]

∣∣∣∣
∫ ω

0
G(t, s)f

(
s, x(s)

)
ds + γ (t)

∣∣∣∣

≤ M
m

max
t∈[0,ω]

∣∣∣∣
∫ ω

0
G(t, s)f

(
s, x(s)

)
ds

∣∣∣∣,

since γ ∗ ≤ 0, G(t, s) and f (t, x(t)) are non-negative, (ΦR)∗ + γ∗ > 0, then we know

∣∣∣∣
∫ ω

0
G(t, s)f

(
s, x(s)

)
ds + γ (t)

∣∣∣∣ ≤
∣∣∣∣
∫ ω

0
G(t, s)f

(
s, x(s)

)
ds

∣∣∣∣.
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Therefore, by (H2) and (H5), we have

(Qx)(t) ≤ M
m

{
max

t∈[0,ω]

∣∣∣∣
∫ ω

0
G(t, s)f +(

s, x(s)
)

ds
∣∣∣∣
}

≤ M
m

{
max

t∈[0,ω]

∣∣∣∣
∫ ω

0
G(t, s)ζ (s)

(
g
(
x(s)

)
+ h

(
x(s)

))
ds

∣∣∣∣
}

≤ M
m

g(r)
(

1 +
h(R)
g(R)

)
Λ∗ ≤ R.

In conclusion, Q(Ω) ⊂ Ω . From Remark 1, it is easy to verify that Q is compact in Ω .
Therefore, by Schauder’s fixed point theorem, our result is proven. �

Corollary 3.10 Assume M < 64π3

81
√

3ω3 and (F1) hold. If γ ∗ < 0 and

γ∗ ≥
(

Ψ̂∗mρ

(MΨ ∗)ρ
ρ2

) 1
1–ρ2

(
1 –

1
ρ2

)
,

where 0 < ρ < 1 appears in (F1), then there exists a positive periodic solution of (1.5).

Proof Take

φL(t) =
d̂(t)
Lρ

, ζ (t) = d(t), g(x) =
1
xρ

, h(x) = 0,

Then conditions (H1) and (H2) are satisfied. Next, we consider the condition (H5) also to
be satisfied. Taking R := MΨ ∗

m(r)ρ , then (ΦR)∗ + γ∗ > 0 holds if r satisfies

Ψ̂∗mρ

(MΨ ∗)ρ
(r)ρ

2
+ γ∗ ≥ r

or, equivalently,

γ∗ ≥ f (r) := r –
Ψ̂∗mρ

(MΨ ∗)ρ
(r)ρ

2
.

The function f (r) possesses a minimum at r0 := [ Ψ̂∗mρ

(MΨ ∗)ρ ρ2]
1

1–ρ2 . Let r = r0, then (ΦR)∗ +γ∗ >
0 holds in (H5) if γ∗ ≥ f (r0), which is just the condition

γ∗ ≥
(

Ψ̂∗mρ

(MΨ ∗)ρ
ρ2

) 1
1–ρ2

(
1 –

1
ρ2

)
.

The (H5) holds directly by the choice of R, and it remain to prove that R = MΨ ∗
m(r0)ρ > r0. This

is easily verified through elementary computations. Using Theorem 3.9, we complete the
proof. �

4 Strong and weak singularities
In the section, we state and prove the existence results which are applicable to the case of
a strong singularity as well as to the case of a weak singularity. The proof is based on the
following nonlinear alternative of Leray–Schauder, which can be found in [1].
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Lemma 4.1 ([1]) Let C be a convex subset of a normed linear space E, and let U be an open
subset of C with 0 ∈ U . Then every compact, continuous map F : Ū → C has at least one
of the following properties,

(I) F has a fixed point in Ū ; or
(II) there is a x ∈ ∂U and λ ∈ (0, 1) with x = λFx.

Let

A = min
0≤s,t≤ω

G(t, s), B = max
0≤s,t≤ω

G(t, s), σ = A/B.

