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Abstract
In this paper, we obtain the global structure of positive solutions for nonlinear
discrete simply supported beam equation

�4u(t – 2) = λf (t,u(t)), t ∈ T,

u(1) = u(T + 1) =�2u(0) =�2u(T ) = 0,

with f ∈ C(T× [0,∞), [0,∞)) satisfying local linear growth condition and
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Let a, b be integer and [a, b]Z = {a, a + 1, . . . , b}. In 2002, Zhang et al. [10] and He et al.
[11] studied the existence of positive solutions for the following discrete analog:

�4u(t – 2) = λh(t)f
(
u(t)

)
, t ∈ [2, T]Z,

u(0) = u(T + 2) = �2u(0) = �2u(T) = 0,
(1.2)

here � is forward difference operator with �u(t) = u(t + 1) – u(t), h : [2, T]Z → [0,∞)
and f ∈ C([0,∞), [0,∞)). It has been pointed out in [10, 11] that (1.2) is equivalent to the
summing equation of the form

u(t) = λ

T+1∑

s=1

G(t, s)
T∑

j=2

G1(s, j)a(j)f
(
u(j)

)
=: A0u(t), t ∈ [0, T + 2]Z, (1.3)

where

G(t, s) =
1

T + 2

⎧
⎨

⎩
s(T + 2 – t), 1 ≤ s ≤ t ≤ T + 2,

t(T + 2 – s), 0 ≤ t ≤ s ≤ T + 1,

and

G1(t, i) =
1
T

⎧
⎨

⎩
(T + 1 – t)(i – 1), 2 ≤ i ≤ t ≤ T + 1,

(T + 1 – i)(t – 1), 1 ≤ t ≤ i ≤ T .

Notice that two distinct Green’s functions are used in the summing equation (1.3), which
makes the construction of cones and the verification of strong positivity of A0 become
more complex and difficult.

Therefore, Ma and Xu [12] considered the discrete analog of (1.1) as follows:

�4u(t – 2) = λf
(
t, u(t)

)
, t ∈ [2, T]Z,

u(1) = u(T + 1) = �2u(0) = �2u(T) = 0,
(1.4)

and introduced the definition of generalized positive solutions.

Definition 1.1 A function u : [0, T + 2]Z → [0,∞) is called a generalized positive solution
of (1.4), if u satisfies (1.4), and u(t) ≥ 0 on [1, T + 1]Z and u(t) > 0 on [2, T]Z.

They also applied the fixed point theorem in cones to obtain some results on the ex-
istence of generalized positive solutions of (1.4); see [12]. Ma and Lu [13] applied the
Dancer’s global bifurcation theorem to obtain some new results on the existence and mul-
tiplicity of generalized positive solutions of discrete simply supported beam equation (1.4)
with λ = 1.

However, in these papers, they assumed that the nonlinearity f ∈ C([2, T]Z × [0,∞),
[0,∞)) satisfies

f (t, u) ≥ 0 on [2, T]Z × [0,∞) and f (t, u) > 0 on [2, T]Z × (0,∞).
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Of course, a natural question is what would happen if f only is positive on a subinterval
[a, b]Z ⊂ [2, T]Z? That is, f satisfies

f (t, u) ≥ 0 on [2, T]Z × [0,∞) and f (t, u) > 0 on [a, b]Z × [0,∞).

Based on the above reasons, we shall show the global structure of positive solutions of
(1.4) under the followings assumptions:

(H1) f ∈ C([2, T]Z × [0,∞), [0,∞)) with f (t, 0) = 0 for t ∈ T;
(H2) there exist α1 : [2, T]Z → (0,∞), β1 : [a, b]Z → (0,∞) such that

f (t, u) = α1(t)u(t) + ζ (t, u), (t, u) ∈ [2, T]Z × [0,∞),

and

lim
u→∞

f (t, u)
u

= β1(t) for a subinterval t ∈ [a, b]Z ⊂ [2, T]Z,

where limu→0
ζ (t,u)

u = 0 uniformly for t ∈ [2, T]Z;
(H3) there exist α2 : [2, T]Z → (0,∞), β2 : [a, b]Z → (0,∞) such that

f (t, u) = α2(t)u(t) + ξ (t, u), (t, u) ∈ [2, T]Z × [0,∞),

and

lim
u→0

f (t, u)
u

= β2(t) for a subinterval t ∈ [a, b]Z ⊂ [2, T]Z,

where limu→∞ ξ (t,u)
u = 0 uniformly for t ∈ [2, T]Z.

