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Abstract
This paper deals with a new mathematical model of three-dimensional generalized
thermoelasticity which has been improved using Lord–Shulman theory. The
governing equations on non-dimensional forms have been applied to a
three-dimensional half-space subjected to a rectangular moving heat source and
traction-free surface by using the Laplace and double Fourier transform techniques.
The inverses of the double Fourier and Laplace transforms have been calculated
numerically by applying the complex formula of inversion of the transform by of the
Fourier expansion method. The numerical results of the temperature increment,
strain, stress, and displacement distributions have been represented in graphs for
various values of the heat source speed parameter to show its effect on the
thermo-mechanical waves. The heat source speed parameter leads to significant
effects on both the thermal and mechanical waves.

Keywords: Three-dimensional modeling; Thermoelasticity; Laplace transforms;
Double Fourier transforms; Moving heat source

1 Nomenclature
λ, μ Lame’s parameters

ρ Density
CE Specific heat of the material with constant strain

t Time
T Absolute temperature

T0 Reference temperature
θ = (T – T0) Temperature increment

αT Linear thermal expansion coefficient
γ = αT (3λ + 2μ)
σij Stress tensor
eij Strain tensor
ui Displacement components
K Thermal conductivity
τo Relaxation time
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co =
√

λ+2μ

ρ

η = ρCE
K

ε = γ 2T0
ρCE(λ+2μ)

β = ( λ+2μ

μ
)1/2

2 Introduction
The difficulty in applications and in solving problems by using the mode of the Fourier
transform is how the boundary conditions will be transformed. The important functions
have been adapted by order and integrals of the eigenfunctions, depending on a definite
system of coordinates (Morse, Feshbach [12]). To obtain the stresses and displacements,
dissimilar derivatives of weight must be suited. Satisfying the limit conditions is a some-
what perplex work due to the appearance of elasticity coefficients in distinct and high
powers in the denominators of the equations (Musii [13]). Podil’chuk and Kirichenko used
the Fourier method (Podnil’Chuk, Kirichenko [16]) to construct a new approach for cal-
culating the exact solutions to three-dimensional thermoelasticity problems in different
coordinate systems.

A lot of numerical and computational methods can be found in viscoelasticity and ther-
moelasticity research (Danyluk et al. [2]; Oza et al. [14]; Vinogradov, Milton [21]). Laplace
transform method is one of the well-known methods for thermoelasticity and viscoelas-
ticity. De Chant used the numerical inversion rule and its limitations in the asymptotic
and discontinuities methods (De Chant [3]). Temel got the solutions by applying the nu-
merical method of Durbin using the Laplace transform inversions in the real space (Temel
et al. [19]). Because of the intricacy of the determining relations, it is very difficult to gain
the exact solutions of thermoelasticity, and the numerical approach has been preferred
lately with the advances in the information processing system software incorporating the
boundary and finite element methods (Mesquita, Coda [11]).

Youssef and Ezzat solved some models of three-dimensional thermoelasticity in the
context of a different theory of thermoelasticity (Ezzat, Youssef [5–7]). Youssef studied
many models of a thermoelastic material subjected to moving heat source in the con-
text of different theorems of generalized thermoelasticity (Youssef [23, 24]). Youssef and
Al-Lehaibi solved a problem of a three-dimensional generalized thermoelastic diffusion
for a thermoelastic half-space subjected to rectangular thermal pulse (Youssef, Al-Lehaibi
[25]). Parnell et al. employed the Wiener–Hopf technique and a modified Cagniard–de
Hoop-type scheme, a rapidly convergent integral expression has been determined for a
class of transient thermal mixed boundary value problems (Parnell et al. [15]). Kumar
and Ailawalia studied the moving load response in a micropolar thermoelastic medium
without energy dissipation possessing cubic symmetry (Kumar, Ailawalia [9]). Marin con-
structed an approach of a heat-flux dependent theory for a micropolar porous body,
including voidage time derivative among the independent constitutive variables (Marin
[10]). Sarkar and Lahiri discussed the interactions due to moving heat sources in a gener-
alized thermoelastic half-space using LS model (Sarkar, Lahiri [17]). Tahouneh and Naei
studied the effect of multi-directional nanocomposite materials on the vibrational re-
sponse of thick shell panels with finite length and rested on two-parameter elastic foun-
dations (Tahouneh, Naei [18]). The asymptotic behavior of solutions to a semilinear heat
equation with homogeneous Neumann boundary conditions has been studied in (Ghisi
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et al. [8]). The global stability of rarefaction waves for the compressible Navier–Stokes
equations has been investigated in (Duan et al. [4]).

