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Abstract
This paper is concerned with the following nonlinear fractional Kirchhoff equation:

(
a + b

∫

R3

∣∣(–�)
s
2 u

∣∣2 dx
)
(–�)su + V(x)u = f (u), x ∈ R

3,

where s ∈ ( 34 , 1), a > 0, b≥ 0, (–�)s denotes the fractional Laplacian operator. Based
on the methods of mountain pass theorem and invariant sets of descending flow, the
existence of a positive solution, a negative solution, and multiple sign-changing
solutions is obtained.
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1 Introduction
Consider the following nonlinear fractional Kirchhoff equation:

(
a + b

∫

R3

∣∣(–�)
s
2 u

∣∣2 dx
)

(–�)su + V (x)u = f (u), x ∈R
3, (1.1)

where a > 0 and b ≥ 0 are parameters, V and f are continuous. (–�)s denotes the fractional
Laplacian operator of order s ∈ ( 3

4 , 1) which is defined as

(–�)su(x) = C3,sP.V .
∫

R3

u(x) – u(y)
|x – y|3+2s dy, x ∈R

3,

where u ∈ S , P.V . denotes the Cauchy principle value and C3,s denotes a normaliza-
tion constant. For simplicity, we omit the constant C3,s hereafter. Here, S stands for the
Schwartz space of rapidly decaying C∞ functions in R

3. It can be viewed as the infinitesi-
mal generator of Lévy stable diffusion process [1–3]. Obviously, (–�)s is a nonlocal opera-
tor. In the last few years, the research of nonlocal operators has appeared in various areas
such as phase transitions, chemical reaction in liquids, optimization and finance, popula-
tion dynamics, crystal dislocation, flames propagation, and so on. One can see [4–6] and
the references therein. That is one of the reasons why the fractional problems have been
widely investigated by more and more mathematical scholars.
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When s = 1, Eq. (1.1) reduces to the following Kirchhoff equation:

(
a + b

∫

R3
|∇u|2 dx

)
�u + V (x)u = f (u), x ∈R

3, (1.2)

which is related to the stationary version of the Kirchhoff equation

utt –
(

a + b
∫

Ω

|∇u|2 dx
)

�u = f (x, u). (1.3)

Equation (1.3) was first presented by Kirchhoff [7] as a generalization of the classical
D’Alembert wave equation

ρ
∂2u
∂t2 –

(
P0

h
+

E
2L

∫ L

0

(
∂u
∂x

)2

dx
)

∂2u
∂x2 = f (x, u)

for free vibrations of elastic string in order to describe the changes in the length of the
string during the vibrations. Here, ρ , p0, h, E, L are constants which represent some phys-
ical meanings respectively. For more details in physical background, we refer to [8, 9].
In particular, after an abstract framework to (1.2) was proposed by Lions [10], Eq. (1.2)
received more and more attention. For different nonlinearities, many important results
have been obtained for Eq. (1.2), especially on the existence and nonexistence of solutions,
ground state solutions, semiclassical state solutions, positive and negative solutions, high
energy and least energy solutions, and sign-changing solutions. Those results can be found
in [11–17] and the references therein.

When a = 1 and b = 0, Eq. (1.1) reduces to the following fractional Schrödinger equation:

(–�)su + V (x)u = f (u), x ∈ R
3. (1.4)

In the last decade, many results have appeared for Eq. (1.4). For example, see [18–21] and
the references therein.

Recently, Fiscella and Valdinoci [22] first proposed a stationary Kirchhoff model involv-
ing the fractional Laplacian, see [22, Appendix A] for more details in physical background.
Then, many papers have been devoted to studying the existence of solutions for fractional
Kirchhoff equation like (1.1). For instance, Peng, Tang, and Chen [23] investigated the ex-
istence of ground state solutions for Eq. (1.1) by using the method of Nehari manifold. Liu
et al. [24] proved the existence of ground state solutions by using the monotonicity trick
and the profile decomposition. Zhang et al. [25] studied the critical case of (1.1) and ob-
tained the existence of ground state solutions by establishing Pohozave type identity when
s ∈ ( 3

4 , 1). They also obtained the non-existence result when s ∈ (0, 3
4 ).

To our best knowledge, there is no result on the existence of positive, negative, and sign-
changing solutions for Eq. (1.1). The main reason is that the operator (–�)s is nonlocal
and very few things are known about it. The purpose of this paper is to fill this gap. In this
paper, we are interested in the existence of one positive solution, one negative solution,
and infinitely many sign-changing solutions for Eq. (1.1). Firstly, one positive solution and
one negative solution are obtained by using the mountain pass theorem. Then we apply
the method of invariant sets of descending flow to the situation of fractional Kirchhoff
equation to prove the existence of infinitely many sign-changing solutions for Eq. (1.1). It is
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worth mentioning that our method does not depend on the existence of Nehari manifold,
and the sign-changing solutions are obtained without any symmetry.

For convenience, we state our assumptions on potential V and nonlinear term f .
(V ) V ∈ C(R3,R), infx∈R3 V (x) > 0, and lim|x|→∞ V (x) = ∞.
(f1) f ∈ C(R,R) and limτ→0

f (τ )
τ

= 0.
(f2) lim sup|τ |→+∞

|f (τ )|
|τ |p–1 < ∞ for some p ∈ (4, 2�

s ), where 2�
s = 6

3–2s .
(f3) There exists μ > 4 such that τ f (τ ) ≥ μF(τ ) > 0 for all τ �= 0, where F(τ ) =

∫ τ

0 f (u) du.
As a consequence of (f2) and (f3), one has 4 < μ ≤ p < 2�

s . Here are the main results.

Theorem 1.1 Assume that (V ) and (f1)–(f3) hold. Then Eq. (1.1) has at least a positive
solution, a negative solution, and a sign-changing solution.

Theorem 1.2 Assume that (V ) and (f1)–(f3) hold. If, in addition, f is odd, then Eq. (1.1)
has infinitely many sign-changing solutions.

The rest of this paper is organized as follows. Section 2 contains preliminary results. In
Sect. 3, we apply the methods of mountain pass theorem and invariant sets of descending
flow to prove Theorem 1.1 and Theorem 1.2.

Throughout this paper, ‖ · ‖p denotes the norm in Lp(R3) for p ∈ [2,∞). C, Cj denote
the different positive constants.

2 Preliminaries
In this section, we offer some preliminary lemmas and definitions which will be used later.
Let us list some facts of the fractional order Sobolev space as follows.