Let λ1(αi), i = 1, 2, be the principal eigenvalue of the linear eigenvalue problem

�4u(t – 2) = λαi(t)u(t), t ∈ [2, T]Z,

u(1) = u(T + 1) = �2u(0) = �2u(T) = 0,
(1.5)i

and μ1(βi), i = 1, 2 the principal eigenvalue of the linear eigenvalue problem

�4u(t – 2) = μbi(t)u(t), t ∈ [a, b]Z,

u(a – 1) = u(b + 1) = �2u(a – 2) = �2u(b) = 0.
(1.6)i

Let E = {u : [0, T + 2]Z → R | u(1) = u(T + 1) = �2u(0) = �2u(T) = 0} be a Banach space
with the norm ‖u‖ = maxt∈[0,T+2]Z |u(t)|. Denote by Σ the closure of the set

{
(λ, u) ∈ [0,∞) × E | u satisfies (1.4) and u 
≡ 0

}

in R × E. Let E = R × E under the product topology. We add the points {(λ,∞) | λ ∈ R}
to our space E. Let S+ denote the set of generalized positive functions in E and S– = –S+,
and S = S– ∪ S+. They are disjoint and open in E. Finally, let ν ∈ {+, –} and Φν = R × Sν

and Φ = R× S.
Our main results are the following.
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Theorem 1.1 Let (H1), (H2) hold. If

μ1(β1) < λ1(α1), (1.7)

then there exists a connected component C+ ∈ Σ such that
(i) (C+\{(λ1(α1), 0)}) ⊂ Φ+;

(ii) C+ meets (λ1(α1), 0) and (μ1(β1),∞) in λ-direction;
(iii) Proj

R
C+ ⊃ (μ1(β1),λ1(α1));

(iv) for any (λ, u+) ∈ C+, it follows that u+(t) > 0, t ∈ [2, T]Z.

Corollary 1.1 Let (H1), (H2) hold. If μ1(β1) < λ < λ1(α1), then the problem (1.4) has at
least one generalized positive solution.

Theorem 1.2 Let (H1), (H3) hold. If

μ1(β2) < λ1(α2), (1.8)

then there exists a connected component D+ ∈ Σ such that
(i) (D+\{(λ1(α2),∞)}) ⊂ Φν ;

(ii) D+ meets (λ1(α2),∞) and (μ1(β2), 0) in λ-direction;
(iii) Proj

R
D+ ⊃ (μ1(β2),λ1(α2));

(iv) for any (λ, u+) ∈ D+, it follows that u+(t) > 0, t ∈ [2, T]Z.

Corollary 1.2 Let (H1), (H3) hold. If μ1(β2) < λ < λ1(α2), then the problem (1.4) has at
least one generalized positive solution.

Remark 1.1 Let αi(t) ≡ α̂i and βi(t) ≡ β̂i (i = 1, 2) be constants. It is easy to compute that
λ1(α̂i) = (2–2 cos π

T )2

α̂i
and μ1(β̂i) = (2–2 cos π

b+2–a )2

β̂i
, see [14]. So the conditions of Corollaries 1.1–

1.2 are equivalent to

(2 – 2 cos π
b+2–a )2

β̂1
< λ <

(2 – 2 cos π
T )2

α̂1

and

(2 – 2 cos π
b+2–a )2

β̂2
< λ <

(2 – 2 cos π
T )2

α̂2
,

respectively.

