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Abstract
A mathematical scrutiny is introduced for the flow of magneto-hydrodynamic
nanofluid through an asymmetric microfluidic channel under an applied axial electric
field. The impacts of wall flexibility, Joule heating and upper/lower wall zeta
potentials are considered. Electric potential expressions can be modeled in terms of
an ionic Nernst–Planck equation, Poisson–Boltzmann equation and Debye length
approximation. Appropriate boundary conditions have been utilized to get the results
of highly nonlinear coupled PDEs numerically. The impact of physical factors on the
characteristics of flow, pumping, trapping and heat transfer has been pointed out.
The outcomes may well assist in designing the organ-on-a-chip like gadgets.
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1 Introduction
Current past reveals that the extra consideration has been given to area of research en-
titled “microfluidics” so that advances in microfabrication technologies are accessible. In
a microfluidic system, electroosmotic flow (EOF) is significant. Electroosmosis is basi-
cally an electrokinetic mechanism, in which we examine the ionic development of flu-
ids affected by electric fields. Due to this process, a Stern layer (a charged surface with
a high concentration of counter ions) is created. Resulting Stern layer with diffusing
layer forms an Electric Double Layer (EDL). The potential (interfacial) between diffuse
double layer and Stern layer is called zeta potential, a prominent aspect of many elec-
trokinetic mechanisms. Electrokinetic transportation has become a vivid area of mod-
ern fluid mechanics. The combined impacts of electrokinetic and peristaltic phenom-
ena are critical in controlling biological transport mechanisms. Electrokinetics contains
electrophoresis, electroosmosis, diffusiophoresis and several other phenomena. Many mi-
crofluidic apparatus such as Lung chips, proteomic chips, lab-on-a-chip (LOC), portable
blood analyzers, micro-peristaltic pumps, organ-on-a-chip, micro-electro-mechanical
systems (MEMS), micro-peristaltic pumps, DNA and bioMEMS, as well as microscopic
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full analysis systems are built upon the ideology of EDL and electroosmosis. More-
over, microfluidic apparatus is also associated with MEMS, automation and paralleliza-
tion, cost-effectiveness analysis, integration, miniaturization, separation, study of biolog-
ical/chemical factors and high efficiency progression. Bandopadhyay et al. [1] examined
the peristaltic modulation of electroosmotic flow in the microfluidic channel for the vis-
cous fluid. Shit et al. [2] analyzed the rotation of EOF in a non-uniform micro-fluidic
channel through slip velocity. Tripathi et al. [3] discussed the impacts of electroosmo-
sis and peristalsis, for unsteady viscous flow. Ranjit et al. [4] worked on the electro-
magneto-hydrodynamic flow via peristaltically induced microchannel along the effects
of Joule heating and wall slip. Furthermore, Tripathi et al. [5] scrutinized the mathe-
matical model on electroosmosis in peristaltic biorheological flow through an asymmet-
ric microfluidic channel. Jhorar et al. [6] proposed the peristaltic modulation of elec-
troosmosis in an asymmetric microfluidic channel for viscous fluid. Ranjit et al. [7]
explained the effect of zeta potential and Joule heating through porous microvessel on
peristaltic blood flow. In addition, Prakash et al. [8] investigated the EOF Williamson ionic
nano-liquids in a tapered microfluidic channel under the effects of peristalsis and ther-
mal radiation. Tripathi et al. [9] considered the electroosmosis of microvascular blood
flow.

In the existing literature, traditional liquids such as water and natural oil fail to ac-
complish the current demands for improving thermal conductivities. Currently, nanofluid
research is a major topic of research because it enhances the thermal conductivity of con-
ventional liquids. Nanofluidic flow problem has numerous uses in biomedical engineer-
ing such as the delivery of a drug by using nanoparticles, heat exchanges and tumor cure.
However, researchers have paid great attention to the all above-mentioned phenomenon.
Das et al. [10] found that the effect of electrical and thermal conductivities of the wall in a
vertical channel for nanofluid flow. Hassan et al. [11] explored the properties of the wall in
a porous channel, for the peristaltic flow of MHD nanofluid. Alghamdi et al. [12] demon-
strated the smooth solutions for three-dimensional Hall-MHD equations through regu-
larity criteria. Ahmed et al. [13] discussed the generalized time-convection of non-local
nanofluids in a vertical channel. Pramuanjaroenkij et al. [14] studied the enhancement of
heat transfer for the hybrid thermal conductivity model of nanofluid, numerically. More-
over, Arabpour et al. [15] analyzed the influence of slip boundary conditions on the flow of
double-layer microchannel nanofluid. Akbarzadeh et al. [16] investigated the first two laws
of thermodynamics for nanofluid flow with porous inserts and corrugated walls in a heat
exchanger tube. In addition, Mosayebidorcheh et al. [17, 18] explained the peristaltic flow
of nanofluid and heat transfer through asymmetric straight and divergent wall channels.
Rahman [19] assumed the expansion/contraction of MHD nanofluid through permeable
walls. Prakash et al. [20] demonstrated the effect of thermal radiation on electroosmosis
modulation and peristaltic transport of ionic nano-liquid in biological microfluidic chan-
nel.

