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Abstract
This research work is related to a tobacco smoking model having a significance class
of users of tobacco in the form of snuffing. For this purpose, the formulation of the
model containing snuffing class is presented; then the equilibrium points as regards
being smoking free and smoking positive are discussed. The Hurwitz theorem is used
for finding the local stability of the model and Lyaponov function theory is used for
the search of global stability. We use different controls for control of smoking and the
Pontryagin maximum principle for characterization of the optimal level. For the
solution of the proposed model, a nonstandard finite difference (NSFD) scheme and
the Runge–Kutta fourth order method are used. Finally, some numerical results are
presented for control and without control systems with the help of MATLAB.
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1 Introduction
Mathematical biology is a wide field with many applications. In this field, researchers are
focusing on the description of different types of diseases with controls in the form of math-
ematical models. In 1909, Brownlee [1] took the initiative for the development of mathe-
matical biology. He focused on the theory of chance, further in 1912, he presented basic
laws for epidemic spreading [2]. In 1927, the details of the epidemic study were discussed
by Kermark and McKendrik [3]. Later, many researchers discussed different models of
many other diseases; see [4–17]. On the other hand, one of the social habits that is spread-
ing throughout the world rapidly as an infectious disease is smoking, causing many harm-
ful diseases. Smoking is the process by which people inhale smoke of tobacco consisting of
particles and gas or simply, smoking is the experience in which smoke is taken into mouth
and then released using pipes or cigars. In the sixteenth century, Columbus introduced
smoking to Europe [18], but before and after this date, many other exotic species were
introduced, with great adverse impact on ecosystems and effect on human habits [19, 20].
Nicot spread tobacco as a cash crop in England, he was the first who used it like a business,
and that is why the word nicotine derived from his name. The cigarette making machine
was invented at the end of the 19th century and the capability of that machine was pro-
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ducing 200 cigarettes per minute and now cigarette production has increased up to 9000
cigarettes per minute. Smoking can cause different types of diseases including lung cancer,
mouth cancer, throat cancer and many other diseases that are harmful to human health
[21–30].

For the first time in 1997, Castillo-Garsow et al. [21] formulated a mathematical model
for smoking. In this model, they divided the total population in three different classes
(potential smokers, chain smokers and permanently quit smokers). In 2008, their model
was modified by Sharomi and Gumel [22]. They introduced a new class (temporarily
quit smokers). In 2007, Ham [23] identified the different stages and processes of smok-
ing among students through a survey in different vocational technical schools in Korea.
Zaman [24] extended the model by introducing a new category (occasional smokers) and
presented a dynamical interaction in an integer order. Zeb et al. [28] derived the square
root dynamics of a giving up smoking model for the purpose that the system goes to finite
time extension. Several others presented the smoking models in integer and fractional or-
der [21–30]. The use of tobacco also occurs in the form of snuffing. Till now, no one has
discussed mathematically the snuffing class; by adding the snuffing class in this work, we
divided the total population in five classes X(t), H1(t), H2(t), Y (t), Z(t) representing the
susceptible smokers, snuffing class, irregular smokers, regular smokers and quit smok-
ers, respectively, at time t. First, we formulate the model according to given assumptions;
then, by using the Hurwitz theorem, we find the local stability, and with the help of the
Lyaponov function the global stability is discussed. For prevention strategies, the Pontrya-
gin’s maximum principle is used. Finally, some numerical results are presented for control
and without control system by using the nonstandard finite difference (NSFD) method
and the Runge–Kutta fourth order method.

2 Formation of model
By adding the snuffing class, we divided the total population into five classes X(t), H1(t),
H2(t), Y (t), Z(t) standing for susceptible smokers, snuffing class, irregular smokers, regular
smokers and quit smokers, respectively at time t. The model is given by

dX
dt

= λ – β1XH1 – μX + αY ,

dH1

dt
= β1XH1 – β2H1H2 – (ρ + μ)H1,

dH2

dt
= β2H1H2 – (d + ω + μ)H2,

dY
dt

= ωH2 – (α + γ + μ)Y ,

dZ
dt

= γ Y – μZ,

(1)

where the parameters used in this model are described in Table 1.
Since the first four equations of system (1) are independent of Z(t), without loss of gen-

erality, we omit this one and then the system (1) is reduced to the following:

dX
dt

= λ – β1XH1 – μX + αY ,

dH1

dt
= β1XH1 – β2H1H2 – (ρ + μ)H1, (2)
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Table 1 Parameters and description

Symbols Description

λ Recruitment rate (birth or migration)
β1 Rate at which susceptible population moves to snuffing class
β2 Rate at which snuffing class become irregular smokers
ω Rate at which irregular smokers become regular smokers
γ Quitting rate
μ Natural death rate
α Relapse rate
ρ Death rate of snuffing class due to tobacco use
d Death due to tobacco related diseases

dH2

dt
= β2H1H2 – (d + ω + μ)H2,

dY
dt

= ωH2 – (α + γ + μ)Y .