Moreover, from the above inequalities one concludes that β̂1 = ∞, α̂1 = 0, i.e. f is sub-
linear growth at zero and superlinear growth at infinity about u; β̂2 = ∞, α̂2 = 0, i.e. f is
superlinear growth at zero and sublinear growth at infinity about u.

Especially, if [a, b]Z = [2, T]Z, β1 = α2, β2 = α1, that is to say, f is linear growth at zero and
infinity about u, then the main results give immediately the classical result; see the result
of the case n = 2 in Theorem 4.1 of [14].
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Remark 1.2 If λ = 1, then the problem (1.4) is the discrete analog of (1.1). Corollaries 1.1–
1.2 give the sharp condition of existence results of positive solutions for the discrete analog
of (1.1); see [13].

Remark 1.3 It is worth remarking that the global structure of the positive solution curves
is very useful for computing the numerical solution of (1.1), for example, it can be used to
estimate the value of u in advance in applying the finite difference method.

2 Preliminaries
Let Y := {u : [0, T + 2]Z →R} be the Banach space with the norm ‖u‖ = maxt∈[0,T+2]Z |u(t)|.
Let E be the Banach space

E =
{
u ∈ Y | u(1) = u(T + 1) = �2u(0) = �2u(T) = 0

}

with the norm ‖u‖.
Define a linear operator L : E → Y by

Lu := �4u(t – 2), u ∈ E. (2.1)

From [13], we can see that (1.4) is equivalent to the summing equation

u(t) = λ

T∑

s=2

G(t, s)f
(
s, u(s)

)
=: Tu(t), t ∈ [0, T + 2]Z, (2.2)

where

G(t, s) =

⎧
⎨

⎩

(s–1)(T+1–t)[2T(t–1)–(t–1)2–s(s–2)]
6T , 2 ≤ s ≤ t ≤ T + 1,

(t–1)(T+1–s)[2T(s–1)–(s–1)2–t(t–2)]
6T , 1 ≤ t ≤ s ≤ T .

(2.3)

It is not difficult to verify that the Green’s function G(t, s) satisfies the following properties:

c(t)Φ(s) ≤ G(t, s) ≤ Φ(s) for s ∈ [1, T + 1]Z, t ∈ [1, T + 1]Z, (2.4)

where

Φ(s) =

⎧
⎨

⎩

√
3

27T (s – 1)(T2 – (s – 2)s)3/2, 1 ≤ s ≤ T
2 + 1,

√
3

27T (T + 1 – s)(2T(s – 1) – (s – 2)s)3/2, T
2 + 1 < s ≤ T + 1,

c(t) =

⎧
⎨

⎩

3
√

3[T2–t(t–2)](t–1)
2(T2+1)3/2 , 1 ≤ t ≤ T

2 + 1,
3
√

3(T+1–t)[2T(t–1)–t(t–2)]
2(T2+1)3/2 , T

2 + 1 < s ≤ T + 1.

Moreover, let [a, b]Z be a subinterval of [2, T]Z, then, for any (t, s) ∈ [a, b]Z × [1, T + 1]Z,
we have

G(t, s) ≥ σΦ(s),
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here

σ = min

{
3
√

3(a – 1)[T2 – a(a – 2)]
2(T2 + 1)3/2 ,

3
√

3(b – 1)[T2 – b(b – 2)]
2(T2 + 1)3/2 ,

3
√

3(T + 1 – a)[2T(a – 1) – a(a – 2)]
2(T2 + 1)3/2 ,

3
√

3(T + 1 – b)[2T(b – 1) – b(b – 2)]
2(T2 + 1)3/2

}
. (2.5)

Define the cone P in E by

P =
{
u ∈ E : u(t) ≥ 0 on [1, T + 1]Z and min

t∈[a,b]Z
u(t) ≥ σ‖u‖

}
.

By a standard argument, it is easy to verify that T : P → P is completely continuous.