By Lemma 2.2, we have B > A > 0 and 0 < σ < 1.
Define the operator Q∗ : X → X,

(
Q∗x

)
(t) = P

(
f
(
t, x(t) + γ (t)

))
, (4.1)

and a cone K in X,

K =
{

x ∈ X : x(t) ≥ 0 for all t ∈ R and min
t∈R

x(t) ≥ σm
M

‖x‖
}

.

4.1 Case (I) γ∗ ≥ 0
Theorem 4.2 Assume that M < 64π3

81
√

3ω3 , (H1) and (H2) hold. Suppose the following condi-
tions are satisfied:

(H6) there exists a positive constant R > 0 such that

M
m

g
(

σm
M

R + γ∗
)(

1 +
h(R + γ ∗)
g(R + γ ∗)

)
Λ∗ < R.

If γ∗ ≥ 0, then (1.5) has at least one positive ω-periodic solution x with x(t) > γ (t) for all t
and 0 < ‖x – γ ‖ < R.

Proof Step 1. Consider the equation

x′′′(t) + a(t)x(t) = f
(
t, x(t) + γ (t)

)
. (4.2)

It is easy to see that if (4.2) has a positive ω-periodic solution x satisfying x(t) +γ (t) > 0 for
t ∈ [0,ω] and 0 < ‖x‖ < R, then u(t) = x(t) + γ (t) is a positive ω-periodic solution of (1.5)
with 0 < ‖u – γ ‖ < R. So we only need to consider (4.2).

Since (H6) holds, we can choose n0 ∈ {1, 2, . . .} such that 1
n0

< σm
M R + γ∗ and

M
m

(
g
(

σm
M

R + γ∗
)(

1 +
h(R + γ ∗)
g(R + γ ∗)

)
Λ∗ +

1
n0

)
< R.

Let N0 = {n0, n0 + 1, . . .} and fix n ∈ N0, we consider the family of equations

x′′′(t) + a(t)x(t) = μfn
(
t, x(t) + γ (t)

)
+

M
n

, (4.3)
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where μ ∈ [0, 1] and

fn(t, x) =

⎧⎨
⎩

f (t, x) if x ≥ 1
n ,

f (t, 1
n ) if x ≤ 1

n .

Now we prove that (4.3) has a periodic solution for each n. If x is a periodic solution of
problem (4.3), define an operator Q∗

n : K → X by

(
Q∗

nx
)
(t) = P

(
μfn

(
t, x(t) + γ (t)

)
+

M
n

)
.

So, solving (4.3) is equivalent to solving the following operator equation:

x(t) =
(
Q∗

nx
)
(t). (4.4)

Let Ω = {x ∈ K |‖x‖ < R}. We claim Q∗
n(Ω) ⊂ K . In fact, ∀x ∈ K , from Lemma 2.5, we

have

min
t∈R

(
Q∗

nx
)
(t) = min

t∈R
P
(

μfn
(
t, x(t) + γ (t)

)
+

M
n

)

≥ min
t∈R

T
(

μfn
(
t, x(t) + γ (t)

)
+

M
n

)

= μmin
t∈R

∫ ω

0
G(t, s)fn

(
s, x(s) + γ (s)

)
ds +

1
n

,

since
∫ ω

0 G(t, s) = 1
M . Therefore, from Lemma 2.2 and Lemma 2.5, we have

min
t∈R

(
Q∗

nx
)
(t) ≥ μA

∫ ω

0
fn

(
s, x(s) + γ (s)

)
ds +

1
n

= μσB
∫ ω

0
fn

(
s, x(s) + γ (s)

)
ds +

1
n

≥ σ max
t∈R

μ

∫ ω

0
G(t, s)fn

(
s, x(s) + γ (s)

)
ds +

1
n

= σ max
t∈R

T
(

μfn
(
t, x(t) + γ (t)

)
+

M
n

)

≥ σ
m
M

max
t∈R

P
(

μfn
(
t, x(t) + γ (t)

)
+

M
n

)

= σ
m
M

∥∥Q∗
nx

∥∥.

