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Abstract

The aim of this paper is to show some regularity properties of solutions to Lu =,
where L is a second order nondivergence form operator and f belongs to a
homogeneous Herz space K;"([’;(') with two variable exponents.
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1 Introduction
In this note we apply some recent estimates of singular integral operators and commuta-
tors to the study of regularity of solutions to second order elliptic equations with nondi-
vergence principal part having discontinuous coefficients.

Let 2 C R", n > 2, be a bounded domain, and let us consider the partial differential

equation
Lu = a;;(x)Dyyu = f (%), (1.1)

where a;,f : 2 — R. We require the ellipticity of the differential operator £ imposing
the positive definiteness of the coefficients matrix A(x) = {@;;(x)};/-1,..,,- In particular, £ is

strictly elliptic if
Alx) > const>0 in £2,

where A(x) is the minimum eigenvalue of A(x). Also, the uniform ellipticity means bound-

edness of the spectrum of A(x),

A
ﬁ <const in £2,
A(x)

where with A(x) we denote the maximum eigenvalue of A(x).
As usual, we say that a function u € C2(£2) is a classical solution to (1.1) if it satisfies the

equation at each x € £2. It is clear that in order to deduce the solvability to (1.1) in that
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rough sense, we should require some regularity assumptions on the coefficients a;; beside
the strict and uniform ellipticity mentioned above.

In the framework of the Schauder theory of linear elliptic operators, we have results
dealing with classical solvability and regularity for equation (1.1) with Holder continuous
coefficients a;; € C* (2), @ €(0,1), and f € C*¥(£2). However, it is well known that even
the Poisson equation Au = f does not have a C>-solution for continuous f.

This example justifies another definition of solution. Namely, it is common to define
the concept of strong solution. We say that a strong solution to (1.1) is a twice weakly
differentiable function, u € W2?(2) for suitable p € (1, 00), satisfying the equation Lu = f
almost everywhere (a.e.) in £2. That new concept of solution was meant also for f € L?(£2)
and a; € L*(£2).

On the other hand, the only strict ellipticity and the fact that the coefficients a;; could be
essentially bounded are not enough to deduce strong solvability of (1.1) as shown by Pucci.
Precisely, from the studies of Pucci, it turns out that a satisfactory strong solvability theory
of (1.1) can be built only with additional hypotheses on the coefficients a;; of L. These
assumptions should be either regularity hypotheses on the coefficients a;; or hypotheses
on the spectrum of the matrix A(x) stronger than the strict and uniform ellipticity. For
instance, if we assume that the coefficients a;; are continuous in 2,

a;(x) € C°(),

the classical L”-theory provides solvability and regularity for (1.1) in Sobolev spaces
W2 (£2) for any p > 1.

For further details, see, for instance, the classical monographs of Ladyzhenskaya and
Ural'tseva [1], Ladyzhenskaya, Solonnikov, and Ural’tseva [2], Miranda [3], and Gilbarg
and Trudinger [4].

Over the years there was developed an analogue of the L?-theory of elliptic (and
parabolic) equations, weakening the continuity assumption on the coefficients of the prin-
cipal part of the operators under consideration. Precisely, it is interesting to investigate the
case of discontinuous coeflicients. We recall the so-called Cordes condition, introduced by
Cordes in the study of Holder continuity of solutions to (1.1). This condition substitutes
the continuity assumption with the requirement that all the eigenvalues A;(x) of the ma-
trix A(x) do not spread too much. The Cordes condition allowed Talenti to obtain strong
solvability in W??2($2) of the Dirichlet problem for the operator £, and starting from his
paper, other authors studied other boundary value problems of elliptic and parabolic type.

Another class of discontinuous coefficients was introduced by Miranda, and it consists
of all functions that belong to the Sobolev space W1 (£2). In spite of the difference between
these two types of discontinuity, the approaches in the study of boundary value problems
are unified by the Miranda—Talenti inequality which allows us to obtain the constants that
appear in the L2-a priori estimates.

It is important to underline that all the assumptions above permit to derive regularity
results in the frameworks of W>? or W2? with p greater than, but sufficiently near to, 2.