For 0 < s < 1, the fractional Sobolev space Hs(R3) can be defined as follows:

Hs(
R

3) =
{

u ∈ L2(
R

3) :
|u(x) – u(y)|
|x – y| 3+2s

2
∈ L2(

R
3 ×R

3)
}

,

endowed with the natural norm

‖u‖Hs(R3) =
(∫

R3

∫

R3

|u(x) – u(y)|2
|x – y|3+2s dx dy +

∫

R3
|u|2 dx

) 1
2

,

and the inner product is

(u, v)Hs(R3) =
∫

R3

∫

R3

(u(x) – u(y))(v(x) – v(y))
|x – y|3+2s dx dy +

∫

R3
uv dx.

Furthermore, according to [21], we know that the norms on Hs(R3),

u 
→
(∫

R3

∫

R3

|u(x) – u(y)|2
|x – y|3+2s dx dy +

∫

R3
|u|2 dx

) 1
2

and

u 
→
(∫

R3

(∣∣(–�)
s
2 u

∣∣2 + |u|2)dx
) 1

2

are equivalent.
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In this paper, because of the presence of potential V (x), we consider its subspace

E =
{

u ∈ Hs(
R

3) :
∫

R3
V (x)u2 dx < ∞

}
.

Define the norm in E by

‖u‖E =
(∫

R3

∫

R3

|u(x) – u(y)|2
|x – y|3+2s dx dy +

∫

R3
V (x)u2 dx

) 1
2

.

Obviously, E is a Hilbert space with the inner product

(u, v)E =
∫

R3

∫

R3

(u(x) – u(y))(v(x) – v(y))
|x – y|3+2s dx dy +

∫

R3
V (x)uv dx.

Moreover, ‖ · ‖E is equivalent to the norm

‖u‖ =
(∫

R3

(∣∣(–�)
s
2 u

∣∣2 + V (x)|u|2)dx
) 1

2
.

The corresponding inner product is

(u, v) =
∫

R3

(
(–�)

s
2 u(–�)

s
2 v + V (x)uv

)
dx.

Throughout this paper, we will use the norm ‖ · ‖ in E.

Lemma 2.1 ([26]) Under assumption (V ), E is continuously embedded into Lp(R3) for p ∈
[2, 2�

s ] and compactly embedded into Lp(R3) for p ∈ [2, 2�
s ).

The energy functional I : E →R for (1.1) is defined by

I(u) =
1
2

∫

R3

(
a
∣∣(–�)

s
2 u

∣∣2 + V (x)u2)dx +
b
4

(∫

R3

∣∣(–�)
s
2 u

∣∣2 dx
)2

–
∫

R3
F(u) dx. (2.1)

It is standard to show that I ∈ C1(E,R) and

(
I ′(u),φ

)
=

∫

R3

(
a(–�)

s
2 u(–�)

s
2 φ + V (x)uφ

)
dx

+ b
∫

R3

∣∣(–�)
s
2 u

∣∣2 dx
∫

R3
(–�)

s
2 u(–�)

s
2 φ dx

–
∫

R3
f (u)φ dx, u,φ ∈ E. (2.2)

Recall that I ∈ C1(E,R) is said to satisfy the (PS) condition if any sequence {un} ⊂ E such
that {I(un)} is bounded and I ′(un) → 0 as n → ∞ admits a convergent subsequence.

Lemma 2.2 Assume that (V ) and (f1)–(f3) hold. Then the functional I satisfies the (PS)
condition.
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Proof Assume {un} is a (PS) sequence of I . Then |I(un)| ≤ C and I ′(un) → 0 as n → ∞. By
(f3), Hölder’s inequality, and Lemma 2.1, we have

C + o(1)‖un‖ ≥ I(un) –
1
μ

(
I ′(un), un

)

=
(

1
2

–
1
μ

)∫

R3

(
a
∣∣(–�)

s
2 un

∣∣2 + V (x)u2
n
)

dx

+ b
(

1
4

–
1
μ

)(∫

R3

∣∣(–�)
s
2 un

∣∣2 dx
)2

+
∫

R3

(
1
μ

f (un)un – F(un)
)

dx

≥
(

1
2

–
1
μ

)
min{a, 1}‖un‖2,

which implies that {un} is bounded in E. Then there exists u ∈ E such that un ⇀ u in E. By
Lemma 2.1, un → u in Lp(R3) for p ∈ [2, 2�

s ) and un(x) → u(x), a.e. x ∈ R
3. From I ′(un) → 0,

we know that

(
I ′(un), un – u

) → 0, n → ∞.

Also from un ⇀ u in E, we have

(
I ′(u), un – u

) → 0, n → ∞.

So,

(
I ′(un) – I ′(u), un – u

) → 0, n → ∞.

By (f1)–(f2), for any fixed δ > 0, there exists Cδ > 0 such that

∣∣f (u)
∣∣ ≤ δ|u| + Cδ|u|p–1. (2.3)

According to (2.3) and Hölder’s inequality, we have

∣∣∣∣
∫

R3

(
f (un) – f (u)

)
(un – u) dx

∣∣∣∣

≤
∫

R3

(
δ|un| + Cδ|un|p–1 + δ|u| + Cδ|u|p–1)|un – u|dx

≤ δ1
(‖un‖2 + ‖u‖2

)‖un – u‖2 + Cδ1

(‖un‖p–1
p + ‖u‖p–1

p
)‖un – u‖p

→ 0, n → ∞.

Set

Ē =
{

u ∈ L2(
R

3) :
|u(x) – u(y)|
|x – y| 3+2s

2
∈ L2(

R
3 ×R

3)
}
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endowed with the norm

‖u‖Ē =
(∫

R3

∫

R3

|u(x) – u(y)|2
|x – y|3+2s dx dy

) 1
2

=
(∫

R3

∣∣(–�)
s
2 u

∣∣2 dx
) 1

2
.

Then E ↪→ Ē. So, un ⇀ u in Ē. Thus

∫

R3

(∣∣(–�)
s
2 un

∣∣2 –
∣∣(–�)

s
2 u

∣∣2)dx
∫

R3
(–�)

s
2 u(–�)

s
2 (un – u) dx → 0, n → ∞.