Since (Th)(t) ≤ (Ph)(t) ≤ M
m ‖Th‖, we can get ‖Th‖ ≥ m

M ‖Ph‖. This implies that Q∗
n(Ω) ⊂ K .

Besides, from Lemma 2.5, we know that Q∗
n : Ω → K is completely continuous.

Step 2. We claim that any fixed point x of (4.4) for all μ ∈ [0, 1] must satisfy ‖x‖ �= R.
Otherwise, assume that x is a fixed point of (4.4) for some μ ∈ [0, 1] such that ‖x‖ = R.
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Thus, from Lemma 2.5, we have

x(t) =
(
Q∗

nx
)
(t)

= P
(

μfn
(
t, x(t) + γ (t)

)
+

M
n

)

≥ T
(

μfn
(
t, x(t) + γ (t)

)
+

M
n

)

= μ

∫ ω

0
G(t, s)fn

(
s, x(s) + γ (s)

)
ds +

1
n

≥ μA
∫ ω

0
fn

(
s, x(s) + γ (s)

)
ds +

1
n

= μσB
∫ ω

0
fn

(
s, x(s) + γ (s)

)
ds +

1
n

≥ σ max
t∈R

μ

∫ ω

0
G(t, s)fn

(
s, x(s) + γ (s)

)
ds +

1
n

= σ max
t∈R

∫ ω

0
G(t, s)

(
μfn

(
s, x(s) + γ (s)

)
+

M
n

)
ds

= σ max
t∈R

T
(

μfn
(
t, x(t) + γ (t)

)
+

M
n

)

≥ σ
m
M

max
t∈R

P
(

μfn
(
t, x(t) + γ (t)

)
+

M
n

)

= σ
m
M

‖x‖.

Therefore, we have

x(t) + γ (t) ≥ σ
m
M

‖x‖ + γ∗ ≥ σ
m
M

R + γ∗ >
1
n

,

since 1
n ≤ 1

n0
< σ m

M R + γ∗. Thus, from (H2) we have

x(t) = P
(

μfn
(
t, x(t) + γ (t)

)
+

M
n

)

≤ M
m

max
t∈R

T
(

μfn
(
t, x(t) + γ (t)

)
+

M
n

)

≤ M
m

max
t∈R

(
μ

∫ ω

0
G(t, s)fn

(
s, x(s) + γ (s)

)
ds +

1
n

)

=
M
m

max
t∈R

(
μ

∫ ω

0
G(t, s)f

(
s, x(s) + γ (s)

)
ds +

1
n

)

≤ M
m

max
t∈R

(∫ ω

0
G(t, s)ζ (s)

(
g
(
x(s) + γ (s)

))(
1 +

h(x(s) + γ (s))
g(x(s) + γ (s))

)
ds +

1
n

)

≤ M
m

(
g
(

σ
m
M

R + γ∗
)(

1 +
h(R + γ ∗)
g(R + γ ∗)

)
Λ∗ +

1
n0

)
.
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Therefore, we have

R = ‖x‖ ≤ M
m

(
g
(

σ
m
M

R + γ∗
)(

1 +
h(R + γ ∗)
g(R + γ ∗)

)
Λ∗ +

1
n0

)
.

This is a contradiction to the choice of n0 and the claim is proved.
From this claim, Lemma 4.1 guarantees that

x(t) =
(
Q∗

nx
)
(t) (4.5)

has a fixed point, denoted by xn, in Ω , i.e.,

x′′′(t) + a(t)x(t) = fn
(
t, x(t) + γ (t)

)
+

M
n

(4.6)

has a ω-periodic solution xn with ‖xn‖ < R. Since xn(t) ≥ 1
n > 0 for all t ∈ [0,ω], xn is actually

a positive ω-periodic solution of (4.6).
Now we show that xn(t) + γ (t) have an uniform positive lower bound, i.e., there exists a

constant ϑ > 0 independent of n ∈ N0 such that

min
t∈[0,ω]