Peristaltic flow is a flow by wave propagation along the flexible walls of channel. Peri-
stalsis is an inbuilt feature of many biomedical and biological systems. Physiologically, it
plays a crucial role in several situations, for example, function of ureter, mixing of food
and chyme transport in the tract of gastro-intestine, transportation of oocytes in the fal-
lopian tube of females and the transmission of sperms in the male reproductive tract.
Moreover, it is also useful in transport of cilia and bile duct, movement of lymph in lym-
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phatic vessels and vascular movement of blood vessels, roller pump design (for pump-
ing fluids without contact of pumping machinery) in peristaltic and acupressure pumps
for cardiopulmonary and dialysis machinery. The updated version of hose pumps are op-
erated by the peristaltic principle. Peristalsis is particularly advantageous for the trans-
portation of slurries and chemicals that are corrosive in nature; therefore, preventing
the rotation of pump drive and damage to moving parts. On a LOC device, it is gen-
erally essential to deliver a small amount of biological fluid by peristalsis (in a smaller
level) than in a typical LOC system. Thus, contamination of the sample is prevented.
Such uses have unlocked a new approach for doctors and mathematicians to maneuver
their gadgets to scrutinize better results. Gala et al. [21] explained the regularity crite-
rion for Boussinesq equations with respect to zero thermal conductivity. Also, Gala et
al. [22] described the weak solutions for quasi-geostrophic equations through unique-
ness criteria in Orlicz–Morrey spaces. Nanofluid transport in an asymmetric peristaltic
flow was incorporated by Noreen [23]. Latha et al. [24] used the impacts of heat dissi-
pation on the Jeffery and Newtonian fluid of peristaltic flow in an asymmetric channel.
Besides, Latha et al. [25] also worked on the asymmetric channel with partial slip condi-
tions for peristaltic transport of couple stress fluid. Noreen [26] determined the magneto-
thermal hydrodynamic peristaltic transport for Eyring–Powell nanofluids through an
asymmetric conduit. Furthermore, Abd Elmaboud et al. [27] developed the peristaltic
transport for couple stress fluid through the rotating channel. Bhatti et al. [28] devel-
oped the peristaltic impulsion of solid (magnetic) particles in biological fluids, thermally.
The electromagnetic transport for two-layer immiscible liquids incorporated in [29] by
Elmaboud et al. Moreover, Saravana et al. [30] depicted the effect of heat transfer and
flexible walls on the peristaltic flow of a Rabinowitsch fluid through an inclined chan-
nel.

The literature review showed that most of earlier studies dealt with electrokinetic
or peristaltic pumping to drive fluid flow. The combined outcomes of peristalsis and
electrokinetic phenomena can be critical for improving/controlling the mechanism of
peristaltic transport. Inspired by the extensive uses of electroosmosis, peristalsis and
nanofluids in current biomedical engineering/industry, some mathematical models of
fully developed flows driven by the combined outcomes of electroosmotic and peri-
staltic pumping have been examined for the Newtonian fluid model and nanofluid. How-
ever, MHD nanofluids for electroosmotic peristaltic transport for Burgino model have
not been taken into account. To fill this research gap, we present a new mathematical
model to study the electroosmotic peristaltic pumping analysis of MHD nanofluid in
an asymmetric microchannel. Joule heating, viscous dissipation effect and zeta poten-
tial of different values are likewise taken in this model. First, the relevant equations for
EOF model along the axial electric field have been modeled and then solved for long
wavelength and low Reynolds number. Afterwards, the resulting equations are solved
numerically by utilizing the Mathematica software. Consequences of pertinent factors
on the characteristics of flow, pumping, trapping, and heat transfer have been pointed
out.