3 Equilibrium points
3.1 Smoking free equilibrium point
For the smoking free equilibrium point E0 we use H1 = H2 = Y = 0 in system (2).

So the smoking free equilibrium point E0 is

E0 =
(

λ

μ
, 0, 0, 0

)
.

The Jacobian of system (2) is given by

J =

⎛
⎜⎜⎜⎝

–β1H1 – μ –β1X 0 α

β1H1 β1X – β2H2 – (ρ + μ) –β2H1 0
0 β2H2 β2H1 – (d + ω + μ) 0
0 0 ω –(α + γ + μ)

⎞
⎟⎟⎟⎠ ,

while the Jacobian at free equilibrium point E0 is

J(E0) =

⎛
⎜⎜⎜⎝

–μ
–β1λ

μ
0 α

0 β1λ

μ
– (ρ + μ) 0 0

0 0 –(d + ω + μ) 0
0 0 ω –(α + γ + μ)

⎞
⎟⎟⎟⎠ .

For the reproductive number, we consider the following matrices:

F =

⎛
⎜⎝

β1λ

μ
0 0

0 0 0
0 0 0

⎞
⎟⎠ ,

V =

⎛
⎜⎝

(ρ + μ) 0 0
0 (d + ω + μ) 0
0 –ω (α + γ + μ)

⎞
⎟⎠ .
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The dominant eigenvalue of FV –1 is β1λ

μ(ρ+μ) , so

R0 =
β1λ

μ(ρ + μ)
(3)

is the required reproductive number [13].

3.2 Smoking present equilibrium point
Theorem 3.1 For R0 > 1, there exists a positive smoking equilibrium point E∗.

Proof For smoking present the equilibrium E∗ using the left side of system (2) is equal to
zero, as follows.

The third equation of system (2) implies that

H∗
1 =

(d + ω + μ)
β2

,

from the second equation of system (2), we have

X∗ =
β2H∗

2 + (ρ + μ)
β1

,

the fourth equation implies that

Y ∗ =
ωH∗

2
(α + γ + μ)

,

similarly, the first equation reveals that

X∗ =
λ – αY ∗

β1H∗
1 + μ

.

Now, by comparing the values of X∗ in terms of H∗
1 and H∗

2 we find that

H∗
2 =

(α + γ + μ)(ρ + μ)[β2μ(R0 – 1) – β1(d + ω + μ)]
(γ + μ)(β1β2ω) + (α + γ + μ)(β1β2(d + μ) + β2

2μ)
.

We have β2μ(R0 – 1) > β1(d + ω + μ) for R0 > 1. Thus, H∗
2 is positive if R0 > 1. So the

required positive equilibrium point E∗ is

E∗(X∗, H∗
1 , H∗

2 , Y ∗) =
(

β2H∗
2 + (ρ + μ)

β1
,

(d + ω + μ)
β2

,
ωH∗

2
(α + γ + μ)

,

(α + γ + μ)(ρ + μ)[β2μ(R0 – 1) – β1(d + ω + μ)]
(γ + μ)(β1β2ω) + (α + γ + μ)(β1β2(d + μ) + β2

2μ)

)
. �

4 Stability of the model
4.1 Local stability
Theorem 4.1 If R0 < 1, then the system (2) is locally stable and if R0 > 1, then system (2) is
unstable.
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Proof For local stability at E0, the Jacobian of system (2) is

J(E0) =

⎛
⎜⎜⎜⎝

–μ
–β1λ

μ
0 α

0 β1λ

μ
– (ρ + μ) 0 0

0 0 –(d + ω + μ) 0
0 0 ω –(α + γ + μ)

⎞
⎟⎟⎟⎠ ,

from which follow the eigenvalues λ1, λ2, λ3 and λ4,

λ1 = –μ < 0,

λ3 = –(d + ω + μ) < 0,

λ4 = –(α + γ + μ) < 0,

λ2 = (ρ + μ)(R0 – 1),

implying that λ2 < 0 for R0 < 1, λ2 = 0 for R0 = 1 and λ2 > 0 for R0 > 1. �

Theorem 4.2 If R0 > β2λ

(d+ω+μ)(ρ+μ) , then the system (2) is locally stable at E∗, otherwise un-
stable.