{
xn(t) + γ (t)

} ≥ ϑ

for all n ∈ N0. To see this, we know from (H1) that there exists a continuous function
φR+γ ∗ (t) > 0 such that f (t, x) ≥ φR+γ ∗ (t) for a.e. t and 0 < x ≤ R + γ ∗. Let xR+γ ∗ (t) be the
unique ω-periodic solution to

x′′′(t) + a(t)x(t) = φR+γ ∗ (t),

according to Lemma 2.5 and γ∗ ≥ 0, we have

xR+γ ∗ (t) + γ (t) = P
(
φR+γ ∗ (t)

)
+ γ (t) ≥ T

(
φR+γ ∗ (t)

)
+ γ (t)

=
∫ ω

0
G(t, s)φr+γ ∗ (s) ds + γ (t) ≥ Φ∗ + γ∗ > 0,

where Φ(t) =
∫ ω

0 G(t, s)φr+γ ∗ (s) ds. Since xn(t) + γ (t) ≤ R + γ ∗ and xn + γ∗ ≥ 1
n , we have

xn(t) + γ (t) = P
(

fn
(
s, xn(s) + γ (s)

)
+

M
n

)
+ γ (t)

≥ T
(

fn
(
s, xn(s) + γ (s)

)
+

M
n

)
+ γ (t)

=
∫ ω

0
G(t, s)fn

(
s, xn(s) + γ (s)

)
ds + γ (t) +

1
n

=
∫ ω

0
G(t, s)f

(
s, xn(s) + γ (s)

)
ds + γ (t) +

1
n

≥
∫ ω

0
G(t, s)φR+γ ∗ (s) ds + γ (t)

≥ Φ∗ + γ∗ := ϑ . (4.7)

So we have xn(t) + γ (t) ≥ ϑ for all n.
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Step 3. In order to pass from the solution xn of (4.6) to that of the original problem (4.2),
we need to show {xn}n∈N0 is compact.

First we claim

∥∥x′
n
∥∥ ≤ D1 (4.8)

for some constant D1 > 0 (independent of n ∈ N0) and for all n ∈ N0.
In fact, since xn is an ω-periodic solution of (4.6) we have

x′′′
n (t) + a(t)xn(t) = fn

(
t, xn(t) + γ (t)

)
+

M
n

. (4.9)

Multiplying both sides of (4.9) by x′
n(t) and integrating from 0 to ω, we have

∫ ω

0
x′′′

n (t)x′
n(t) dt +

∫ ω

0
a(t)xn(t)x′

n(t) dt =
∫ ω

0
fn

(
t, xn(t) + γ (t)

)
x′

n(t) dt. (4.10)

Substituting
∫ ω

0 x′′′
n (t)x′

n(t) dt = –
∫ ω

0 |x′′
n(t)|2 dt into (4.10),

∫ ω

0

∣∣x′′
n(t)

∣∣2 dt

=
∫ ω

0
a(t)xn(t)x′

n(t) dt –
∫ ω

0
fn

(
t, xn(t) + γ (t)

)
x′

n(t) dt

≤ ‖a‖
∫ ω

0

∣∣xn(t)
∣∣∣∣x′

n(t)
∣∣dt +

∫ ω

0

∣∣fn
(
t, xn(t) + γ (t)

)∣∣∣∣x′
n(t)

∣∣dt

≤ ‖a‖R
√

ω

(∫ ω

0

∣∣x′
n(t)

∣∣2 dt
) 1

2
+

(∫ ω

0

∣∣fn
(
t, xn(t) + γ (t)

)∣∣2 dt
) 1

2
(∫ ω

0

∣∣x′
n(t)

∣∣2 dt
) 1

2

=
(‖a‖R

√
ω + ‖fR‖2

)(∫ ω

0

∣∣x′
n(t)

∣∣2 dt
) 1

2
,

where

|fR| = max
ϑ≤xn(t)+γ≤R+γ ∗

∣∣fn
(
t, xn(t) + γ (t)

)∣∣, ‖fR‖2 =
(∫ ω

0
|fR|2 dt

) 1
2

.