Then

o(1) =
(
I ′(un) – I ′(u), un – u

)

=
∫

R3

(
a
∣∣(–�)

s
2 (un – u)

∣∣2 + V (x)(un – u)2)dx

+ b
(∫

R3

∣∣(–�)
s
2 un

∣∣2 dx
∫

R3
(–�)

s
2 un

× (–�)
s
2 (un – u) dx –

∫

R3

∣∣(–�)
s
2 u

∣∣2 dx
∫

R3
(–�)

s
2 u(–�)

s
2 (un – u) dx

)

+
∫

R3

(
f (u) – f (un)

)
(un – u) dx

≥ min{a, 1}‖un – u‖2

+ b
∫

R3

(∣∣(–�)
s
2 un

∣∣2 –
∣∣(–�)

s
2 u

∣∣2)dx
∫

R3
(–�)

s
2 u(–�)

s
2 (un – u) dx

+
∫

R3

(
f (u) – f (un)

)
(un – u) dx

≥ min{a, 1}‖un – u‖2 + o(1).

That means un → u in E. Then I satisfies the (PS) condition. �

Lemma 2.3 (Mountain pass geometry) Assume that (V ) and (f1)–(f3) hold. Then the func-
tional I satisfies the following conditions:

(1) There exist β ,ρ > 0 such that I(u) ≥ β for ‖u‖ = ρ .
(2) There exists e ∈ E with ‖e‖ > ρ such that I(e) < 0.

Proof (1) According to (2.3), Hölder’s inequality, and Lemma 2.1, for ‖u‖ = ρ , we have

I(u) ≥ 1
2

min{a, 1}‖u‖2 –
δ

2
‖u‖2 –

δ

p
Cp‖u‖p

=
(

1
2

min{a, 1} –
δ

2

)
‖u‖2 –

δ

p
Cp‖u‖p.

Then there exists β > 0 such that I(u) ≥ β for ‖u‖ = ρ .
(2) By (f3), we have

F(u) ≥ C3|u|μ – C4.
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Thus, taking v ∈ E and v > 0, we have

I(tv) ≤ (a + 1)t2

2
‖v‖2 +

bt4

4
‖v‖4 – C5tμ‖v‖μ + C6 < 0

for large t. Consequently, we can take e = t�v for some large t� such that (2) holds. �

Set u+(x) = max{u(x), 0}, u–(x) = min{u(x), 0}. Then u(x) = u+(x) + u–(x).
Note that (–�)s is a nonlocal operator. Generally speaking, for u ∈ E, (u+, u–) ≡ 0 is not

true.

Lemma 2.4 (u+, u–) ≥ 0 for u ∈ E.

Proof For u ∈ E, it is well known that u+, u– ∈ E. So

(
u+, u–)

=
∫

R3

(
(–�)

s
2 u+(–�)

s
2 u– + V (x)u+u–)

dx

=
∫

R3
(–�)

s
2 u+(–�)

s
2 u– dx

=
∫

R3

∫

R3

(u+(x) – u+(y))(u–(x) – u–(y))
|x – y|3+2s dx dy

=
∫

{u(x)≥0}×{u(y)≥0}
(u+(x) – u+(y))(u–(x) – u–(y))

|x – y|3+2s dx dy

+
∫

{u(x)≥0}×{u(y)≤0}
(u+(x) – u+(y))(u–(x) – u–(y))

|x – y|3+2s dx dy

+
∫

{u(x)≤0}×{u(y)≥0}
(u+(x) – u+(y))(u–(x) – u–(y))

|x – y|3+2s dx dy

+
∫

{u(x)≤0}×{u(y)≤0}
(u+(x) – u+(y))(u–(x) – u–(y))

|x – y|3+2s dx dy

=
∫

{u(x)≥0}×{u(y)≤0}
–u(x)u(y)
|x – y|3+2s dx dy +

∫

{u(x)≤0}×{u(y)≥0}
–u(x)u(y)
|x – y|3+2s dx dy

≥ 0.

Then (u+, u–) ≥ 0. �

Remark 2.5 Lemma 2.4 implies that
(i) (u, u+) ≥ (u+, u+), u ∈ E;

(ii) (u, u–) ≥ (u–, u–), u ∈ E.

In the end of this section, let us list the following two critical point theorems which will
be used to prove the existence of sign-changing solutions.

Let X be a Banach space, P, Q ⊂ X be open sets, W = P ∪ Q, M = P ∩ Q, Σ = ∂P ∩ ∂Q
and J ∈ C1(X,R). For c ∈ R, Jc = {x ∈ X : J(x) ≤ c} and Kc = {x ∈ X : J(x) = c, J ′(x) = 0}.

Definition 2.6 ([27]) {P, Q} is called an admissible family of invariant sets with respect
to J at level c provided that the following deformation property holds: if Kc \ W = ∅, then
there exists ε0 > 0 such that, for ε ∈ (0, ε0), there exists η ∈ C(X, X) satisfying
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(1) η(P̄) ⊂ P̄, η(Q̄) ⊂ Q̄;
(2) η|Jc–2ε = id;
(3) η(Jc+ε \ W ) ⊂ Jc–ε .

Lemma 2.7 ([27]) Assume that {P, Q} is an admissible family of invariant sets with respect
to J at level c ≥ c� := infu∈Σ J(u) and there exists a map ϕ0 : � → X satisfying

(1) ϕ0(∂1�) ⊂ P, ϕ0(∂2�) ⊂ Q,
(2) ϕ0(∂0�) ∩ M = ∅,
(3) supu∈ϕ0(∂0�) J(u) < c�,

where � = {(t1, t2) ∈ R
2 : t1, t2 ≥ 0, t1 + t2 ≤ 1}, ∂1� = {0} × [0, 1], ∂2� = [0, 1] × {0}, ∂0� =

{(t1, t2) ∈R
2 : t1, t2 ≥ 0, t1 + t2 = 1}. Define

c = inf
ϕ∈Γ

sup
u∈ϕ(�)\W

J(u),

where Γ := {ϕ ∈ C(�, X) : ϕ(∂1�) ⊂ P,ϕ(∂2�) ⊂ Q,ϕ|∂0� = ϕ0|∂0�}. Then c is a critical
value of J and Kc \ W �= ∅.

Assume that G : X → X is an isometric involution, that is, G2 = id, d(Gx, Gy) = d(x, y)
for any x, y ∈ X. Also assume that J is G-invariant on X in the sense that J(Gx) = J(x) for
any x ∈ X. Assume Q = GP. A subset F ⊂ X is said to be symmetric if Gx ∈ F for any x ∈ F .
The genus of a closed symmetric subset F of X \ {0} is denoted by γ (F).

Definition 2.8 ([27]) P is called a G-admissible invariant set with respect to J at level
c if the following deformation property holds: There exist ε0 > 0 and a symmetric open
neighborhood N of Kc \W with γ (N) < ∞ such that, for ε ∈ (0, ε0), there exists η ∈ C(X, X)
satisfying

(1) η(P̄) ⊂ P̄, η(Q̄) ⊂ Q̄;
(2) η ◦ G = G ◦ η;
(3) η|Jc–2ε = id;
(4) η(Jc+ε \ (N ∪ W )) ⊂ Jc–ε .