In this work, a new mathematical model of three-dimensional generalized thermoelas-
ticity will be constructed by using Lord–Shulman model. The governing equations on
non-dimensional forms will be applied to a three-dimensional half-space subjected to a
rectangular moving heat source and traction-free surface by using the Laplace and double
Fourier transform techniques. The numerical results of the temperature increment, strain,
stress, and displacement distributions will be represented in figures for various values of
the heat source speed parameter to show its effect on the thermomechanical waves.

3 The basic equations
The system of partial differential equations of a homogeneous and isotropic thermoelastic
medium based on the generalized thermoelasticity with one relaxation time and without
any external body forces in undefined coordinates {i, j, k = 1, 2, 3} takes the following form
(Ezzat, Youssef [5]; Youssef, Al-Lehaibi [25]):

The equations of motion are

μui,jj + (μ + λ)uj,ij – (3λ + 2μ)αθ,i = ρüi, (1)

where θ = (T – T0) is the increment of the temperature T such that |T – T0|/T0 � 1.
The heat equation is

Kθ,ii =
(

∂

∂t
+ τ0

∂2

∂t2

)
[ρCEθ + γ T0e] –

(
1 + τ0

∂

∂t

)
Q. (2)

The constitutive relations are

σij = 2μeij + λekkδij – γ θδij. (3)

The displacement relation with the strain takes the form

eij =
1
2

(ui,j + uj,i). (4)

4 Problem formulation
Assume an isotropic, homogeneous and thermoelastic body in three dimensions occupies
the region Ψ = {x, y, z : 0 ≤ x < ∞, –∞ < y < ∞, –∞ < z < ∞} where the body is quiescent
initially and is loaded thermally by a moving heat source with constant speed υ , which
starts from the bounding plane of the surface x = 0 and moves along the x-axis when these
surfaces are traction-free as in Fig. 1. The basic equations will be constructed in the context
of Lord and Shulman model (L–S). The Cartesian coordinates (x, y, z) will be used, and the
displacement components of ui = (u, v, w) are set as follows (Ezzat, Youssef [5]; Youssef,
Al-Lehaibi [25]):

The equations of motion are

(λ + 2μ)
∂2u
∂x2 + μ

(
∂2u
∂y2 +

∂2u
∂z2

)
+ (λ + μ)

(
∂2v
∂x∂y

+
∂2w
∂x∂z

)
– γ

∂θ

∂x
= ρü, (5)
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Figure 1 A medium subjected to rectangular heat
source moving with speed υ

(λ + 2μ)
∂2v
∂y2 + μ

(
∂2v
∂x2 +

∂2v
∂z2

)
+ (λ + μ)

(
∂2u
∂x∂y

+
∂2w
∂z∂y

)
– γ

∂θ

∂y
= ρv̈, (6)

(λ + 2μ)
∂2w
∂z2 + μ

(
∂2w
∂x2 +

∂2w
∂y2

)
+ (λ + μ)

(
∂2u
∂z∂x

+
∂2v
∂z∂y

)
– γ

∂θ

∂z
= ρẅ. (7)