Finally, it is important to investigate the L”-theory of elliptic and parabolic operators
with principal coefficients a;; belonging to the Sarason class VMO of functions having van-
ishing mean oscillation. In two pioneering scientific notes, Chiarenza, Frasca, and Longo
modified the classical methods in order to obtain L” estimates for solutions to (1.1); the
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approach followed by Chiarenza, Frasca, and Longo is strictly related to the theory of
Calderén and Zygmund and uses a representation formula for the second derivatives D*u
of any solutions to (1.1) in terms of a singular integral that acts on f and a commutator
that acts on the same derivatives D*u and with density a;(x) — a;(y). Thus, if the coef-
ficients a;; have a vanishing mean oscillation, guaranteed by the assumption a; € VMO,
then the L”-norm of D*u is bounded in terms of L”-norm of f, and this result holds for
any p € (1,00).

Taking into account that VMO contains as proper subsets both C°(£2) and W"(£2), the
L?-theory of operators with VMO principal coefficients generalized the theories known
before 1990.

In this work the crucial assumption is a; € VMO.

In the last years a lot of authors obtained regularity results in several spaces: for instance,
we recall the regularity results obtained in the framework of Morrey spaces by Di Fazio and
Ragusa in [5], generalized Morrey spaces by Scapellato in [6], and Herz spaces by Ragusa
in [7] and Scapellato in [8]. In the first two papers, the authors use the representation
formula for the second derivatives of a solution to the equations under consideration and
apply the estimates contained in [9] and [10], respectively.

The regularity of solutions to differential problems was also extensively studied in the
recent papers [11-13].

In this note, we obtain a regularity result in the framework of Herz spaces with variable
exponents. The analysis of the boundedness of integral operators, the calculus of varia-
tions, the study of the regularity to solutions to partial differential equations and systems
in such nonstandard functional spaces has shown a growing interest in recent years.

Our study starts from the boundedness results contained in [14] and uses the technique
in [15] for interior estimates, based on the explicit representation formula for the second
derivatives of a solution to (1.1).

In the next section we present some useful definitions and tools.

2 Homogeneous Herz spaces with variable exponent

Let 2 be a measurable set in R”. We firstly recall the definition of the Lebesgue spaces with
variable exponent. For a deeper discussion of Lebesgue spaces with variable exponent, we
refer the reader to [16].

Let P(£2) be the set of all Lebesgue measurable functions p(-) : £2 — [1,00]. The el-
ements of P(£2) are called exponent functions. We denote by B(£2) the set of all func-
tions p(-) € P(£2) such that the related Hardy-Littlewood maximal operator is bounded
on L7V(2).

Throughout this paper we will set

p-= essinf{p(x) 1x € .Q}, ps = esssup{p(x) (X € .Q}

Let p(-) € P(£2) and let f be a Lebesgue measurable function. Let us define the modular
functional associated with p(-) by

P2 (f) = / @™ dx + 1f (),
2\ 200

where 24, = {x € £2 : p(x) = 00}.
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If f is unbounded on 2, or if f(-)?1) ¢ L}(£2 \ £24), we define Pp(),2(f) = +00. When
[£25c| = 0, in particular when p, < 0o, we let ||f|z(2.) = 0. When [£2 \ £2o| = 0, then
Pp),2 () = Il (24)- In situations where there is no ambiguity, we will simply write p(f).

Definition 1 Let £2 be a measurable set in R” and p(-) € P(£2). Let us define L?V)(£2) to
be the set of Lebesgue measurable functions f such that p(f ) < oo for some A > 0.

Also, for every compact set K C £2, the space J2 )(£2) is defined by

loc
IP0(2) = {f is measurable: f € Lp(')(l()}.

Definition 2 Let p(-),q(-) € P(£2). The mixed Lebesgue sequence space with variable ex-
ponent £90)(L70) is the set of all sequences {fi}jen of measurable functions on R” such

that
_ . Ji
” {ﬁ}iGN ||(q(~)(Lp(-)) =infin>0: Qeq(-)([p(~)) - <1;<oo,
¢ jeN
where
(x)| px)
Q) 1p0)) {f}jeN Zlﬂf{§/ >0: / (lf]L ) dx < 1}.
é_jq(x)

We observe that, for g, < 0o, we have that
qu(-)(Lp {f}]EN ZH[ﬂq p_

Let By = {x € R" : || < 2%}, C = Bx \ Bi-1, %k = Xc,» k € Z.