2 Formulation and solution
Consider a two-dimensional flow (x̃, ỹ) of unsteady magneto-hydrodynamic nanofluid
in an asymmetric micro-channel, in which wave propagation is along the x̃ direction
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Figure 1 Flow description

(Fig. 1). This flow is formed by the propagation of a sinusoidal wave at a constant speed
c along the channel having elastic walls. The combination of externally applied mag-
netic field, electric field and pressure gradient affects the driving fluid. It is supposed that
the electric field E0 is imposed axially, and magnetic field B0 is transversely of the fluid
flow. Let ỹ1 = h̃1(x̃, t̃) and ỹ2 = h̃2(x̃, t̃) be the upper and lower walls of channel, respec-
tively:

h̃1(x̃, t̃) = d1 + a1 cos2
(

(x̃ – ct̃)π
λ

)
, (1)

h̃2(x̃, t̃) = –d2 – a2 cos2
(

(x̃ – ct̃)π
λ

+ ϕ

)
, (2)

where h̃1(x̃, ỹ), h̃2(x̃, ỹ), d1, d2, a1, a2, ϕ, λ and t̃ are the upper wall, the lower wall, constant
height of upper wall measured from ỹ1 = 0, constant height of lower wall measured from
ỹ2 = 0, amplitude of the upper and lower walls, phase difference, wavelength and time,
respectively.

2.1 Distribution of potential
Ion separation occurs during EOF, and EDL is formed near the channel walls, creating an
electric potential φ̃ difference. The Poisson–Boltzmann equation is used to describe the
φ̃ in the microchannel:

∇2φ̃ = –
ρe

∈∈0
, (3)

where ρe, ∈, ∈0 and φ̃ are the net charge density, the relative permittivity of the medium,
the permittivity of free space (8.854×10–12 F·m– 1) and electric potential distribution. The
probability of detecting ions at a specific position in electric double layer (EDL) is relative
to Boltzmann factor e(ezvφ̃/TavKB). The positive (n+) and negative ions (n–) can be explained
by the number density of the Boltzmann equation:

n± = n0e(± ezv
TavKB

φ̃), (4)

where the average numbers of negative and positive ions are denoted by n0. The distri-
bution of ionic concentration is considered to be effective when there is no ionic concen-
tration gradient in the axial direction of the microchannel. By the electrolyte symmetry
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assumption, the total charge density ρe is taken as

ρe = –zve
(
n– – n+)

= –2zven0 sinh

(
ezv

TavKB
φ̃

)
. (5)

In the above, zv, e, Tav and KB are the ions valence, electron charge, average tempera-
ture, and Boltzmann constant. The nonlinear terms in the Nernst–Planck equations are
O(Peα

2), where Pe = ReSc represents the ionic Peclet number and Sc is the Schmidt num-
ber. Assume that the Peclet number is very small.

Now, by means of Eqs. (3)–(5),we approximate Eq. (3) as:

d2φ̃

dỹ2 =
2zven0

∈∈0
sinh

(
ezv

TavKB
φ̃

)
. (6)

The boundary conditions for dimensional form Φ̃ can be written as

φ̃ = ζ̃1 at ỹ1 = h̃1(x̃, t̃), (7a)

φ̃ = ζ̃2 at ỹ2 = h̃2(x̃, t̃), (7b)

where ζ̃1 and ζ̃2 are the zeta potentials at the upper and lower walls, respectively. In order
to proceed with dimensionless variables, we introduce:

a =
d2

d1
, b =

a1

d1
, c =

a2

d2
, h1 =

h̃1

d1
, h2 =

h̃2

d1
,

m =
d1

λD
, p =

p̃d2
1

cλμf
, t =

ct̃
λ

, u =
ũ
c

, v =
ṽ

cα
,

x =
x̃
λ

, y =
ỹ

d1
, Br = Ec · Pr , Ec =

c2

cp(T1 – T0)
,

Hr = B0d1

√
σe

μf
, Nb =

γ 1(C1 – C0)DB

νf
,

Nt =
γ1(T1 – T0)DT

Tmνf
, Pr =

μf cp

kf
, Re =

ρf cd1

μf
,

Sc =
cd1

KB
, UHS = –

E0 ∈∈0 TavKB

ezvμf
, α =

d1

λ
,

β =
UHS

c
, γ1 =

(ρc)p

(ρc)f
, γ2 =

σed2
1E2

0
k(T1 – T0)