Lemma 2.9 ([27]) Assume that P is a G-admissible invariant set with respect to J at any
level c ≥ c∗ := infu∈Σ J(u), and for any n ∈ N, there exists a continuous map ϕn : Bn = {x ∈
R

n : |x| ≤ 1} → X satisfying
(1) ϕn(0) ∈ M := P ∩ Q, ϕn(–t) = Gϕn(t) for t ∈ Bn,
(2) ϕn(∂Bn) ∩ M = ∅,
(3) supu∈FixG∪ϕn(∂Bn) J(u) < c∗, where FixG := {u ∈ X : Gu = u}.

For j ∈N, define

cj = inf
B∈Γj

sup
u∈B\W

J(u),

where

Γj :=

{
B

∣∣∣∣∣
B = ϕ(Bn \ Y ) for some ϕ ∈ Gn, n ≥ j, and open Y ⊂ Bn,
such that – Y = Y and γ (Y ) ≤ n – j,

}
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and

Gn :=

{
ϕ

∣∣∣∣∣
ϕ ∈ C(Bn, X),ϕ(–t) = Gϕ(t) for t ∈ Bn,
ϕ(0) ∈ M and ϕ|∂Bn = ϕn|∂Bn .

}
.

Then, for j ≥ 2, cj are critical values of J with cj → ∞ as j → ∞ and Kcj \ W �= ∅.

3 Proof of the main results
First, we introduce some notations. Let D± be the positive and negative cones. Precisely,
define

D+ = {u ∈ E : u ≥ 0}, D– = {u ∈ E : u ≤ 0}.

For ε > 0, set

D+
ε =

{
u ∈ E : dist

(
u, D+)

< ε
}

, D–
ε =

{
u ∈ E, dist

(
u, D–)

< ε
}

,

where dist(u, D±) = infv∈D± ‖u – v‖. Obviously, D+
ε = –D–

ε . Set W = D+
ε ∪ D–

ε . Then W is a
symmetric and open subset of E and E \ W contains only sign-changing functions.

Next, define an operator A : E → E, which is used to construct a descending flow for
functional I . For u ∈ E, let v = A(u) ∈ E be the unique solution of the following equation:

(
a + b

∫

R3

∣∣(–�)
s
2 u

∣∣2 dx
)

(–�)sv + V (x)v = f (u). (3.1)

Clearly, the three statements are equivalent: u is a solution of (1.1), u is a critical point of
I , and u is a fixed point of A.

Moreover, the operator A has the following properties.

Lemma 3.1
(1) A is well defined and continuous.
(2) For any u ∈ E, we have

(
I ′(u), u – A(u)

) ≥ min{a, 1}∥∥u – A(u)
∥∥2, (3.2)

‖I ′(u)‖ ≤ (a + 1 + b
∫

R3
|(–�)

s
2 u|2 dx)‖u – A(u)‖. (3.3)

(3) There exists ε0 > 0 such that

A
(
∂D±

ε

) ⊂ D±
ε , ∀ε ∈ (0, ε0).

Moreover, every nontrivial solution u ∈ D+
ε is positive and every nontrivial solution u ∈ D–

ε

is negative.

Proof (1) Define

Ju(v) =
1
2

(
a + b

∫

R3

∣∣(–�)
s
2 u

∣∣2 dx
)∫

R3

∣∣(–�)
s
2 v

∣∣2 dx

+
1
2

∫

R3
V (x)v2 dx –

∫

R3
f (u)v dx, v ∈ E.
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By (f1), (f2), and Lemma 2.1, it is easy to see that Ju ∈ C1 and is coercive, weakly lower
semicontinuous, bounded below, strictly convex. Therefore, Ju admits a unique minimizer
v = A(u) ∈ E, which is the unique solution to (3.1). Thus, A is well defined.

In the following, we show that A is continuous. Let {un} ⊂ E with un → u in E. Set
vn = A(un) and v = A(u). We need to show that ‖vn – v‖ → 0. By the definition of A, for any
w ∈ E, we have

(
a + b

∫

R3

∣∣(–�)
s
2 u

∣∣2 dx
)∫

R3
(–�)

s
2 v(–�)

s
2 w dx +

∫

R3
V (x)vw dx

=
∫

R3
f (u)w dx (3.4)

and
(

a + b
∫

R3

∣∣(–�)
s
2 un

∣∣2 dx
)∫

R3
(–�)

s
2 vn(–�)

s
2 w dx +

∫

R3
V (x)vnw dx

=
∫

R3
f (un)w dx. (3.5)

Choosing w = vn – v in (3.4), (3.5) and subtracting, we get

min{a, 1}‖vn – v‖2 ≤
∫

R3

(
f (un) – f (u)

)
(vn – v)

+ b
(∫

R3

∣∣(–�)
s
2 u

∣∣2
∫

R3
(–�)

s
2 v(–�)

s
2 (vn – v)

–
∫

R3

∣∣(–�)
s
2 un

∣∣2
∫

R3
(–�)

s
2 vn(–�)

s
2 (vn – v)

)

= Λ1 + Λ2.

Let ϕ ∈ C∞
0 (R) be such that

ϕ(t) =

⎧
⎨
⎩

1, |t| ≤ 1,

0, |t| ≥ 2.

Let

h1(t) = ϕ(t)f (t), h2(t) = f (t) – h1(t).

According to (f1) and (f2), there exists C > 0 such that

h1(t) ≤ C|t|, h2(t) ≤ C|t|p–1, t ∈R.