Lemma 2.1 ([13, Lemma 3.2]) Let αi : [2, T]Z → (0,∞), i = 1, 2. Then the principal eigen-
value λ1(αi) of the eigenvalue problems (1.5)i is positive and the corresponding eigenfunc-
tions ϕi(t) is positive on [2, T]Z.

By the same method with obvious changes, we can see that the problem

�4u(t – 2) = λf
(
t, u(t)

)
t ∈ [a, b]Z,

u(a – 1) = u(b + 1) = �2u(a – 2) = �2(b) = 0,

is equivalent to the summing equation

u(t) = λ

b∑

s=a

K(t, s)f
(
s, u(s)

)
, t ∈ [a – 2, b + 2]Z,

where

K(t, s) =

⎧
⎨

⎩

(s–a+1)(b+1–t)[2(b+2–a)(t–a+1)–(t–a+1)2–(s–a)(s–a+2)]
6(b+2–a) , a ≤ s ≤ t ≤ b + 1,

(t–a+1)(b+1–s)[2(b+2–a)(s–a+1)–(s–a+1)2–(t–a)(t–a+2)]
6(b+2–a) , a – 1 ≤ t ≤ s ≤ b.

(2.6)

Moreover, by a similar argument to [13, Lemma 3.2], we can obtain the following.

Lemma 2.2 Let βi : [a, b]Z → (0,∞), i = 1, 2. Then the principal eigenvalue λ1(βi), i = 1, 2,
of the eigenvalue problems (1.6)i is positive and the corresponding eigenfunctions ψi(t) is
positive on [a, b]Z.

3 The proof of the main results
To apply the unilateral global bifurcation results [19–22], we extend f by an odd function
g : [2, T]Z ×R →R such that

g(t, s) =

⎧
⎨

⎩
f (t, s), (t, s) ∈ [2, T]Z × [0,∞),

–f (t, –s), (t, s) ∈ [2, T]Z × (–∞, 0).
(3.1)
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Now let us consider an auxiliary family of equations

�4u(t – 2) = λg
(
t, u(t)

)
, t ∈ [2, T]Z,

u(1) = u(T + 1) = �2u(0) = �2u(T) = 0.
(3.2)

It follows from (H2) that

g(t, u) = α1(t)u + ζ (t, u). (3.3)

Note that

lim|u|→0

ζ (t, u)
u

= 0 uniformly for t ∈ [2, T]Z.

Proof of Theorem 1.1 (i) Let us consider

�4u(t – 2) = λα1(t)u(t) + λζ (t, u), t ∈ [2, T]Z,

u(1) = u(T + 1) = �2u(0) = �2u(T) = 0,
(3.4)

as a bifurcation problem for the trivial solution u ≡ 0. Problem (3.4) can be converted to
the summing equation

u(t) =
T∑

s=2

G(t, s)
[
λα1(s)u(s) + λζ

(
s, u(s)

)]
,

where G(t, s) is defined by (2.3).
Furthermore, we note that ‖L–1(ζ (·, u(·)))‖ = ‖∑T

s=2 G(·, s)ζ (s, u(s))‖ = o(‖u‖) for u near
0 in E, since

∥∥L–1(
ζ

(·, u(·)))∥∥ = max
t∈[0,T+2]Z

∣∣∣∣∣

T∑

s=2

G(t, s)ζ
(
s, u(s)

)
∣∣∣∣∣
≤ C0

∥∥ζ
(·, u(·))∥∥.

From Lemma 2.1, the algebraic multiplicity of λ1(α1) equals 1, the pair (λ1(α), 0) is a
bifurcation point of problem (3.4). Therefore, according to a revised version of [19, The-
orem 6.2.1], there exists a component, denoted by C ⊂ Σ , emanating from (λ1(α1), 0).
Moreover, (3.4) enjoys all the structural requirements for applying the unilateral global bi-
furcation theory of López-Gómez [19, Sects. 6.4–6.5], and thanks to the global alternative
of Rabinowitz (see, e.g., [20, Corollary 6.3.2]), either C is unbounded inE, or (λj(α1), 0) ∈ C

for some λj(α1) 
= λ1(α1), or contains a point (λ, u) ∈ R × (E0\{0}), here λj(α1) is another
eigenvalue of (1.5)1, and E = span{ϕ1} ⊕ E0.