, γ3 = Prγ2,

νf =
μf

ρf
, λD =

1
ezv

√
TavKB ∈∈0

2n0
, ζ1 =

ezv

TavKB
ζ̃1,

ζ2 =
ezv

TavKB
ζ̃2, φ =

ezv

TavKB
φ̃,

Θ =
T̃ – T0

T1 – T0
, Ω =

C – C0

C1 – C0
.

(8)
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By using the dimensionless variables defined in Eq. (8), Eqs. (6) and (7a)–(7b) become

d2φ

dy2 = φm2, (9)

φ = ζ1 at y1 = h1(x, t),

φ = ζ2 at y2 = h2(x, t).
(10)

Moreover, we suppose that the zeta potential at walls is small enough that the Debye–
Hückel linearization is approximately applicable. The linear Poisson–Boltzmann equation
is solved by using the boundary conditions given in Eq. (10) to obtain the function of
potential distribution

φ =
(

ζ2 sinh(mh1) – ζ1 sinh(mh2)
sinh(mh1 – mh2)

)
cosh(my)

+
(

ζ1 cosh(mh2) – ζ2 cosh(mh1)
sinh(mh1 – mh2)

)
sinh(my). (11)

Here, m is the electroosmotic parameter. If we put ζ1 = ζ2, then the solution of Eq. (11)
reduces to the results of [8].

2.2 Analysis of flow
Taking into account the viscous dissipation and Joule heating effects, the governing equa-
tions for electroosmotically conducting nanofluid affected by the peristaltic flow in asym-
metric microchannel are expressed here as:

∂ũ
∂ x̃

+
∂ ṽ
∂ ỹ

= 0, (12)

ρf

(
∂ũ
∂ t̃

+ ũ
∂ũ
∂ x̃

+ ṽ
∂ũ
∂ ỹ

)
= –

∂p̃
∂ x̃

+ μf

(
∂2ũ
∂ x̃2 +

∂2ũ
∂ ỹ2

)
+ ρeE0 – σeB2

0ũ, (13)

ρf

(
∂ ṽ
∂ t̃

+ ũ
∂ ṽ
∂ x̃

+ ṽ
∂ ṽ
∂ ỹ

)
= –

∂p̃
∂ ỹ

+ μf

(
∂2ṽ
∂ x̃2 +

∂2ṽ
∂ ỹ2

)
, (14)

(
∂T̃
∂ t̃

+ ũ
∂T̃
∂ x̃

+ ṽ
∂T̃
∂ ỹ

)
=

kf

(ρc)f

(
∂2T̃
∂ x̃2 +

∂2T̃
∂ ỹ2

)

+ γ1

[
DB

(
∂T̃
∂ x̃

∂C̃
∂ x̃

+
∂T̃
∂ ỹ

∂C̃
∂ ỹ

)
+

DT

Tm

{(
∂T̃
∂ x̃

)2

+
(

∂T̃
∂ ỹ

)2}]

+
Φ

(ρc)f
+

σeB2
0ũ2

(ρc)f
+

σeE2
0

(ρc)f
. (15)

Here Φ represents the viscous dissipation and is mathematically expressed as:

Φ = μf

[
2
(

∂ũ
∂ x̃

)2

+ 2
(

∂ ṽ
∂ ỹ

)2

+
(

∂ũ
∂ ỹ

+
∂ ṽ
∂ x̃

)2]
,

(
∂C̃
∂ t̃

+ ũ
∂C̃
∂ x̃

+ ṽ
∂C̃
∂ ỹ

)
= DB

(
∂2C̃
∂ x̃2 +

∂2C̃
∂ ỹ2

)
+

DT

Tm

(
∂2T̃
∂ x̃2 +

∂2T̃
∂ ỹ2

)
.