Therefore, by Hölder’s inequality and Lemma 2.2, we get

Λ1 =
∫

R3

(
h1(u) – h1(un)

)
(v – vn) +

∫

R3

(
h2(u) – h2(un)

)
(v – vn)

≤
(∫

R3

∣∣h1(u) – h1(un)
∣∣2

) 1
2
(∫

R3
|v – vn|2

) 1
2
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+
(∫

R3

∣∣h2(u) – h2(un)
∣∣ p

p–1

) p–1
p

(∫

R3
|v – vn|p

) 1
p

≤ C1‖v – vn‖
[(∫

R3

∣∣h1(u) – h1(un)
∣∣2

) 1
2

+
(∫

R3

∣∣h2(u) – h2(un)
∣∣ p

p–1

) p–1
p

]

and

Λ2 ≤ b
[∫

R3

∣∣(–�)
s
2 u

∣∣2
∫

R3
(–�)

s
2 v(–�)

s
2 (vn – v)

–
∫

R3

∣∣(–�)
s
2 un

∣∣2
∫

R3
(–�)

s
2 v(–�)

s
2 (vn – v)

+
∫

R3

∣∣(–�)
s
2 un

∣∣2
∫

R3
(–�)

s
2 v(–�)

s
2 (vn – v)

–
∫

R3

∣∣(–�)
s
2 un

∣∣2
∫

R3
(–�)

s
2 vn(–�)

s
2 (vn – v)

]

≤ b
(∫

R3

∣∣(–�)
s
2 u

∣∣2 –
∫

R3

∣∣(–�)
s
2 un

∣∣2
)∫

R3
(–�)

s
2 v(–�)

s
2 (vn – v)

≤ b
(∫

R3

∣∣(–�)
s
2 u

∣∣2 –
∫

R3

∣∣(–�)
s
2 un

∣∣2
)

‖v‖‖v – vn‖.

Then

min{a, 1}‖v – vn‖ ≤ C1

[(∫

R3

∣∣h1(u) – h1(un)
∣∣2

) 1
2

+
(∫

R3

∣∣h2(u) – h2(un)
∣∣ p

p–1

) p–1
p

]

+ C2

(∫

R3

∣∣(–�)
s
2 u

∣∣2 –
∫

R3

∣∣(–�)
s
2 un

∣∣2
)

.

By virtue of un → u, we have ‖un‖ → ‖u‖. Together with

lim
n→∞

∫

R3
V (x)u2

n =
∫

R3
V (x)u2,

we get
∫

R3

∣∣(–�)
s
2 u

∣∣2 –
∫

R3

∣∣(–�)
s
2 un

∣∣2 → 0. (3.6)

Thus, by (3.6) and the dominated convergence theorem, we obtain that ‖v – vn‖ → 0 as
n → ∞.

(2) Since A(u) is the solution of Eq. (3.1), we have

(
a + b

∫

R3

∣∣(–�)
s
2 u

∣∣2 dx
)∫

R3
(–�)

s
2 A(u)(–�)

s
2 φ dx +

∫

R3
V (x)A(u)φ dx

=
∫

R3
f (u)φ dx, ∀φ ∈ E. (3.7)

Taking φ = u – A(u) in (3.7) and (2.2), we get

(
a + b

∫

R3

∣∣(–�)
s
2 u

∣∣2 dx
)∫

R3
(–�)

s
2 A(u)(–�)

s
2
(
u – A(u)

)
dx
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+
∫

R3
V (x)A(u)

(
u – A(u)

)
dx

=
∫

R3
f (u)

(
u – A(u)

)
dx (3.8)

and

(
I ′(u), u – A(u)

)
=

(
a + b

∫

R3

∣∣(–�)
s
2 u

∣∣2 dx
)∫

R3
(–�)

s
2 u(–�)

s
2
(
u – A(u)

)
dx

+
∫

R3
V (x)u

(
u – A(u)

)
dx –

∫

R3
f (u)

(
u – A(u)

)
dx. (3.9)

Combining (3.8) and (3.9), it follows that

(
I ′(u), u – A(u)

)

=
(

a + b
∫

R3

∣∣(–�)
s
2 u

∣∣2 dx
)∫

R3

∣∣(–�)
s
2
(
u – A(u)

)∣∣2 dx +
∫

R3
V (x)

(
u – A(u)

)2 dx

≥ a
∫

R3

∣∣(–�)
s
2
(
u – A(u)

)∣∣2 dx +
∫

R3
V (x)

(
u – A(u)

)2 dx

≥ min{a, 1}∥∥u – A(u)
∥∥2.

In the same way as above, for any w ∈ E, we have

(
I ′(u), w

)
=

(
a + b

∫

R3

∣∣(–�)
s
2 u

∣∣2 dx
)∫

R3
(–�)

s
2
(
u – A(u)

)
(–�)

s
2 w dx

+
∫

R3
V (x)

(
u – A(u)

)
w dx.

By Hölder’s inequality, we get

(
I ′(u), w

) ≤
(

a + b
∫

R3

∣∣(–�)
s
2 u

∣∣2 dx
)(∫

R3

∣∣(–�)
s
2
(
u – A(u)

)∣∣2 dx
) 1

2

×
(∫

R3

∣∣(–�)
s
2 w

∣∣2 dx
) 1

2

+
(∫

R3
V (x)

(
u – A(u)

)2 dx
) 1

2
(∫

R3
V (x)w2 dx

) 1
2

≤
(

a + b
∫

R3

∣∣(–�)
s
2 u

∣∣2 dx
)∥∥u – A(u)

∥∥‖w‖ +
∥∥u – A(u)

∥∥‖w‖

=
(

a + 1 + b
∫

R3

∣∣(–�)
s
2 u

∣∣2 dx
)∥∥u – A(u)

∥∥‖w‖.

Thus,

∥∥I ′(u)
∥∥ ≤

(
a + 1 + b

∫

R3

∣∣(–�)
s
2 u

∣∣2 dx
)∥∥u – A(u)

∥∥.
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(3) We need only to show that A(∂D+
ε ) ⊂ D+

ε . The other case can be shown similarly.
According to (f1) and (f2), for any ξ > 0, there exists Cξ > 0 such that

∣∣f (τ )
∣∣ ≤ ξ |τ | + Cξ |τ |p–1. (3.10)

Let u ∈ ∂D+
ε and v = A(u). Then

dist
(
v, D+)

= inf
w∈D+

‖v – w‖ ≤ ∥∥v–∥∥. (3.11)

By Lemma 2.1, for any q ∈ [2, 2�
s ], there exists Cq > 0 such that

∥∥u±∥∥
q = inf

w∈D∓ ‖u – w‖q ≤ Cq inf
w∈D∓ ‖u – w‖ = Cq dist

(
u, D∓)

. (3.12)

Choosing w = v– in (3.4), we get

(
a + b

∫

R3

∣∣(–�)
s
2 u

∣∣2 dx
)∫

R3
(–�)

s
2 v(–�)

s
2 v– +

∫

R3
V (x)vv– dx

=
∫

R3
f (u)v– dx. (3.13)

By (3.13), we obtain

min{a, 1}(v, v–) ≤
∫

R3
f (u)v– dx – b

∫

R3

∣∣(–�)
s
2 u

∣∣2 dx
∫

R3
(–�)

s
2 v(–�)

s
2 v– dx. (3.14)

Together with (3.10)–(3.12), (3.14), (ii) of Remark 2.5, and (f3), we obtain

dist
(
v, D+)∥∥v–∥∥ ≤ ∥∥v–∥∥2

≤ (
v, v–)

≤ C
[∫

R3
f (u)v– dx – b

∫

R3

∣∣(–�)
s
2 u

∣∣2 dx
∫

R3
(–�)

s
2 v(–�)

s
2 v– dx

]

≤ C
∫

R3
f
(
u–)

v– dx

≤ C
∫

R3

(
ξ
∣∣u–∣∣ + Cξ

∣∣u–∣∣p–1)∣∣v–∣∣dx

≤ Cξ
∥∥u–∥∥

2

∥∥v–∥∥
2 + Cξ

∥∥u–∥∥p–1
p

∥∥v–∥∥
p

≤ C4
(
ξ dist

(
u, D+)

+ Cξ

(
dist

(
u, D+))p–1)∥∥v–∥∥.