Although the unilateral bifurcation results of [20, Theorems 1.27 and 1.40] cannot be
applied here, among other things because they are false as originally stated (cf. the coun-
terexample of Dancer [21]), the reflection argument of [20] and a similar argument to The-
orem 6.4.3 of [19] can be applied to conclude that C = C+ +C–, where C+ is the component
of positive solutions emanating from (λ1(α1), 0), because of

–u = λL–1(–u) + λL–1ζ
(·, –u(·)) = –

[
λL–1u + λL–1ζ

(·, u(·))], u ∈ E.

Moreover, Cν must be unbounded and, Cν\{(λ1(α1), 0)} ⊂ Φ+.
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(ii) It is clear that any solution of (3.4) of the form (λ, u) yields a solution u of (1.4). We
will show C+ ⊂ R × E meets (λ1(α1), 0) and (μ1(β1),∞) in λ-direction. To do this, it is
enough to show that Proj

R
C+ ⊃ (μ1(β1),λ1(α1)). Let (λn, un) ∈ C+ satisfy

|λn| + ‖un‖ → ∞. (3.5)

We note that λn > 0 for all n ∈ N since (0, 0) is the only solution of (3.4) for λ = 0 and
C+ ∩ ({0} × E) = ∅.

Now we show that

(
μ1(β1),λ1(α1)

) ⊆ {
λ ∈R | ∃(λ, u) ∈ C+}

.

We divide the proof into two steps.
Step 1 We show that there exists a constant number M > 0 such that

λn ⊂ (0, M], ∀n ∈ N
∗.

Since (λn, un) is the solution of (3.4), it follows that

�4un(t – 2) = λn
f (t, un(t))

un(t)
un(t), t ∈ [2, T]Z,

un(1) = un(T + 1) = �2un(0) = �2un(T) = 0.
(3.6)

From (H2), there exists a constant �1 > 0 such that f (t,u)
u ≥ �1 > 0 uniformly for t ∈ [a, b]Z.

From (2.2)–(2.5), we have

min
t∈[a,b]Z

un(t) ≥ σ‖u‖. (3.7)

Then, for any t ∈ [a, b]Z, we get

un(t) = λn

T∑

s=2

G(t, s)
f (s, un(s))

un(s)
un(s)

≥ λn

b∑

s=a

G(t, s)
f (s, un(s))

un(s)
un(s)

≥ λnσ
2�1

b∑

s=a

Φ(s)‖un‖.

Therefore

0 < λn ≤ σ –2

[

�1

b∑

s=a

Φ(s)

]–1

=: M.

Step 2 We show that Proj
R

C+ ⊃ (μ1(β1),λ1(α1)).
From Step 1 and (3.5), it follows that

‖un‖ → ∞. (3.8)
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This combining (3.7) and (3.8) implies

min
t∈[a,b]Z

un(t) → ∞.

Let us consider the problem (3.6) and divide (3.6) by ‖un‖ and set vn = un
‖un‖ . Since vn is

bounded in E, after taking a subsequence if necessary, we have vn → v for some v ∈ E with
‖v‖ = 1. Moreover, let yn = vn(t)|[a,b]Z and yn → y = v(t)|[a,b]Z , then there exist constants
r1, r2 ≥ 0, r3, r4 ≤ 0 such that

�4yn(t – 2) = λn
f (t, un(t))

un(t)
yn(t), t ∈ [a, b]Z,

yn(a – 1) = r1, yn(b + 1) = r2, �2yn(a – 2) = r3, �2yn(b) = r4.
(3.9)