(16)
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Here (ũ, ṽ) are the components of velocity along the x̃ and ỹ direction, respectively. Also, ρf ,
μf , σe, p̃, T̃ , kf , (ρc)f , C̃, γ1, DB and DT represent the density of the fluid, dynamic viscosity
of the fluid, electrical conductivity, pressure field, temperature, thermal conductivity of the
fluid, heat capacity of the fluid, concentration field, ratio of the effective heat capacity of
the nanoparticle to the heat capacity of the fluid, coefficient of thermophoresis diffusion,
and coefficient of Brownian motion, respectively. The terms appearing on the left-hand
side of Eq. (13) are inertial forces (due to the convection or bulk motion) and the first term
on the right-hand side is because of pressure gradient, while the second and third terms
are due to viscosity or advection, the fourth term is because of electrical force per unit
volume, and the last term is due to magnetic body (per unit volume) forces. Furthermore,
the last three terms appearing on the right-hand side of Eq. (15) represent dissipation due
to friction, magnetic and electric field, respectively.

Using Eq. (8), the non-dimensional variables, in Eqs. (13)–(16), Eq. (12) is satisfied and
Eqs. (13)–(16) become

Reα

(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y

)
u = –

∂p
∂x

+
(

α2 ∂2

∂x2 +
∂2

∂y2

)
u + βφm2 – H2

r u, (17)

Reα
3
(

∂

∂t
+ u

∂

∂x
+ v

∂

∂y

)
v = –

∂p
∂y

+ α2
(

α2 ∂2

∂x2 +
∂2

∂y2

)
v, (18)

Reα

(
∂

∂t
+u

∂

∂x
+ v

∂

∂y

)
Θ

=
1
Pr

(
α2 ∂2

∂x2 +
∂2

∂y2

)
Θ + Ec

[
2α2

(
∂u

∂x

)2

+ 2α2
(

∂v
∂y

)2

+
(

∂u

∂y
+ α2 ∂v

∂x

)2]

+
[

Nb

(
α2 ∂Ω

∂x
∂Θ

∂x
+

∂Ω

∂y
∂Θ

∂y

)
+ Nt

{
α2

(
∂Θ

∂x

)2

+
(

∂Θ

∂y

)2}]

+ γ2 + EcH2
r u, (19)

α

(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y

)
Ω =

1
Sc

(
α2 ∂2

∂x2 +
∂2

∂y2

)
Ω +

1
Sc

Nt

Nb

(
α2 ∂2

∂x2 +
∂2

∂y2

)
Θ . (20)

Here, Re, α, β , Hr , Pr , Ec, Nb, Nt , Sc, Θ and Ω are the Reynolds number, wave number, mo-
bility of the medium, Hartmann number, Prandtl number, Eckert number, thermophore-
sis parameter, Brownian motion parameter, Schmidt number, dimensionless temperature
and concentration field, respectively.

Applying a long-wavelength approximation, ignoring the term with a high power of α,
Eqs. (17)–(20) reduce to

∂p
∂x

=
∂2u
∂y2 + βφm2 – H2

r u, (21)

∂p
∂y

= 0, (22)

∂2Θ

∂y2 + Br

(
∂u

∂y

)2

+ PrNb

(
∂Ω

∂y
∂Θ

∂y

)
+ PrNt

(
∂Θ

∂y

)2

+ γ3 + BrH2
r u = 0, (23)

1
Sc

∂2Ω

∂y2 +
1
Sc

Nt

Nb

∂2Θ

∂y2 + Nt

(
∂Θ

∂y

)2

= 0. (24)
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By using cross-differentiation, we have eliminated the pressure term from the dimension-
less Eqs. (17) and (18), and can write it as a single nonlinear differential equation. Now let
us define Ψ , the stream function, as u = ∂Ψ

∂y , v = – ∂Ψ
∂x , satisfying the continuity Eq. (10).

Equations (21), (23) and (24) can be expressed as a stream function using:

∂p
∂x

=
∂3Ψ

∂y3 + βφm2 – H2
r
∂Ψ

∂y
, (25)

∂4Ψ

∂y4 – H2
r
∂2Ψ

∂y2 + βm2 ∂Φ

∂y
= 0, (26)

∂2Θ

∂y2 + PrNb

(
∂Ω

∂y
∂Θ

∂y

)
+ PrNt

(
∂Θ

∂y

)2

+ γ3 + Br

(
∂2Ψ

∂y2

)2

+ H2
r Br

(
∂Ψ

∂y

)2

= 0, (27)

∂2Ω

∂y2 +
Nt

Nb

∂2Θ

∂y2 = 0. (28)