Using the Writinger inequality (see [17], Lemma 2.4), we have

∫ ω

0

∣∣x′′
n(t)

∣∣2 dt ≤
(

‖a‖R
√

ω + ‖fR‖2 +
M
n0

√
ω

)(
ω

2π

)(∫ ω

0

∣∣x′′
n(t)

∣∣2 dt
) 1

2
.

It is easy to see that there exists a constant D′
1 > 0 such that

∫ ω

0

∣∣x′′
n(t)

∣∣2 dt ≤ D′
1.

From xn(0) = xn(ω), we know that there exists a point t0 ∈ [0,ω] such that x′
n(t0) = 0. There-

fore, we have

∥∥x′
n
∥∥ = max

t

∣∣∣∣
∫ t

t0

x′′
n(s) ds

∣∣∣∣ ≤
∫ ω

0

∣∣x′′
n(s)

∣∣ds ≤ ω
1
2

(∫ ω

0

∣∣x′′
n(s)

∣∣2 ds
) 1

2 ≤ ω
1
2 D′ 1

2
1 := D1.
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The fact that ‖xn‖ < R and (4.8) show that {xn}n∈N0 is bounded and an equi-continuous
family on R. Now the Arzelà–Ascoli theorem guarantees that {xn}n∈N0 has a subsequence
{xnk }k∈N , converging uniformly on R to a function x ∈ X. From the fact that ‖xn‖ < R and
ϑ ≤ xn +γ , we know that x satisfies ϑ ≤ x(t) +γ (t) ≤ R +γ ∗ for all t. Moreover, xnk satisfies
the integral equation

xnk (t) = P
(

f
(
t, xnk (t) + γ (t)

)
+

M
nk

)
.

Let k → ∞, we get

x(t) = P
(
f
(
t, x(t) + γ (t)

))
.

Therefore, x is a positive periodic solution of (4.2) and satisfies 0 < ‖x‖ ≤ R. Besides, it is
not difficult to show that ‖x‖ < R, by noting that if ‖x‖ = R, the argument similar to the
proof of the first claim will yield a contradiction.

Combining the above three steps, the proof is completed. �

Corollary 4.3 Assume that 3
√

3ωM
1
3

4π
< 1 holds. Suppose the following condition is satisfied:

(F5) there exist continuous functions d(t), d̂(t) � 0 and ρ > 0, 0 ≤ η < 1 such that

0 ≤ d̂(t)
xρ

≤ f (t, x) ≤ d(t)
xρ

+ d(t)xη for all x > 0 and a.e. t.

If γ∗ ≥ 0, then (1.5) has at least one positive ω-periodic solution.

Proof We will apply Theorem 4.2. We take

φL(t) =
d̂(t)
Lρ

, ζ (t) = d(t), g(x) =
1
xρ

, h(x) = xη.

Then (H1) and (H2) are satisfied and the existence condition (H6) becomes

m
M

( R( σm
M R + γ∗)ρ

1 + (R + γ ∗)ρ+η

)
> Ψ ∗, (4.11)

where Ψ (t) =
∫ ω

0 G(t, s)d(s) ds, for some r > 0. Since ρ > 0, 0 ≤ η < 1 and γ∗ ≥ 0, we can
choose R > 0 large enough that (4.11) is satisfied. �

From Theorems 3.6 and 4.2, we obtain the following conclusion.

Theorem 4.4 Assume that M < 64π3

81
√

3ω3 , (H1) and (H ′
2) hold. Suppose the following condi-

tions are satisfied:
(H ′

6) there exists a positive constant R > 0 such that

M
m

g
(

σm
M

R + γ∗
)

Λ∗ < R,

and we assume that f (t, x) ≥ 0 for all (t, x) ∈ [t,ω] × (0, R].
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If γ∗ ≥ 0, then (1.5) has at least one positive ω-periodic solution x with x(t) > γ (t) for all
t and 0 < ‖x – γ ‖ < R.