It follows that

dist
(
A(u), D+) ≤ C4

(
ξ dist

(
u, D+)

+ Cξ

(
dist

(
u, D+))p–1).

Therefore, taking ξ small enough, there exists ε0 > 0 such that, for ε ∈ (0, ε0),

dist
(
A(u), D+) ≤ 1

2
dist

(
u, D+)

. (3.15)
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This means that A(∂D+
ε ) ⊂ D+

ε . If there exists u ∈ D+
ε such that A(u) = u, it follows from

(3.15) that dist(u, D+) = 0. Then u ∈ D+. If u �≡ 0, by the maximum principle (see [28]), we
have u > 0. �

Lemma 3.2 Let a1 < b1 and β1 > 0. Then there exists β2 > 0 such that ‖u – A(u)‖ ≥ β2 if
u ∈ E, I(u) ∈ [a1, b1], and ‖I ′(u)‖ ≥ β1.

Proof Taking φ = u in (3.7), we obtain
(

a + b
∫

R3

∣∣(–�)
s
2 u

∣∣2 dx
)∫

R3
(–�)

s
2 A(u)(–�)

s
2 u dx

+
∫

R3
V (x)A(u)u dx =

∫

R3
f (u)u dx. (3.16)

By virtue of (3.16), (2.1), and (f3), we get

I(u) –
1
μ

(
a + b

∫

R3

∣∣(–�)
s
2 u

∣∣2 dx
)∫

R3
(–�)

s
2 u(–�)

s
2
(
u – A(u)

)
dx

–
1
μ

∫

R3
V (x)u

(
u – A(u)

)
dx

= I(u) –
1
μ

(
a + b

∫

R3

∣∣(–�)
s
2 u

∣∣2 dx
)∫

R3
(–�)

s
2 u(–�)

s
2 u dx –

1
μ

∫

R3
V (x)u2 dx

+
1
μ

(
a + b

∫

R3

∣∣(–�)
s
2 u

∣∣2 dx
)∫

R3
(–�)

s
2 u(–�)

s
2 A(u) dx +

1
μ

∫

R3
V (x)uA(u) dx

= I(u) –
1
μ

(
a + b

∫

R3

∣∣(–�)
s
2 u

∣∣2 dx
)∫

R3

∣∣(–�)
s
2 u

∣∣2 dx –
1
μ

∫

R3
V (x)u2 dx

+
1
μ

∫

R3
f (u)u dx

= a
(

1
2

–
1
μ

)∫

R3

∣∣(–�)
s
2 u

∣∣2 dx +
(

1
2

–
1
μ

)∫

R3
V (x)u2 dx

+ b
(

1
4

–
1
μ

)(∫

R3

∣∣(–�)
s
2 u

∣∣2 dx
)2

+
∫

R3

(
1
μ

f (u)u – F(u)
)

dx

≥
(

1
2

–
1
μ

)
min{a, 1}‖u‖2 + b

(
1
4

–
1
μ

)(∫

R3

∣∣(–�)
s
2 u

∣∣2 dx
)2

.

Thus,
(

1
2

–
1
μ

)
min{a, 1}‖u‖2

≤ ∣∣I(u)
∣∣ +

1
μ

(
a + 1 + b

∫

R3

∣∣(–�)
s
2 u

∣∣2 dx
)(

u, u – A(u)
)

– b
(

1
4

–
1
μ

)(∫

R3

∣∣(–�)
s
2 u

∣∣2 dx
)2

≤ ∣∣I(u)
∣∣ +

1
μ

(a + 1)‖u‖∥∥u – A(u)
∥∥ +

1
μ

b‖u‖∥∥u – A(u)
∥∥

∫

R3

∣∣(–�)
s
2 u

∣∣2 dx
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– b
(

1
4

–
1
μ

)(∫

R3

∣∣(–�)
s
2 u

∣∣2 dx
)2

≤ ∣∣I(u)
∣∣ +

1
μ

(a + 1)‖u‖∥∥u – A(u)
∥∥ +

b
μ(μ – 4)

‖u‖2∥∥u – A(u)
∥∥2. (3.17)

If there exists {un} ⊂ E with I(un) ∈ [a1, b1] and ‖I ′(un)‖ ≥ β1 such that ‖un – A(un)‖ → 0
as n → ∞, it follows from (3.17) that {‖un‖} is bounded. According to (3.3), it is easy to
see that ‖I ′(un)‖ → 0 as n → ∞, which is a contradiction with ‖I ′(un)‖ ≥ β1. Thus, the
proof is completed. �

Denote K = {u ∈ E, I ′(u) = 0}, E0 = E\K . Observe that A is merely continuous and cannot
be used to construct a descending flow. So, constructing a locally Lipschitz continuous op-
erator B which inherits the main properties of A is necessary. Similar to ([29], Lemma 4.4),
we give the following lemma.

Lemma 3.3 There exists a locally Lipschitz continuous operator B : E → E0 such that
(1) B(∂D±

ε ) ⊂ D±
ε , ∀ε ∈ (0, ε0);

(2) (I ′(u), u – B(u)) ≥ 1
2‖u – A(u)‖2, u ∈ E;

(3) 1
2‖u – B(u)‖ ≤ ‖u – A(u)‖ ≤ 2‖u – B(u)‖, u ∈ E;

(4) If A is odd, so is B.

To apply Lemma 2.7 to prove Theorem 1.1, we take X = E, P = D+
ε , Q = D–

ε , and J = I .
Then M = D+

ε ∩ D–
ε , Σ = ∂D+

ε ∩ ∂D–
ε , and W = D+

ε ∪ D–
ε . In the following, a deformation

lemma is given in order to prove that {D+
ε , D–

ε } is an admissible family of invariant sets with
respect to J at level c ∈R.