The boundary conditions with Ψ as a stream function are:

∂Ψ

∂y
= 0, Ψ =

F
2

, Θ = 0, Ω = 0 at y = h1(x, t), (29a)

∂Ψ

∂y
= 0, Ψ = –

F
2

, Θ = 1, Ω = 1 at y = h2(x, t). (29b)

Here the no slip conditions are imposed at the walls of the channel. Also, we have intro-
duced two extra stream function boundary conditions for the purpose of solving a fourth
degree differential equation. The flow rate F in its non-dimensional form is defined as
F = A0e–Bt , where B and A0 are constants. The negative or positive flow rates are depen-
dent on the value of constant A0. If A0 < 0 then F < 0; similarly, F > 0 if A0 > 0. A positive
flow rate indicates that the flow is in the direction of peristaltic pumping. Negative flow
refers to the opposite of flow and peristaltic motion, also known as reverse pumping. It
was experimentally found in [9] that the blood flow rate decreases exponentially with the
passage of time. The authors of that paper also depicted that the deviation of blood flow
rate is independent on the structural aspects of the microchannel.

3 Solution methodology
The exact solution for above PDEs (25)–(28) along with their related boundary conditions
(29a) and (29b) is not possible because the equations are nonlinear and highly coupled.
Therefore, solutions to the above equations are computed numerically by utilizing the
Mathematica software.

4 Graphical analysis
The effect of appropriate factors on the common outlines (velocity, temperature, and con-
centration) is graphically discussed in this section. Results of various parameters, for ex-
ample, Hartmann number Hr , electroosmotic parameter m, the mobility of the medium
β , different zeta potentials ζ1 and ζ2, Joule heating parameter γ3, thermophoresis param-
eter Nt , Brownian motion parameter Nb, Prandtl number Pr and Brinkman number Br on
the flow quantities, i.e., velocity u, temperature θ , concentration Ω and pressure gradient
dp/dx, are exhibited in Figs. 2–9.
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(a)

(b)

(c)

Figure 2 Variation of axial velocity u vs.: (a) Hr , (b)m, (c) β , (d) ζ1, and (e) ζ2.
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(d)

(e)

Figure 2 Continued

4.1 Characteristics of flow
This subsection explains the detailed analysis of velocity distribution. Figures 2(a)–(e) have
been plotted to observe the changes in velocity profile, across the microfluidic channel un-
der the influence of Hartmann number Hr , electroosmotic parameter m, the mobility of
the medium β , zeta potentials ζ1 and ζ2. Figure 2(a) demonstrates that the velocity (axial)
decreases in the central region of the channel as Hr increases, whilst the reverse trend
is viewed near the channel walls because decrease in axial velocity subject to increase in
magnetic field strength. Since magnetic field and axial velocity are perpendicular to each
other, they produce a Lorentz force, which has a propensity to slow the movement of the
fluid. Thus, the (axial) velocity has a rapid acceleration effect for Hr in the middle area of
the channel and reduces close to the channel wall. Figure 2(b) shows an increased behav-
ior for the subregion –0.1 ≤ y ≤ 0.1. Since m is the fraction of the conduit height to the
λD, it signifies that the increase of λD leads to a decrease in EDL, so that a large amount
of fluid rapidly flows in the central region. Figure 2(c) portrays that the (axial) velocity
increases as the mobility of the medium in the middle region of the conduit increases,
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(a)

(b)

(c)

Figure 3 Pressure gradient distribution vs. (a) Hr , (b)m, (c) β , (d) ζ1, and (e) ζ2.

while decreasing in the left region of the conduit, because β is directly dependent on the
Helmholtz–Smoluchowski velocity UHS. This physically can be interpreted as follows: the
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(d)

(e)

Figure 3 Continued

velocity of fluid reduces with increasing thickness of EDL and the flow of fluid reduces
in the presence of EDL. Figure 2(d) shows the effect of (axial) velocity distribution with
respect to ζ1 on the upper microchannel wall. It is also observed that the change in ζ1

significantly enhances the axial velocity distribution of the EOF. As the zeta potential be-
havior of the upper wall increases, the velocity has an increased effect on the lower wall,
while the opposite behavior is observed at the upper wall of the channel. In Fig. 2(e), a par-
allel behavior of velocity distribution is observed due to the zeta potential ζ2. For different
values of ζ1 and ζ2, the intersection summit is not completely in the middle of the channel
walls. Clearly, a higher value of the zeta potential produces a strong field of EDL and thus
a decrease in the fluid velocity. This zeta potential phenomenon produces different rates
of flow at different locations in the microchannel, thus changing the momentum flux. The
presence of zeta potential in an EOF is a key phenomenon in controlling fluid flow in the
microchannel. We examined that our results are consistent with previous studies without
zeta potential [11].
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Figure 4 Streamline distribution for; (a) Hr = 0.0, (b) Hr = 1.5, and (c) Hr = 3.0.