The heat equation is

K
(

∂2θ

∂x2 +
∂2θ

∂y2 +
∂2θ

∂z2

)
= ρCE

(
∂

∂t
+ τ0

∂2

∂t2

)
θ

+ γ To

(
∂

∂t
+ τ0

∂2

∂t2

)(
∂u
∂x

+
∂v
∂y

+
∂w
∂z

)
–

(
1 + τ0

∂

∂t

)
Q. (8)

The stress–strain (constitutive) relations are of the forms:

σxx = 2μexx + λe – γ θ , (9)

σyy = 2μeyy + λe – γ θ , (10)

σzz = 2μezz + λe – γ θ , (11)

σxy = 2μexy, (12)

σxz = 2μexz, (13)

and

σyz = 2μeyz. (14)

The strain components have the forms:

exx =
∂u
∂x

, eyy =
∂v
∂y

, ezz =
∂w
∂z

, (15)

exy =
1
2

(
∂u
∂y

+
∂v
∂x

)
, exz =

1
2

(
∂u
∂z

+
∂w
∂x

)
, eyz =

1
2

(
∂w
∂y

+
∂v
∂z

)
, (16)

and

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= exx + eyy + ezz = e. (17)

Equations (5)–(7) could be rewritten by using Eq. (17) as:

μ∇2 ∂u
∂x

+ (λ + μ)
∂2e
∂x2 – γ

∂2θ

∂x2 = ρ
∂ü
∂x

, (18)
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μ∇2 ∂v
∂y

+ (λ + μ)
∂2e
∂y2 – γ

∂2θ

∂y2 = ρ
∂ v̈
∂y

, (19)

μ∇2 ∂w
∂z

+ (λ + μ)
∂2e
∂z2 – γ

∂2θ

∂z2 = ρ
∂ẅ
∂z

, (20)

where

∇2 =
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 .

The heat conduction equation takes the form

K∇2θ = ρCE

(
∂

∂t
+ τ0

∂2

∂t2

)
θ + γ To

(
∂

∂t
+ τ0

∂2

∂t2

)
e –

(
1 + τ0

∂

∂t

)
Q. (21)

Now, the following dimensionless variables will be applied (Ezzat, Youssef [5–7]):

(
x∗, y∗, z∗) = cη(x, y, z),

(
t∗, τ ∗

0
)

= c2η(t, τo), θ∗ =
γ θ

(λ + 2μ)
,

Q∗ =
Q

Kc2η2To
, σ ∗

ij =
σij

λ + 2μ
, c =

√
λ + 2μ

ρ
, η =

ρCE

K
.

Thus, we obtain

β∇2 ∂u
∂x

+ (1 – β)
∂2e
∂x2 –

∂2θ

∂x2 =
∂ü
∂x

, (22)

β∇2 ∂v
∂y

+ (1 – β)
∂2e
∂y2 –

∂2θ

∂y2 =
∂ v̈
∂y

, (23)

β∇2 ∂w
∂z

+ (1 – β)
∂2e
∂z2 –

∂2θ

∂z2 =
∂ẅ
∂z

, (24)

∇2θ =
(

∂

∂t
+ τ0

∂2

∂t2

)
θ + ε1

(
∂

∂t
+ τ0

∂2

∂t2

)
e – ε2

(
1 + τ0

∂

∂t

)
Q, (25)

σxx = 2βexx + (1 – 2β)e – θ , (26)

σyy = 2βeyy + (1 – 2β)e – θ , (27)

σzz = 2βezz + (1 – 2β)e – θ , (28)

σxy = 2βexy, (29)

σxz = βexz, (30)

σyz = 2βeyz, (31)

where

β =
μ

λ + 2μ
, ε1 =

γ 2T0

ρCE(λ + 2μ)
, ε2 =

γ T0

(λ + 2μ)
.

Consider all the symbols without the stars to simplify the equations.
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By taking the sum of the Eqs. (22)–(24) and substituting Eq. (17), we get

∇2e – ∇2θ = ë. (32)

We will assume the function σ is the invariant stress, which is given as follows:

σ =
σxx + σyy + σyy

3
. (33)

By using Eqs. (26)–(28), we obtain

σ = αe – θ , (34)

where

α =
3 – 4β

3
.