From (H2), it follows that

y(t) =
b∑

s=a

K(t, s)λ̃β1(s)y(s) + R(t), t ∈ [a – 2, b + 2]Z,

where λ̃ = limn→∞ λn, K(t, s) is defined by (2.6), and

R(t) =
(2r1 – r3)(a – 1) + (r4 – 2r2)(b + 1)

6(b + 2 – a)(b + a)
t3

+
(6r2 – 3r4)(a – 1)2 + (3r3 – 6r1)(b + 1)2

6(b + 2 – a)(b + a)
t2

+
(r3 – 2r1)(a – 1)3 + (2r2 – r4)(b + 1)3 – 6(a – 1)r1 + 6(b + 1)r2

6(b + 2 – a)(b + a)
t

+
(3r4 – 3r3 + 6r1 – 6r2)(a – 1)2(b + 1)2 – 6r2(a – 1)2 + 6r1(b + 1)2

6(b + 2 – a)(b + a)
,

again choosing a subsequence and relabeling if necessary. Thus

�4y(t – 2) = λ̃β1(t)y(t), t ∈ [a, b]Z,

y(a – 1) = r1, y(b + 1) = r2, �2y(a – 2) = r3, �2y(b) = r4.
(3.10)

We claim that y ∈ C+. Suppose on the contrary that y /∈ C+. Since y 
= 0 is a solution of
(3.10) and there exists c ∈ [a, b]Z such that y(c)y(c + 1) ≤ 0, which together with the fact
yn ∈ E implies that y changes its sign in [a, b]Z. This contradicts the facts that yn → y in
E and yn ∈ C+. Therefore y ∈ C+. Moreover, let us consider the problem (3.10) and the
problem

�4ψ1(t – 2) = μ1(β1)β1(t)ψ1(t), t ∈ [a, b]Z,

ψ1(a – 1) = ψ1(b + 1) = �2ψ1(a – 2) = �2ψ(b) = 0.
(3.11)

Multiplying ψ1(t) in (3.10) and y(t) in (3.11), then summing from t = a to b and subtracting,
it follows that �2y(b)ψ1(b) + �2ψ1(b – 1)y(b + 1) + ψ1(a)�2y(a – 2) + y(a – 1)�2ψ1(a –



Lu and Ma Boundary Value Problems        (2018) 2018:192 Page 10 of 14

1) = (λ̃ – μ1(β1))
∑b

t=a β1(t)y(t)ψ1(t). It follows from y(t) > 0, �2y(t – 1) < 0 on [2, T]Z and
ψ1(t) ≥ 0, �2ψ1(t – 1) ≤ 0 on [a – 1, b + 1]Z that

(
λ̃ – μ1(β1)

) b∑

t=a

β1(t)y(t)ψ1(t) < 0.

That is, λ̃ < μ1(β1). Thus, Proj
R

C+ ⊃ (μ1(β1),λ1(α1)).
Hence, the conclusions of (ii)–(iv) are true. �

Let λ1(α2) is the principal eigenvalue of (1.5)2, then from Lemma 2.1, λ1(α2) is isolated,
having geometric multiplicity 1. Let E0 be a closed subspace of E such that E = span{ϕ2}⊕
E0, where ϕ2 is defined as Lemma 2.1 and ‖ϕ2‖ = 1. Let Br(0) = {u ∈ E | ‖u‖ < r}.

Proof of Theorem 1.2 (i) Let ξ ∈ C([2, T]Z ×R,R) be such that

g(t, u) = α2(t)u + ξ (t, u).