4.2 Characteristics of pumping
It is clear that the transport in the peristalsis is related to the perception of mechanical
pumping. Consequently, it is justifiable to study the pumping behavior from the current
research perceptive. Figure 3(a) highlights that by increasing the Hartmann number Hr ,
pressure gradient magnitude increases. As Hr is the fraction of Lorentz force (electromag-
netic force) to viscous force, higher values of Hartmann number indicate stronger Lorentz
force, hence more pressure is needed to overcome the Lorentz force. Figure 3(b) shows
that by raising the value of m, the magnitude of pressure gradient increases. Likewise, it
is worth noting that the pumping features can be amended by the EDL phenomenon, and
the pumping procedure can be organized by thickening and thinning the breadth of EDL.
Similarly, by increasing the value of the mobility of the medium β , the magnitude of the
pressure gradient increases as shown in Fig. 3(c). Figures 3(d) and 3(e) also explain the
impact of the zeta potentials ζ1 and ζ2 on the axial pressure gradient. It is also determined
that the pressure gradient declines significantly then increasing the zeta potential of the
upper and lower walls of the channel.
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Figure 5 Streamline distribution for: (a) β = 0.0, (b) β = 0.5, and (c) β = 1.0.

4.3 Characteristics of trapping
Trapping is a peristaltic pumping mechanism, in which a flow streamline forms a circular
path, which is called a bolus at volumetric flow rate value. Figures 4–6 give an insight into
streamline structural changes that happen due to Hr value, the mobility of the medium β

and the change in the electroosmotic parameter m on the microfluidic channel. They also
illustrate that bolus formation occurs near the central line of the channel. Furthermore,
it is shown that the size of trapped bolus first decreases while the strength of magnetic
field increases and disappears for a sufficient magnetic field strength. Moreover, it can be
noted that a higher zeta is applied at the upper wall than at the lower wall whereas the
streamline is significantly circulated at the upper wall. Similarly, Figs. 7(a)–(c) depict that
the number of trapped bolus increases on the upper wall. Figures 8(a)–(c) show that the
number of trapped bolus increases on the lower wall but decreases on the upper wall.
Figures 4–8 demonstrate that the accumulation of streamline is far away from the center
due to strong EDL. It is concluded that as the zeta potential increases, the width of the EDL
also increases. Thus, the streamline strongly forms a closed region and is transmitted at a
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Figure 6 Streamline distribution for: (a)m = 5.0, (b)m = 10, and (c)m = 15.

wave velocity in the frontward direction. This phenomenon will help enhance the flow in
the microfluidic device.

4.4 Heat and concentration characteristics
The generation of Joule heating during electroosmotic stream is a built-in characteris-
tic. However, this effect is caused by the electrical resistance, which is produced by the
electrolyte. Figures 9–14 explain the various values of Joule heating parameter γ3, electro-
osmotic parameter m, Brinkman number Br , Hartmann number Hr , Prandtl number Pr ,
Brownian motion parameter Nb, and thermophoresis parameter Nt . Figure 9(a) shows that
temperature increases very quickly in the central area of the channel by increasing the val-
ues of Joule heating parameter γ3, whereas it is insignificant near the channel walls. Joule
heating parameter γ3 is directly proportional to the square of the electric field, hence a
stronger electric field results in a rise in the temperature, while concentration Ω falls with
the increase in γ3as shown in Fig. 9(b). Figure 10(a) illustrates the effect of the Brinkman
number Br on the temperature distribution near the middle section of the conduit. Though
Br is the ratio of viscous dissipation to molecular conductivity, a higher the Br value low-
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Figure 7 Streamline distribution for: (a) ζ1 = –0.1, (b) ζ1 = –0.5, and (c) ζ1 = –1.0.