5 Applying the Laplace transform on the governing equations
We will be using Laplace transform, which is defined for any function G(t) as follows:

Ḡ(s) =
∫ ∞

0
G(t)e–st dt. (35)

Applying the transform to (35), we obtain:

β∇2 ∂ū
∂x

+ (1 – β)
∂2ē
∂x2 –

∂2θ̄

∂x2 = s2 ∂ū
∂x

, (36)

β∇2 ∂ v̄
∂y

+ (1 – β)
∂2ē
∂y2 –

∂2θ̄

∂y2 = s2 ∂v
∂y

, (37)

β∇2 ∂w̄
∂z

+ (1 – β)
∂2ē
∂z2 –

∂2θ̄

∂z2 = s2 ∂w̄
∂z

, (38)

∇2ē – ∇2θ̄ = s2ē, (39)

∇2θ̄ =
(
s + τ0s2)θ̄ + ε1

(
s + τ0s2)ē – ε2(1 + τ0s)Q̄, (40)

σ̄xx = 2β ēxx + (1 – 2β)ē – θ̄ , (41)

σ̄yy = 2β ēyy + (1 – 2β)ē – θ̄ , (42)

σ̄zz = 2β ēzz + (1 – 2β)ē – θ̄ , (43)

σ̄xy = 2β ēxy, (44)

σ̄xz = β ēxz, (45)

σ̄yz = 2β ēyz, (46)

σ̄ = αē – θ̄ . (47)
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Using the Laplace transform, we applied the following initial conditions:

u(r, t)
∣∣∣∣
t=0

= v(r, t)
∣∣∣∣
t=0

= w(r, t)
∣∣∣∣
t=0

= θ (r, t)
∣∣∣∣
t=0

= 0,

∂u(r, t)
∂t

∣∣∣∣
t=0

=
∂v(r, t)

∂t

∣∣∣∣
t=0

=
∂w(r, t)

∂t

∣∣∣∣
t=0

=
∂θ (r, t)

∂t

∣∣∣∣
t=0

= 0, r = x, y, z.
(48)

We assumed the medium is subjected to a rectangular heat source moving with con-
stant speed and constant strength, releasing its energy continuously on a band of constant
dimensions 2a × 2b centered on the y-axis and z-axis, respectively, while moving with
constant speed υ along the x-axis and being zero elsewhere as in Fig. 1.

Thus, the rectangular moving heat source is assumed to be of the following dimension-
less form [22]:

Q = Qoδ(x – υt)H
(
a – |y|)H

(
b – |z|), (49)

where a and b are constants, Qo is the heat source strength (constant), δ is the Dirac delta
function, and H(t) is the Heaviside function.

Applying the Laplace transform, we get

Q =
Qo

υ
H

(
a – |y|)H

(
b – |z|)e–( s

υ )x. (50)

Eliminating ē in Eqs. (39), (40) and (47), we get

∇2σ̄ = α1θ̄ + α2σ̄ – γ1H
(
a – |y|)H

(
b – |z|)e–( s

υ )x (51)

and

∇2θ̄ = α3θ̄ + α4σ̄ – γ2H
(
a – |y|)H

(
b – |z|)e–( s

υ )x, (52)

where

α1 =
s2α – (s + τ0s2)(1 – α)(α + ε1)

α
, α2 =

s2α – ε1(1 – α)
α

,

α3 =
(s + τ0s2)(α + ε1)

α
, α4 =

ε1(s + τ0s2)
α

,

γ1 = ε2(1 + τ0s)(α – 1)
Qo

υ
, γ2 = ε2(1 + τ0s)

Qo

υ
.