Definition 3 Let « € R”, g(-), p() € P(R"). The homogeneous Herz space with variable

exponent I'(;(’z(‘) is defined as follows:
()
KP( {f € Lloc ( {0}) ”f”k;(g(-) < OO},
where
j2
uf”kZ(,z” B ” {2 0tlek'}kel\!||zq(-)(1,17(-))

o ko q()
2
=inf{n>0: E H(M) o0 <1¢.
Ke—oo n a0

3 Calderén-Zygmund operators, BMO and VMO spaces

In this section we review some of the standard facts on Calderé6n—Zygmund operators
and their commutators. With . (R”) we denote the Schwartz class and with .’ (R") we
indicate the space of tempered distributions. Let us start with the following definition (see
[17, 18]).
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Definition 4 Let T be a bounded linear operator from . (R") to .#”/(R"). We say that T
is a standard operator if it satisfies the following conditions:

+ T extends to a bounded linear operator on L2(R");

« There exists a function K(x,y) defined on {(x,y) € R” x R” : x # y} such that

|K(x,9)] <

e —y"’

where C > 0;
o (T£,2) = Jan [on K(x,9)f (0)g(x) dxdy for f,g € .#(R") such that supp(f) N supp(g) = &.

A standard operator T is called a y-Calderéon—Zygmund operator if K is a standard
kernel satisfying

lx —z|”
|K(x,y) —K(z,y)| < Cm»

lx —z|”
|K(y,%) -K(y,2)| <C———,

o — y|m+y

if |x—z| < %|x —y| for some y €]0,1].
The commutator of the Calderén—-Zygmund operator is defined by

[b, T1f (x) = b(x) Tf (x) - T(bf) ().

In 1983, Journé proved that a y -Calderén—Zygmund operator is bounded on L?(R") (see
[19]). Coifman, Rochberg, and Weiss in [20] proved that the commutator [b, T'] is bounded
on L#(R") for p €]0,1[.

Kovacik and Rékosnik in [21] introduced Lebesgue spaces and Sobolev spaces with vari-
able exponent. For a recent treatment of Lebesgue spaces with variable exponent, we refer
the reader to [16].

In the last decades, there was an increasing interest in the study of functional spaces
having variable exponent thanks to the wide variety of applications, for instance, in fluid
dynamics and differential equations.

In particular, Herz spaces play an important role in harmonic analysis. In this paper,
we will apply the theory of regularity of solutions to partial differential equations to the
main results contained in [14]. They deal with the boundedness of Calder6n-Zygmund
operator and their commutator on Herz spaces with two variable exponents p(-), g(-).

In order to develop a satisfactory theory of regularity of solutions to linear elliptic dif-
ferential equations, following the pioneering scientific note [15], we will assume that the
coeflicients of the differential operators under consideration belong to the Sarason class of
functions having vanishing mean oscillation. This requirement on the coefficients allows
us to consider also the case that these coefficients are discontinuous.

First of all we recall the definition of BMO space due to John and Nirenberg (see [22]).

Definition 5 We define the space BMO(R") of functions having bounded mean oscilla-
tion as

BMO(R") = {b e Li, (R") : [|B]. < o0},
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where

1
1B, = sup —/|b(x)—b3|dx,
scre |Bl JB

where B is a generic ball in R” and bp stands for the integral average of the function b over
the sphere B.

In the next definition we define a proper subset of the space BMO studied by Sarason
(see [23]).

Definition 6 We define the space VMO(R”) of functions having vanishing mean oscilla-

tion as
VMO(R") = {b € BMO(R") s lim () =0},
where

yor) = sup —— [ |b(x) - b, | dx

pP=r |Bp| By

and B, varies in the class of balls in R” having radius p. We call y;, the VMO-modulus of
the function b.

In a similar way, we can define the spaces BMO(£2) and VMO(S2) of functions defined on
a domain 2 C R”, replacing B and B, by the intersections of the respective balls with £2.