Lemma 3.4 If Kc \ W = ∅, then there exists ε0 > 0 such that, for 0 < ε < ε′ < ε0, there exists
a continuous map σ : [0, 1] × E → E satisfying

(1) σ (0, u) = u for u ∈ E;
(2) σ (t, u) = u for t ∈ [0, 1] and u /∈ I–1[c – ε′, c + ε′];
(3) σ (1, Ic+ε \ W ) ⊂ Ic–ε ;
(4) σ (t, D±

ε ) ⊂ D±
ε , t ∈ [0, 1].

Proof For δ > 0, let N(δ) = {u ∈ E : dist(u, Kc) < δ}. If δ is small enough, then N(δ) ⊂ W . By
Lemma 2.2, I satisfies the (PS) condition. So, there exist ε0,β1 > 0 such that

∥∥I ′(u)
∥∥ ≥ β1, for u ∈ I–1([c – ε0, c + ε0]

) \ N
(

δ

2

)
.

According to Lemma 3.2 and Lemma 3.3, there exists β2 > 0 such that

∥∥u – B(u)
∥∥ ≥ β2, for u ∈ I–1([c – ε0, c + ε0]

) \ N
(

δ

2

)
.

Without loss of generality, assume that ε0 ≤ β2δ

32 . Let

V (u) =
u – B(u)

‖u – B(u)‖ , for u ∈ E0 = E \ K .
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Define two locally Lipschitz continuous functions h, p : E → [0, 1] such that

h(u) =

⎧⎨
⎩

0, u ∈ N( δ
4 ),

1, u /∈ N( δ
2 ),

and

p(u) =

⎧⎨
⎩

0, u /∈ I–1([c – ε′, c + ε′]),

1, u ∈ I–1([c – ε, c + ε]).

Consider the initial value problem
⎧⎨
⎩

dτ
dt = –h(τ )p(τ )V (τ ),

τ (0, u) = u.

For u ∈ E, this problem admits a unique continuous solution τ (t, u). Define σ (t, u) =
τ ( 16ε

β2
t, u). Now we shall prove (3) and (4) since (1) and (2) are obvious.

To prove (3), we need only to show that

I
(
σ (1, u)

)
= I

(
τ

(
16ε

β2
, u

))
≤ c – ε for u ∈ Ic+ε \ W .

In fact, from Lemma 3.3, we know I(τ (t, u)) is decreasing for t ∈ [0, 16ε
β2

]. If there exists
t0 ∈ [0, 16ε

β2
] such that I(τ (t0, u)) ≤ c – ε, then

I
(
σ (1, u)

)
= I

(
τ

(
16ε

β2
, u

))
≤ I

(
τ (t0, u)

) ≤ c – ε.

Otherwise, if I(τ (t, u)) ≥ c – ε for all t ∈ [0, 16ε
β2

], then p(τ (t, u)) = 1 for t ∈ [0, 16ε
β2

].
On the other hand, if there exists t1 ∈ [0, 16ε

β2
] such that τ (t1, u) ∈ N( δ

2 ), noting that u /∈
N(δ), then we have

δ

2
≤ ∥∥τ (t1, u) – u

∥∥ ≤
∫ t1

0

∥∥τ ′(s, u)
∥∥ds ≤ t1 ≤ 16ε

β2
,

which contradicts the fact that ε < ε0 < β2δ

32 . So, τ (t, u) /∈ N( δ
2 ) for all t ∈ [0, 16ε

β2
]. Therefore,

h(τ (t, u)) = 1 for t ∈ [0, 16ε
β2

]. Immediately, it follows from (2) and (3) of Lemma 3.3 that

I
(
σ (1, u)

)
= I

(
τ

(
16ε

β2
, u

))

= I(u) –
∫ 16ε

β2

0

(
I ′(τ (s, u)

)
, V

(
τ (s, u)

))

≤ I(u) –
∫ 16ε

β2

0

1
8
∥∥τ (s, u), B

(
τ (s, u)

)∥∥

≤ c + ε –
16ε

β2

β2

8
= c – ε,

which implies that (3) holds.
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Finally, similar to [29], (4) is a consequence of (1) of Lemma 3.3 (see [30] for detailed
proof ). �

Proof of Theorem 1.1 In order to prove the existence of positive and negative solutions for
Eq. (1.1), it is necessary to introduce the following functions:

f +(t) =

⎧⎨
⎩

f (t), t ≥ 0,

0, t < 0,

and

f –(t) =

⎧⎨
⎩

0, t > 0,

f (t), t ≤ 0.

Then

F±(t) =
∫ t

0
f ±(u) du.

Observe that f ±(t) satisfy assumptions (f1)–(f2), while assumption (f3) is verified by f + and
F+ for any t > 0 and by f – and F– for any t < 0.

Define functional I± : E →R as follows:

I±(u) =
1
2

∫

R3
(a

(∣∣(–�)
s
2 u

∣∣2 + V (x)u2)dx +
b
4

(∫

R3

∣∣(–�)
s
2 u

∣∣2 dx
)2

–
∫

R3
F±(u) dx. (3.18)

It is easy to show that I± ∈ C1(E,R) and

((
I±)′(u), v

)
=

∫

R3

(
a(–�)

s
2 u(–�)

s
2 v + V (x)uv

)
dx

+ b
∫

R3

∣∣(–�)
s
2 u

∣∣2 dx
∫

R3
(–�)

s
2 u(–�)

s
2 v dx

–
∫

R3
f ±(u)v dx, u, v ∈ E. (3.19)

Moreover, by the same arguments as Lemma 2.2 and Lemma 2.3, we may show that I±

satisfy the (PS) condition and mountain pass geometry. Then, according to the mountain
pass theorem, I+ has a critical point u1 and I– has a critical point u2.

Let u–
1 be a test function. By (3.19) and Lemma 2.4, we get

0 =
((

I+)′(u1), u–
1
)

=
∫

R3

(
a(–�)

s
2 u1(–�)

s
2 u–

1 + V (x)u1u–
1
)

dx

+ b
∫

R3

∣∣(–�)
s
2 u1

∣∣2 dx
∫

R3
(–�)

s
2 u1(–�)

s
2 u–

1 dx
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–
∫

R3
f +(u1)u–

1 dx

=
∫

R3
a(–�)

s
2 u1(–�)

s
2 u–

1 dx + b
∫

R3

∣∣(–�)
s
2 u1

∣∣2 dx
∫

R3
(–�)

s
2 u1(–�)

s
2 u–

1 dx

+
∫

R3
V (x)

(
u–

1
)2 dx

≥
(

a + b
∫

R3

∣∣(–�)
s
2 u1

∣∣2 dx
)∫

R3
(–�)

s
2 u–

1 (–�)
s
2 u–

1 dx +
∫

R3
V (x)

(
u–

1
)2 dx

≥ min{a, 1}∥∥u–
1
∥∥2.