ers the conduction of heat due to viscous dissipation. Thus, temperature rises remarkably.
Physically, the dominating aspect in Br is viscosity, due to which resistance is produced.
This resistance causes fluid particles to collide, and the collision of fluid particles is re-
sponsible for increase in the temperature, whereas Fig. 10(b) shows that concentration
declines due to increasing behavior of Br . Variation in temperature distribution against
different values of Hartmann number Hr can be observed in Fig. 11(a). It signifies that the
temperature increases when increasing Hartmann number, and the converse is shown for
concentration in Fig. 11(b). This rise is more significant in the central area of the channel
for higher values of Hr because Hr describes the Lorentz forces, which are resistive forces;
they are used here to control the turbulence in the fluid flow. Figure 12(a) shows the ef-
fects of Pr on the temperature distribution. This Pr is directly proportional to viscosity
and specific heat, and inversely proportional to thermal conductivity. It is observed that
the magnitude of the Prandtl number increases due to temperature, i.e., Pr has increased
due to the distribution of temperature which is shown in the middle area of the conduit.
Physically, the temperature is strongly dependent on thermal and momentum diffusivity.
Although for concentration, the reverse trend is scrutinized in Fig. 12(b). It signifies that
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Figure 8 Streamline distribution for: (a) ζ2 = –0.1, (b) ζ2 = –0.5, and (c) ζ2 = –1.0.

Pr is directly proportional to viscosity. As viscosity decreases, Pr decreases. Therefore,
concentration decreases for increasing values of Pr . Figure 13(a) illustrates that the tem-
perature increases as the magnitude of Nb increases, since Nb plays an accelerating role on
temperature profile. This situation arises due to random motion of molecules, and tem-
perature profile increases. Similarly, concentration increases as Nb increases in Fig. 13(a),
since Nb is directly proportional to concentration gradient and inversely proportional to
viscosity and diffusion coefficient. It shows that as Nb increases, the diffusion coefficient
decreases, so concentration gradient increases. Therefore, concentration profile increases.
Figure 14(a) shows that the temperature distribution rises as Nt increases, since Nt is di-
rectly proportional to temperature gradient. As Nt increases, temperature gradient also
increases due to increase in internal energy. Therefore, temperature profile increases. On
the other hand, Fig. 14(b) illustrates that the concentration decreases due to an increase in
Nt , because when temperature increases, the number of collisions of particles increases.
Due to these collisions, concentration of fluid is disturbed. Thus, concentration decreases.
Our work has achieved better approximations compared to [7].
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(a)

(b)

Figure 9 For different values of γ3 (a), temperature distribution Θ (b) and concentration distribution Ω .

5 Summary and conclusions
The purpose of this study was to investigate the electroosmotic peristaltic pumping of
MHD nanofluid in an asymmetric microfluidic channel with zeta potentials. Joule heating
and viscous dissipation effects were likewise considered in this model. Suitable boundary
conditions have been utilized to get the solution for highly nonlinear and coupled PDEs.
The significant results of this study are summarized as follows:

• The (axial) velocity increases in the middle section of the channel, with a reduction in
the vicinity due to electroosmotic parameter and mobility of the medium.

• The magnitude of axial pressure gradient firstly decreases then increases with the
increase of electroosmotic parameter, Hartmann number, mobility of the medium and
different zeta potentials.

• Since a higher potential is applied at the upper wall than at the lower wall, streamline
circulates significantly close to that wall where potential is high.

• The construction of trapped bolus depends strongly on the electroosmotic parameter,
Hartmann number, mobility of the medium and high zeta potentials.
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(a)

(b)

Figure 10 For different values of Br , (a) temperature distribution Θ and (b) concentration distribution Ω .

(a)

Figure 11 For different values of Hr , (a) temperature distribution Θ and (b) concentration distribution Ω .
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(b)

Figure 11 Continued

(a)

(b)

Figure 12 For different values of Pr , (a) temperature distribution Θ and (b) concentration distribution Ω .
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(a)

(b)

Figure 13 For different values of Nb , (a) temperature distribution Θ and (b) concentration distribution Ω .

(a)

Figure 14 For different values of Nt , (a) temperature distribution Θ and (b) concentration distribution Ω .
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(b)

Figure 14 Continued

• The heat transfer rate impacts the energy dissipation caused by the existence of Joule
heating impact.
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