Corollary 4.5 Assume that M < 64π3

81
√

3ω3 holds and the nonlinearity in (1.5) is

f (t, x) =
1
xα

–
κ

xβ
,

where α > β > 0 and μ > 0 is a positive parameter. If γ∗ ≥ 0, then there exists a positive
constant κ2 such that (1.5) has at least one positive periodic solution for each 0 ≤ κ ≤ κ2.

Proof We will apply Theorem 4.4. Take

g(x) =
1
xα

, ζ (t) ≡ 1.

It is easy to see that the condition (H ′
2) holds. The existence condition (H ′

6) becomes

mR
(

σm
M

R + γ∗
)α

> 1, (4.12)

where 1
M =

∫ ω

0 G(t, s) ds. we can choose R > 0 appropriately large such that (4.12) is satis-
fied.

Next, we show that the nonlinear term f (t, x) ≥ 0, for all (t, x) ∈ [0,ω] × (0, R]. In fact,
f (t, x) ≥ 0 if and only if κ ≤ xβ–α . There exists a positive constant κ2 such that κ2 < Rβ–α . In
view of κ < κ2 and β < α, we get κ < Rβ–α < xβ–α for all x ∈ (0, R]. Therefore, the condition
(H ′

6) holds.
Finally, we show that (H1) is satisfied. Let

P(x) =
1
xα

–
κ

xβ
, x ∈ (0, +∞),

and

s1 = κ
– 1

α–β , s2 =
(

α

κβ

) 1
α–β

.

Since α > β , one can easily verify that s1 < s2 and P(s1) = 0, P′(s2) = 0, P′(s) < 0, s ∈ (0, s2).
Therefore, P(s) is decreasing in (0, s1) ⊂ (0, s2). On the other hand, we can choose κ > 0
small enough such that R ∈ (0, s1). Thus,

min
s∈(0,R)

P(s) = P(R) > P(s1) = 0.

This implies that the condition (H1) is satisfied if we take

φR(t) ≡ P(R). �

Theorem 4.6 Assume that M < 64π3

81
√

3ω3 and (H2) hold. Assume that the following condition
holds:
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(H∗
6 ) There exists a positive constant R > 0 such that

M
m

g
(

σm
M

R
)(

1 +
h(R + γ ∗)
g(R + γ ∗)

)
Λ∗ < R.

If γ∗ > 0, then (1.5) has at least one positive ω-periodic solution x with x(t) > γ (t) for all t
and 0 < ‖x – γ ‖ < R.

Proof The proof of this theorem can be completed by the method analogous to that in
Theorem 4.2. Step 1 and Step 2 are the same as in the proof of Theorem 4.2. Now, we
consider that xn(t) + γ (t) have a uniform positive lower bound, i.e., there exists a constant
ϑ1 > 0, independent of n ∈ N0, such that

min
t∈[0,ω]

{
xn(t) + γ (t)

} ≥ ϑ1,

for all n ∈ N0.
Since xn +γ > 1

n and γ∗ > 0, from Lemma 2.2, we know that G and f are of a non-negative
sign. Thus we have xn(t) + γ (t) ≥ γ (t) ≥ γ∗ ≥ ϑ1. The rest of the proof is the same as
Theorem 4.2. �

Corollary 4.7 Assume that M < 64π3

81
√

3ω3 holds. Suppose the following condition is satisfied:
(F6) there exist continuous function d(t) ≥ 0 for a.e. t ∈ [0,ω] and ρ > 0, 0 ≤ η < 1 such

that

0 ≤ f (t, x) ≤ d(t)
xρ

+ d(t)xη, for all x > 0, for a.e. t.

If γ∗ > 0, then (1.5) has at least one positive ω-periodic solution.