Thus, we have u–
1 = 0, which means u1 ≥ 0. Notice that u1 �≡ 0, by the maximum principle

(see [28]), we have u1 > 0. With the same arguments it is easy to show that u2 < 0.
In what follows, we claim the existence of a sign-changing solution.
According to Lemma 3.4, if we set ε′ = 2ε and η(u) = σ (1, u), it is easy to see that {D+

ε , D–
ε }

is an admissible family of invariant sets with respect to J at level c ∈ R. Suppose v1, v2 ∈
C∞

0 (R3) \ {0} satisfying

supp(v1) ∩ supp(v2) = ∅, v1 < 0, v2 > 0.

Let ϕ0 : � → X be such that

ϕ0(t, s) = R(tv1 + sv2), ∀(t, s) ∈ �,

where R is a positive number to be determined later.
Obviously,

ϕ0(0, s) = Rsv2 ∈ D+
ε , ϕ0(t, 0) = Rtv1 ∈ D–

ε ,

which guarantees that

ϕ0(∂1�) ⊂ D+
ε , ϕ0(∂2�) ⊂ D–

ε .

Therefore, assumption (1) of Lemma 2.7 holds.
Next, we verify assumption (2) of Lemma 2.7. By a direct calculation, we have

ρ = min
{∥∥tv1 + (1 – t)v2

∥∥
2 : 0 ≤ t ≤ 1

}
> 0.

Then

‖u‖2 ≥ ρR, u ∈ ϕ0(∂0�). (3.20)

By (3.12), for q ∈ [2, 2�
s ), there exists mq > 0 such that

‖u‖q ≤ mqε, u ∈ M. (3.21)

Immediately, ϕ0(∂0�) ∩ M = ∅ if R is large enough.
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Finally, it remains to verify assumption (3) of Lemma 2.7.
In fact, for u ∈ ∂D+

ε ∩ ∂D–
ε , we have

∥∥u±∥∥ ≥ dist
(
u, D∓)

= ε.

This together with Lemma 2.4 guarantees that

‖u‖2 =
(
u+ + u–, u+ + u–) ≥ (

u+, u+)
+

(
u–, u–) ≥ 2ε2. (3.22)

Notice from (f1)–(f2) that

F(τ ) ≤ min{a, 1}
2m2

2
|τ |2 + C2|τ |p, ∀τ ∈R. (3.23)

Therefore, by virtue of (3.21)–(3.23), for ε > 0 small enough, we have

I(u) ≥ 1
2

min{a, 1}‖u‖2 +
b
4

(∫

R3

∣∣(–�)
s
2 u

∣∣2 dx
)2

–
∫

R3
F(u) dx

≥ 1
2

min{a, 1}‖u‖2 –
min{a, 1}

2m2
2

‖u‖2
2 – C2‖u‖p

p

≥ min{a, 1}ε2 –
1
2

min{a, 1}ε2 – C2mp
pε

p

≥ 1
4

min{a, 1}ε2, u ∈ Σ .

Then

c� = inf
u∈Σ

I(u) ≥ 1
4

min{a, 1}ε2 > 0. (3.24)

On the other hand, by (f3), we have

F(τ ) ≥ C3|τ |μ – C4. (3.25)

For u ∈ ϕ0(∂0�), it follows from (3.25) that

I(u) ≤ a + 1
2

‖u‖2 +
b
4
‖u‖4 –

∫

supp(v1)∪supp(v2)
F(u)

≤ a + 1
2

‖u‖2 +
b
4
‖u‖4 – C3‖u‖μ

μ + C6.

This together with (3.20) guarantees that

sup
u∈ϕ0(∂0�)

I(u) < 0. (3.26)

Then, by virtue of (3.24) and (3.26), we know

sup
u∈ϕ0(∂0�)

I(u) < c�

for R large enough, which means that assumption (3) of Lemma 2.7 holds.
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Then, by Lemma 2.7, I has a critical point u ∈ E \ (D+
ε ∪ D–

ε ), which is a sign-changing
solution of Eq. (1.1).

In summary, there exist a positive solution, a negative solution, and a sign-changing
solution for Eq. (1.1). �

Now we are in a position to prove Theorem 1.2. For this sake, take X = E, G = –id, P = D+
ε ,

Q = D–
ε , and J = I . Then M = D+

ε ∩ D–
ε , Σ = ∂D+

ε ∩ ∂D–
ε , and W = D+

ε ∪ D–
ε . I is even since

f is assumed to be odd. In the following, a deformation lemma is given in order to prove
D+

ε is a G-admissible invariant set with respect to J at level c. Owing to the proof being
similar to that of Lemma 3.4, the details are omitted.

Lemma 3.5 There exists ε0 > 0 such that, for 0 < ε < ε′ < ε0, there exists a continuous map
σ : [0, 1] × E → E satisfying

(1) σ (0, u) = u for u ∈ E;
(2) σ (t, –u) = –σ (t, u) for (t, u) ∈ [0, 1] × E;
(3) σ (t, u) = u, for t ∈ [0, 1] and u /∈ I–1[c – ε′, c + ε′];
(4) σ (1, Ic+ε \ W ) ⊂ Ic–ε ;
(5) σ (t, D±

ε ) ⊂ D±
ε for t ∈ [0, 1].

Proof of Theorem 1.2 According to Lemma 3.5 and Definition 2.8, it is easy to see that
D+

ε is a G-admissible invariant set with respect to J at level c. For any n ∈ N, suppose
{vi}n

1 ⊂ C∞
0 (R3) \ {0} such that

supp(vi) ∩ supp(vj) = ∅, i �= j.

Let Bn be the same as in Lemma 2.9. Define ϕn ∈ C(Bn, E) as

ϕn(t) = Rn

n∑
i=1

tivi, t = (t1, t2, . . . , tn) ∈ Bn,

where Rn > 0. Similar to the proof of Theorem 1.1, it is easy to verify that all the assump-
tions of Lemma 2.9 are satisfied.

Consequently, by Lemma 2.9, I has infinitely many critical points in E \ (D+
ε ∪D–

ε ), which
are sign-changing solutions of Eq. (1.1). �
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