Note that

lim|u|→∞
ξ (t, u)

u
= 0 uniformly for t ∈ [2, T]Z. (3.12)

Let us consider

�4u(t – 2) = λα2(t)u(t) + λζ (t, u), t ∈ [2, T]Z,

u(1) = u(T + 1) = �2u(0) = �2u(T) = 0,
(3.13)

as a bifurcation problem from the infinity. Problem (3.13) can be converted to the equiv-
alent equation

u(t) =
T∑

s=2

G(t, s)
[
λα2(s)u(s) + λξ

(
s, u(s)

)]
,

where G(t, s) is defined by (2.3). Furthermore, we note that

∥∥L–1(
ξ
(·, u(·)))∥∥ =

∥∥∥∥∥

T∑

s=2

G(·, s)ξ(
s, u(s)

)
∥∥∥∥∥

= o
(‖u‖)

for u near ∞ in E, since

∥∥L–1(
ξ
(·, u(·)))∥∥ = max

t∈[0,T+2]Z

∣∣∣∣∣

T∑

s=2

G(t, s)ξ
(
s, u(s)

)
∣∣∣∣∣
≤ C1

∥∥ξ
(·, u(·))∥∥.

By a similar argument to [22] and the structural requirements for applying the unilateral
global bifurcation theory of López-Gómez [19, Sects. 6.4–6.5], we can conclude to the
following.
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Let λ1(α2) be the principal eigenvalue of (1.5)2, such that

deg
(
I – L

(
λ1(α2) – ε

)
, Br(0), 0

) 
= deg
(
I – L

(
λ1(α2) + ε

)
, Br(0), 0

)

for any ε > 0 small enough, then Σ possesses two unbounded components D+ and D–,
which meet (λ1(α2),∞). Moreover, if Λ∗ ⊂ R is an interval such that Λ∗ ∩ Λ2 = {λ1(α2)}
and M is a neighborhood of (λ1(α2),∞) whose projection on R lies in Λ∗ and whose pro-
jection on E is bounded away from 0, here Λ2 denotes the set of real eigenvalues of (1.5)2,
then at least one of the following three properties is satisfied by Dν for ν ∈ {+, –}.

(1) Dν – M is bounded in R× E in which Dν – M meets {(λ, 0) | λ ∈R} or
(2) Dν – M is unbounded,
(3) it contains a point (λ, v) ∈R× (E0\{0}).
If (2) occurs and Dν – M has a bounded projection on R, then Dν – M meets (μ,∞),

where λ1(α2) 
= μ ∈ Λ2.
By applying a similar argument to [19, Sects. 6.4–6.5] and [22], it is easy to verify that

Dν must be unbounded and, Dν ⊂ {(λ1(α2),∞)} ∪ Φ+.
(ii) It is clear that any solution of (3.13) of the form (λ, u) yields a solution u of (1.4). We

will show D+ meets (λ1(α2),∞) and (μ1(β2), 0) in the λ-direction. To do this, we only need
to show that Proj

R
D+ ⊃ (μ1(β2),λ1(α2)). Let (λn, un) ∈ D+ satisfy ‖un‖ → 0. Then λn > 0

for all n ∈N since (0, 0) is the only solution of (3.13) for λ = 0 and D+ ∩ ({0} × E) = ∅.
Now we show that

(
μ1(β2),λ1(α2)

) ⊆ {
λ ∈R | ∃(λ, u) ∈ D+}

.

By a similar method to proving Step 1 of Theorem 1.1, there exists a constant M1, such
that 0 < λn ≤ M1. We only need to prove that

λ < μ1(β2).

From ‖un‖ → 0, let us consider (3.9), from (H3), it follows that

y(t) =
b∑

s=a

K(t, s)λ̂β2(s)y(s) + R(t), t ∈ [a, b]Z,

where λ̂ = limn→∞ λn, R(t) and K(t, s) are defined as Theorem 1.1, again choosing a sub-
sequence and relabeling if necessary. Thus

�4y(t – 2) = λ̂β2(t)y(t), t ∈ [a, b]Z,

y(a – 1) = r1, y(b + 1) = r2, �2y(a – 2) = r3, �2y(b) = r4.
(3.14)

We claim that y ∈ D+. Suppose on the contrary that y /∈ D+. y 
= 0 is a solution of (3.14);
there exists c ∈ [a, b]Z such that y(c)y(c + 1) ≤ 0, and this together with the fact yn ∈ E
implies that y changes its sign in [a, b]Z. This contradicts the facts that yn → y in E and
yn ∈ D+. Therefore y ∈ D+. Moreover, let us consider the problem (3.14) and the problem