Proof We will apply Theorem 4.6. Take

k(t) = d(t), g(x) =
1
xρ

, h(x) = xη,

then (H2) is satisfied and the existence condition (H∗
6 ) becomes

m
M

( R( σm
M R + γ∗)ρ

1 + (R + γ ∗)ρ+η

)
> Ψ ∗. (4.13)

Since τ > 0, 0 ≤ η < 1 and γ∗ > 0, we can choose R > 0 large enough such that (4.13) is
satisfied. �

4.2 Case (II) γ ∗ ≤ 0
Theorem 4.8 Assume that M < 64π3

81
√

3ω3 , (H1) and (H2) hold, and the following condition is
satisfied:

(H∗∗
6 ) There exists a positive constant R > 0 such that σm

M R + γ∗ > 0 and

M
m

g
(

σm
M

R + γ∗
)(

1 +
h(R)
g(R)

)
Λ∗ < R.
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(H7) γ∗ + Φ ′∗ > 0, here Φ ′(t) =
∫ ω

0 G(t, s)φR(s) ds.
If γ ∗ ≤ 0, then (1.5) has at least one positive ω-periodic solution x with x(t) > γ (t) for all

t and 0 < ‖x – γ ‖ < R.

Proof The proof of this theorem can be completed by the method analogous to that in
Theorem 4.2. Step 1 and Step 2 are the same as in the proof of Theorem 4.2. Now, it remains
to consider that xn(t) +γ (t) has a uniform positive lower bound, i.e., there exists a constant
ϑ2 > 0, independent of n ∈ N0, such that

min
t∈[0,ω]

{
xn(t) + γ (t)

} ≥ ϑ2,

for all n ∈ N0.
Since (H1) and γ ∗ ≤ 0, we know that there exists a continuous function φR(t) > 0 such

that f (t, x) ≥ φR(t) for a.e. t and 0 < x ≤ R + γ ∗ ≤ R. Let xR(t) be the unique ω-periodic
solution to

x′′′(t) + a(t)x(t) = φR(t),

from (H∗
6 ), then we have

xR(t) + γ (t) = P
(
φR(t)

)
+ γ (t) ≥ T

(
φR(t)

)
+ γ (t)

=
∫ ω

0
G(t, s)φR(s) ds + γ (t)

≥ Φ ′
∗ + γ∗ > 0,

Since xn(t) + γ (t) ≤ R + γ ∗ < R and xn + γ∗ ≥ 1
n , we have

xn(t) + γ (t) = P
(

fn
(
s, xn(s) + γ (s)

)
+

M
n

)
+ γ (t)

≥ T
(

fn
(
s, xn(s) + γ (s)

)
+

M
n

)
+ γ (t)

=
∫ ω

0
G(t, s)fn

(
s, xn(s) + γ (s)

)
ds + γ (t) +

1
n

≥
∫ ω

0
G(t, s)φR(s) ds + γ (t)

≥ Φ ′
∗ + γ∗ := ϑ2. (4.14)

So we have xn(t) + γ (t) ≥ ϑ2. The rest of the proof is the same as Theorem 4.2. �

Remark 2 Replacing above assumptions M < 64π3

81
√

3ω3 by assumption M < 8π

3
√

3ω3 , we can get
similar existence results, which we omit here.

5 Conclusions
The paper is devoted to the existence of a positive periodic solution for Eq. (1.5). As is
well known, it is very complicated to calculate the Green’s function of the third-order
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linear differential equation with variable coefficients. In this paper, we first discuss the
Green’s function of the third-order linear differential equation with constant coefficients
(1.6). By application of the Green’s function of (1.6) and some fixed point theorems, i.e.
Schauder’s fixed point theorem and a nonlinear alternative principle of Leray–Schauder,
we obtain the existence of a positive periodic solution for (1.5). Our results are applicable
to the case of a strong singularity as well as to the case of a weak singularity; these new
results generalize some recent results obtained in [8].
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