6 Applying the double Fourier transform
The double Fourier transform for any function f (x, y, z) is defined as follows:

F
[
f̄ (x, y, z, s)

]
= ˜̄f (x, p, q, s) =

1
2π

∫ ∞

–∞

∫ ∞

–∞
f̄ (x, y, z, s)e–i(py+qz) dy dz, (53)

where the inverse of the double Fourier transform takes the form

F–1[ ˜̄f (x, p, q, s)
]

= f̄ (x, y, z, s) =
1

2π

∫ ∞

–∞

∫ ∞

–∞
˜̄f (x, p, q, s)ei(py+qz) dp dq. (54)
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Thus, we have

F
[∇2 f̄ (x, y, z, s)

]
=

(
d2

dx2 – q2 – p2
)

˜̄f (x, p, q, s). (55)

Applying the transforms to (53) and (55), we get the following ordinary differential equa-
tions:

d2 ˜̄σ
dx2 = α1

˜̄θ + β1 ˜̄σ – γ3e–( s
υ )x (56)

and

d2 ˜̄θ
dx2 = β2

˜̄θ + α4 ˜̄σ – γ4e–( s
υ )x, (57)

where

β1 = p2 + q2 + α2, β2 = p2 + q2 + α3,

γ3 =
2
π

γ1 sin(qa) sin(pa)
qp

, and γ4 =
2
π

γ2 sin(qb) sin(pb)
qp

.

Eliminating ˜̄σ from Eqs. (56) and (57), we get

[
d4

dx4 – (β1 + β2)
d2

dx2 + (β1β2 – α1α4)
]

˜̄θ = –β5e– s
υ x. (58)

Similarly, eliminating ˜̄θ from Eqs. (56) and (57), we obtain

[
d4

dx4 – (β1 + β2)
d2

dx2 + (β1β2 – α1α4)
]

˜̄σ = –β6e– s
υ x, (59)

where

β5 = γ4

(
s2

ν2 – β1

)
+ α4γ3, β6 = γ3

(
s2

ν2 – β2

)
+ γ4α1.

The solution of Eq. (58) takes the form

˜̄θ = A1e–k1x + A2e–k2x – A3e– s
υ x, (60)

where

A3 =
β5

( s2

ν2 – k2
1)( s2

ν2 – k2
2)

.

The solution of Eq. (59) takes the form

˜̄σ = B1e–k1x + B2e–k2x – B3e– s
υ x, (61)
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where

B3 =
β6

( s2

ν2 – k2
1)( s2

ν2 – k2
2)

,

with A1, A2, B1, and B2 being some parameters, and ±k2
1 and ±k2

2 the roots of the charac-
teristic equation:

k4 – Lk2 + M = 0, (62)

where L = β1 + β2 and M = β1β2 – α1α4, which satisfy the relations:

k2
1 + k2

2 = β1 + β2, k2
1k2

2 = β1β2 – α1α4. (63)

From Eqs. (60), (61) and (56), we get

B1 =
(k2

1 – α1)
β1

A1, B2 =
(k2

2 – α1)
β1

A2. (64)

Hence, we have

˜̄σ =
(k2

1 – α1)A1

β1
e–k1x +

(k2
2 – α1)A2

β1
e–k2x – B3e– s

υ x. (65)

To finalize the solution, we have to obtain the parameters A1, A2 by applying certain
boundary conditions. We consider that the bounding plane of the surface is traction-free
and it has no external thermal loading, which gives, by using all the above transformations,
the following conditions:

˜̄σ (0, q, p, s) = ˜̄θ (0, y, z, t) = 0. (66)

Substituting (66) into Eqs. (60) and (61), we get the following system:

A1 + A2 = A3, (67)
(
k2

1 – α1
)
A1 +

(
k2

2 – α1
)
A2 = β1B3. (68)

The solution of the above system gives

A1 =
A3(k2

2 – α1) – β1B3

k2
2 – k2

1
, A2 = –

A3(k2
1 – α1) – β1B3

k2
2 – k2

1
. (69)