Proof For local stability at E∗ the Jacobian of system (2) is

J
(
E∗) =

⎛
⎜⎜⎝

–β1H∗
1 – μ –β1X∗ 0 α

β1H∗
1 β1X∗ – β2H∗

2 – (ρ + μ) –β2H∗
1 0

0 β2H∗
2 β2H∗

1 – (d + ω + μ) 0
0 0 ω –(α + γ + μ)

⎞
⎟⎟⎠ ,

J
(
E∗) =

⎛
⎜⎜⎝

–β1H∗
1 – μ –β1X∗ 0 α

β1H∗
1 0 –β2H∗

1 0
0 β2H∗

2 0 0
0 0 ω –(α + γ + μ)

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

–β1H∗
1 – μ –β1X∗ 0 α

–μ –β1X∗ –β2H∗
1 α

β1H∗
1 β2H∗

2 –β2H∗
1 0

0 0 ω –(α + γ + μ)

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

–β1H∗
1 – μ –β1X∗ 0 α

0 –β1X∗ + μβ2H∗
2

β1H∗
1

–β2H∗
1 – μβ2H∗

1
β1H∗

1
α

β1H∗
1 β2H∗

2 –β2H∗
1 0

0 0 ω –(α + γ + μ)

⎞
⎟⎟⎠ ,

J
(
E∗) =

⎛
⎜⎜⎜⎝

–β1H∗
1 – μ –β1X∗ ωα

(α+γ +μ) 0

0 –β1X∗ + μβ2H∗
2

β1H∗
1

–β2H∗
1 – μβ2H∗

1
β1H∗

1
+ ωα

(α+γ +μ) 0
β1H∗

1 β2H∗
2 –β2H∗

1 0
0 0 ω –(α + γ + μ)

⎞
⎟⎟⎟⎠ .

For simplification, this matrix can also be written as

J
(
E∗) =

(
A B
C D

)
.
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Here,

A =

(
–β1H∗

1 – μ –β1X∗

0 –β1X∗ + μβ2H∗
2

β1H∗
1

)
, B =

(
ωα

(α+γ +μ) 0
–β2H∗

1 – μβ2H∗
1

β1H∗
1

+ ωα
(α+γ +μ) 0

)
,

C =

(
β1H∗

1 β2H∗
2

0 0

)
, D =

(
–β2H1 0

ω (α + γ + μ)
S

)
.

Since the eigenvalues of J(E∗) depend on the eigenvalues of A and D, the eigenvalues of
A are given as follows:

λ1 = –β1H∗
1 – μ < 0,

λ2 = –(ρ + μ) +
μβ2H∗

2
β1H∗

1 λ

(
λ – H∗

1 (ρ + μ)R0
)
,

if R0 > β2λ

(d+ω+μ)(ρ+μ) , then λ2 < 0. Now, the eigenvalues of D are

λ3 = –β2H∗
1 < 0,

λ4 = –(α + γ + μ) < 0,

which is the required proof. �

4.2 Global stability
Theorem 4.3 If R0 < 1, then the system (2) is globally stable.

Proof For the proof of this theorem, first we construct the Lyapunov function L as

L = ln
X
X0

+ ln
H1

H10
+ H2 + Y . (4)

Differentiating Eq. (4) with respect to time

L′ =
λ

X
– β1H1 +

αY
X

– μ + βX – β2H2 – (ρ + μ) – (d + ω + μ)H2,

using the values of E0 in the above equation,

L′ = μ – μ +
β1λ

μ
– (ρ + μ),

L′ = R0(ρ + μ) – (ρ + μ),

L′ = (ρ + μ)(R0 – 1),

therefore, if R0 < 1, then L′ < 0, which implies that the system (2) is globally stable for
R0 < 1. �
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5 Numerical method
The NSFD method is used for the numerical solution of the proposed model (1). Basically,
NSFD is an iterative method in which we get closer to the solution through iteration [31,
32]. Let the nonstandard ODEs be given by

y′
k = f [t, y1, y2, . . . , yn],

where k = 1, 2, . . . , n, then by the NFSD method

y′
1 =

y1,k+1 – y1,k

h
,

y′
2 =

y2,k+1 – y2,k

h
,

...

y′
n =

yn,k+1 – yn,k

h
.