It is worth pointing out that applying the classical Poincaré inequality, it follows that
WL*(R") ¢ VMO and, further on, W% (R") c VMO for 0 < 6 < 1 as shows the function
fa(x) = |log|x||* for O < & < 1. Straightforward calculations yield that f, € VMO for every
a€(0,1),f; € W fora € (0,1 - 1), while f, ¢ W fora € [1-1,1).

4 Main result
In the sequel, let n > 3 and

L:= Zaij(x)axixjy

ij=1

where
(1) aje VMONL>®(82) foralli,j=1,...,nand a.a. x € 2;
(2) aij(x) =a;(x) foralli,j=1,...,nand a.a. x € £2;
(3) Iv>0:vEP < YU a(*)&& < v[E|*, ae. in B, for all £ € R
In the following we set

) " Eh
I'(x,t) = (1= Do (detay ()2 (;Aij(x)titj>

for a.a. x € B, for t € R” \ {0}, where we denote by A;;(x) the entries of the inverse of the

.....
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(2) hold everywhere, for fixed xo € B, I" (xo, t) is a fundamental solution for the operator

Lou(x) = ) ay(0) sz (%)

ij=1

Also, we set

2

0
Ti(x,t) = EF(x, 1), Ti(x, t) = YIRS
i )

I (x,t).

Furthermore, we set

a” nj(x: t)
ot

M := max max
ij=1,..n |a|<2n

LO(2x X)

It is well known that I'j;(x, t) are Calderén—Zygmund kernels in the ¢ variable.

Let us start with some useful tools. For the proofs, we refer the reader to [14].

Lemma 7 Let p, € B(R") for h = 1,2, then there exist constants 0 < ty1,ty < 1, and C >0
such that, for all balls B C R" and all measurable subsets R C B,

”XR”LPh(‘)(]Rn) - C(@)Un ||XR||Lp;1(.)(Rn) - C(@)m
B lxsll RN

| x5 ”Lph(')(]R”) Lp;l(')(R”)

where with p)(-) is the conjugate exponent function defined as

+ =1, xeR"

Theorem 8 Suppose that p1 € B(R"), q1(-),q2(-) € P(R") with (q2)- > (q1)+. If —nt1a <
a < ntyy, with ti, tip as in Lemma 7, then the operator T of Definition 4 is bounded from
K50 @ to KSR,

Theorem 9 Letb € BMO(R"). Suppose that p,(-) € B(R"), q1(-), q2(-) € P(R") with (q2)_ >
(q1)+-If —nt1a < a < ntyy, with iy, t1o as in Lemma 7, then the commutator [b, T is bounded
from I(Zl”g(‘)(R”) to K;‘l”f_l)(')(]R”).

Now we are ready to show our main result. The proof is based on the representation

formula for the second derivatives of a solution in the class W/g 7,

Theorem 10 Under assumptions (1), (2), (3), p €]1,00[, p1(-), q(-) = q1(:) = q2(+), and o as
in Theorems 8 and 9, there exist positive numbers C = C(n, p, p1,q, M, ) and po = po(C, n)
such that, for any ball B, € §2 withr < py and any u € Woz’p(BR) such that Usys; € I(;’{Z()')(B,)
and Lu =f(x), with f € K (B,), we have

Uy ||t <C (- Vi,j=1,...,n.
it g s, < CUf ooy, Yii=1o-oo
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Proof Let n > 3, B be an open ball in R”, (4;);/-1,...» be as above and u € Wg’p(B). Then,
for a.a. x € B, the following representation formula holds (see [15]):

n

Uy (%) = P.V. / (o, x - y) - Z (dhk(x) - “hk()’))uxhxk ) + Lu(y) | dy
B hk=1
+ Lu(x) Ti(x, )t doy. (4.1)

lel=1

From Theorem 8, it follows that, for any / € K;{ZE(')(R”), the following inequality holds:

” T(h)||1'<°("fz)(’)(R") = C||h||1~<a,q1)(»)(R,,)« (4.2)

1216 1216

Furthermore, from Theorem 9, it follows that, for any / € I'(;l’?)(')(R”) and b € BMO(R"),
we have

|6 710 g0y = CBl (43)

) .
p1( r1() (R

Using the representation formula (4.1) and estimates (4.2), (4.3), we obtain the desired
estimate. O
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