�4ψ2(t – 2) = μ1(β2)β2(t)ψ2(t), t ∈ [a, b]Z,

ψ2(a – 1) = ψ2(b + 1) = �2ψ2(a – 2) = �2ψ2(b) = 0.
(3.15)
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Multiplying ψ2(t) in (3.14) and y(t) in (3.15), then summing from t = a to b and subtracting,
it follows that �2y(b)ψ2(b) + �2ψ2(b – 1)y(b + 1) + ψ2(a)�2y(a – 2) + y(a – 1)�2ψ2(a –
1) = (λ̂ – μ1(β2))

∑b
t=a β2(t)y(t)ψ2(t). It follows from y(t) > 0, �2y(t – 1) < 0 on [2, T]Z and

ψ2(t) ≥ 0, �2ψ2(t – 1) ≤ 0 on [a – 1, b + 1]Z that

(
λ̂ – μ1(β2)

) b∑

t=a

β2(t)y(t)ψ2(t) < 0.

That is, λ̂ < μ1(β2).
Therefore, the conclusions of (ii)–(iv) are true. �

From the proofs of Theorems 1.1–1.2, we can directly give the conclusions of Corollar-
ies 1.1–1.2.

Example Let us consider the following problem:

�4u(t – 2) = f
(
t, u(t)

)
, t ∈ [2, 9]Z,

u(1) = u(10) = �2u(0) = �2u(9) = 0,
(3.16)

where

f (t, u) =

⎧
⎨

⎩

g(t)u, (t, u) ∈ [1, 9]Z × [0, 6
6+

√
3–8 cos π

12
),

g(t) 6
6+

√
3–8 cos π

12
(u – 8 cos π

12 –
√

3
6+

√
3–8 cos π

12
), (t, s) ∈ [1, 9]Z × [ 6

6+
√

3–8 cos π
12

,∞),

and

g(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0, t = 1,

6 +
√

3 – 8 cos π
12 , t ∈ [2, 4]Z,

0, t ∈ [5, 9]Z.

Clearly, f (t, 0) = 0 uniformly in t ∈ [1, T]Z. Let a = 2, b = 4, then by computation β̂1 = 6
and μ1(β̂1) = 6–4

√
2

6 < 1, α1(t) = g(t) and λ1(α1) > 1. From Corollary 1.1 and Remark 1.2,
the problem (3.16) has at least one generalized positive solution.

Let us consider the problem (3.16) with the nonlinearity

f (t, u) =

⎧
⎪⎪⎨

⎪⎪⎩

t
50 u(12 –

√
2 – u) + 1–t

50 (12 –
√

2)u, (t, u) ∈ [2, 9]Z × [0, 1),
12–

√
2–t

50 , (t, s) ∈ [2, 9]Z × [1, 12 –
√

2),
u–t
50 , (t, s) ∈ [2, 9]Z × [12 –

√
2,∞).

Clearly, f (t, 0) = 0 for uniformly t ∈ [2, 9]Z. Let a = 2, b = 4, then by simple computation
β2(t) = 12 –

√
2 – t, μ1(β2) < 1 and α̂2 = 1

50 and λ1(α̂2) = 50(2 – 2 cos π
9 )2 > 1. From Corol-

lary 1.2 and Remark 1.2, the problem (3.16) has at least one generalized positive solution.



Lu and Ma Boundary Value Problems        (2018) 2018:192 Page 13 of 14

4 Conclusions
By using the positive property of Green’s function and the unilateral global bifurcation the-
orem, we obtain the global structure of positive solutions for a class of nonlinear discrete
simply supported beam equation with the nonlinearity satisfying local linear growth con-
ditions. The main results extend the existent results of positive solutions and generalize
many related problems in the literature.
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