Now, using the NSFD method for the numerical solution of system (1) it follows that

Xk+1 =
h(λ + αYk) + Xk

1 + h(β1H1,k + μ)
, (5)

H1,(k+1) =
H1,k

1 + h(–β1Xk + β2H2,k + (ρ + μ))
, (6)

H2,(k+1) =
H2,k

1 + h(–β2H1,k + (d + ω + μ))
, (7)

Yk+1 =
hωH2,k + Yk

1 + h(α + γ + μ)
, (8)

and

Zk+1 =
hγ Yk + Zk

1 + hμ
. (9)

6 Summary and simulation
In this section, we give approximate values to the parameter of system (1) in Table 2 and
with the help of MATLAB we draw the graph of model (1).

Figure 1 shows the result of system (1) graphically. In these graphs, we used the NSFD
and RK4 methods. According to these figures, the population of each class gradually de-
creases, while the population of quit smokers increases gradually.

7 Control strategies
For reducing the ratio of smokers to non-smokers in the world, we apply the optimal con-
trol scheme on the system (2) presented in this section in a similar way to that used by
many authors for different diseases and smoking [33–36]. For this purpose, two control
variables u1 and u2 representing education campaign and anti-nicotine gum/medicine,
respectively, are used and by utilizing the Pontryagin maximum principle for the control
strategies. Finally, we will show graphically both the systems with control and without
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Table 2 Values of parameters for numerical solution

Parameter Reference Value

X [16] 68
S1 [16] 40
S2 [16] 30
Y [16] 20
Z [16] 15
λ Assumption 0.1
β1 Assumption 0.003
β2 Assumption 0.002
ω Assumption 0.004
γ Assumption 0.05
μ Assumption 0.002
α Assumption 0.003
ρ Assumption 0.003
d Assumption 0.003

control. Using these control variables on system (1), we have

dX
dt

= λ – β1XH1 – μX + αY ,

dH1

dt
= β1XH1 – β2H1H2 – (ρ + μ)H1 + u2Y ,

dH2

dt
= β2H1H2 – (d + ω + μ)H2 – u1H2,

dY
dt

= ωH2 – (α + γ + μ)Y – u2Y ,

dZ
dt

= γ Y – μZ + u1H2.

(10)

Now, we construct the objective function for the system (10), which is given by

J(u1, u2) =
∫ tf

0

[
X(t) + H1(t) + H2(t) + Y (t) + Z(t) +

c1u2
1(t)
2

+
c2u2

2(t)
2

]
dt,

with initial conditions

X(0) = X0,

H1(0) = H0
1 , H2(0) = H0

2 , Y (0) = Y 0 and Z(0) = Z0.

Now, the Hamiltonian function is defined as

H = X(t) + H1(t) + H2(t) + Y (t) + Z(t) +
c1u2

1(t)
2

+
c2u2

2
2

+ λ1[λ – β1XH1 – μX + αY ]

+ λ2
[
β1XH1 – β2H1H2 – (ρ + μ)H1 + u2Y

]
+ λ3

[
β2H1H2 – (d + ω + μ)H2 – u1H2

]
+ λ4

[
ωH2 – (α + γ + μ)Y – u2Y

]
+ λ5[γ – μZ + u1H2].
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Figure 1 Plots present the susceptible, irregular, regular and quit smokers

Theorem 7.1 The system (10) satisfies the terminal conditions

u∗
1 = min

(
1, max

(
0,

(λ3 – λ5)H2

c1

))
and u∗

2 = min

(
1, max

(
0,

(λ4 – λ2)Y
c2

))
.

Proof According to the Pontryagin maximum principle for the control of smoking, put

dX
dt

=
∂H
∂λ

,
∂H
∂U

= 0,

and

λ′
1 =

–∂H
∂X

, λ′
2 =

–∂H
∂H1

, λ′
3 =

–∂H
∂H2

, λ′
4 =

–∂H
∂Y

, λ′
5 =

–∂H
∂Z

.
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Differentiating the Hamiltonian function with respect to X, H1, H2, Y and Z, respectively,
we get the values of λ′

1, λ′
2, λ′

3, λ′
4, and λ′

5 in the form of

λ′
1 = –(1 – λ1β1H1 – λ1μ + λ2β1H1)

= –1 + λ1β1H1 + λ1μ – λ2β1H1,

λ′
2 = –

(
1 – λ1β1X + λ2β1X – λ2β2H2 – λ2(ρ + μ) + λ3β2H2

)
= –1 + λ1β1X – λ2β1X + λ2β2H2 + λ2(ρ + μ) – λ3β2H2,

λ′
3 = –

(
1 – λ2β2H1 + λ3β2H1 – λ3(d + ω + μ) – λ3u1 + λ5u1

)
= –1 + λ2β2H1 – λ3β2H1 + λ3(d + ω + μ) + λ3u1 – λ5u1,

λ′
4 = –

(
1 + λ1α + λ2u2 – λ4(α + γ + μ) – λ4u2 + λ5γ

)
= –1 – λ1α – λ2u2 + λ4(α + γ + μ) + λ4u2 – λ5γ ,

λ′
5 = –(1 – λ5μ)

= –1 + λ5μ.

For u∗
1 and u∗

2 differentiate the Hamiltonian function with respect to u1 and u2, respec-
tively, and we have

∂H
∂u1

= 0,

c1u∗
1 – λ3H2 + λ5H2 = 0,

c1u∗
1 = λ3H2 – λ5H2,

u∗
1 =

(λ3 – λ5)H2

c1
,

∂H
∂u2

= 0,

c2u∗
2 + λ2Y – λ4Y = 0,

c2u∗
2 = λ4Y – λ2Y ,

u∗
2 =

(λ4 – λ2)Y
c2

.

The optimality conditions are given as follows:

u∗
1 = min

(
1, max

(
0,

(λ3 – λ5)S2

c1

))
,

u∗
2 = min

(
1, max

(
0,

(λ4 – λ2)Y
c2

))
.

The terminal conditions for the system (10) are given as follows:

X′ = λ – β1XH1 – μX + αY ,

H ′
1 = β1XH1 – β2H1H2 – (ρ + μ)H1 + min

(
1, max

(
0,

(λ4 – λ2)Y
c2

))
Y ,
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H ′
2 = β2H1H2 – (d + ω + μ)H2 – min

(
1, max

(
0,

(λ3 – λ5)H2
c1

))
H2,

Y ′ = ωH2 – (α + γ + μ)Y – min

(
1, max

(
0,

(λ4 – λ2)Y
c2

))
Y ,

Z′ = γ Y – μZ + min

(
1, max

(
0,

(λ3 – λ5)H2
c1

))
H2,

λ′
1 = –1 + λ1β1H1 + λ1μ – λ2β1H1,

λ′
2 = –1 + λ1β1X – λ2β1X + λ2β2H2 + λ2(ρ + μ) – λ3β2H2,

λ′
3 = –1 + λ2β2H1 – λ3β2H1 + λ3(d + ω + μ) – λ3 min

(
1, max

(
0,

(λ3λ5)H2
c1

))
,

λ′
4 = –1 – λ1α – λ2 min

(
1, max

(
0,

(λ4 – λ2)Y
c2

))

+ λ4(α + γ + μ) + λ4 min

(
1, max

(
0,

(λ4 – λ2)Y
c2

))
– λ5γ ,

λ′
5 = –1 + λ5μ. �

8 Numerical solution
This section is concerned with the investigation of a numerical solution of the smoking
model with controls u1 and u2. The NSFD method is used for this purpose and system (10)
is presented graphically by using the values of parameters given in Table 2 with u1 = 0.7
and u2 = 0.9. Figure 2 shows the results for both systems with and without control.

Figure 2 Plots present the susceptible, irregular, regular and quit smokers with and without control
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9 Conclusion
In this work, the formulation of a model containing a snuffing class is presented; then the
equilibrium points that are smoking free and smoking positive are discussed. The Hur-
witz theorem is used for finding the local stability of the model and Lyaponov function
theory is used for the search of global stability. For control of smoking we use different
controls and for a characterization of the optimal level we use the Pontryagin maximum
principle. For the solution of the proposed model, a nonstandard finite difference (NSFD)
scheme and the Runge–Kutta fourth order method are used. Finally, some numerical re-
sults are presented for systems with and without control and by using the nonstandard
finite difference (NSFD) method and Runge–Kutta fourth order method with the help of
MATLAB.
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