Hence, we have the solutions in Fourier and Laplace transform domain as follows:

˜̄θ (x, p, q, s) =
A3(k2

2 – α1) – β1B3

(k2
2 – k2

1)
e–k1x –

A3(k2
1 – α1) – β1B3

(k2
2 – k2

1)
e–k2x – A3e– s

υ x, (70)

˜̄σ (x, p, q, s) =
(k2

1 – α1)[A3(k2
2 – α1) – β1B3]

β1(k2
2 – k2

1)
e–k1x

–
(k2

2 – α1)[A3(k2
1 – α1) – β1B3]

β1(k2
2 – k2

1)
e–k2x – B3e– s

υ x, (71)
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and

˜̄e(x, p, q, s) =
1
α

[ ˜̄σ (x, p, q, s) + ˜̄θ (x, p, q, s)
]
. (72)

7 Inversion of both Fourier and Laplace transforms
To get the final solution in its original variables, we should calculate the inverse of the dou-
ble Fourier and Laplace transforms in Eqs. (70)–(72). These expressions may be formally
written as functions of x, and all the parameters of the Fourier and Laplace transforms,
namely p, q, and s, in the form ˜̄f (x, q, p, s) (Ezzat, Youssef [5–7]).

In the beginning, we invert the double Fourier transforms using the formula in (54)
which gives the expression f̄ (x, y, z, s) in the Laplace transform domain as follows (Ezzat,
Youssef [5]):

f̄ (x, y, z, s) = F–1[ ˜̄f (x, p, q, s)
]

=
1

2π

∫ ∞

–∞

∫ ∞

–∞
˜̄f (x, p, q, s)ei(py+qz) dp dq

=
2
π

∫ ∞

0

∫ ∞

0

[
cos(py + qz) ˜̄fe + i sin(py + qz) ˜̄fo

]
dp dq, (73)

where ˜̄fo and ˜̄fe denote the odd and even parts of the function ˜̄f (x, q, p, s), respectively. To
invert the Laplace transform, the technique of the Riemann-sum approximation will be
applied as (Tzou [20]):

g(t) =
eκt

t

[
1
2

ḡ(κ) + Re
N∑

n=1

(–1)nḡ
(

κ +
inπ

t

)]
. (74)

Here Re means the real part and i =
√

–1. Almost all the computational experiments have
shown that the value of κ comes from the relation κt ≈ 4.7, which gives faster convergence,
(Tzou [20]).

8 Numerical results and discussion
Copper was taken for the numerical calculations, and the constants of the material have
been taken as follows (Ezzat, Youssef [5–7]; Abbas, Youssef [1]):

K = 386 N/K sec, αT = 1.78 × 10–5 K–1, CE = 383.1 m2/K,

η = 8886.73 m/sec2, T0 = 293 K, μ = 3.86 × 1010 N/m2,

λ = 7.76 × 1010 N/m2, ρ = 8954 kg/m3, τ0 = 0.33 × 10–15 sec.

Thus, we get the following non-dimensional parameters:

τ0 = 0.002, β = 0.25, α = 0.67, ε1 = 0.0168, ε2 = 0.010444.

The computations were running out for non-dimensional time t = 0.1, length a = b =
1.0, and heat source intensity Q0 = 1.0. The temperature, strain, stress, and displacement
distributions are shown in graphs.
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Figure 2 The temperature increment distribution for various values of heat source speed

Figure 3 The stress distribution for various values of heat source speed

Figures 2–5 represent the temperature increment, stress, strain, and displacement
component ux distributions, respectively, for various values of heat source speed υ =
(2.0, 3.0, 4.0) and a wide range of distance x (0 ≤ x ≤ 1) when y = z = 0.0 and y = z = 0.5
to show the effect of the heat source speed on all the studied functions.

The value of speed of the heat source has significant effects on all the studied functions.
Increasing the values of the speed of the heat source leads to decreasing the temperature
increment values and the absolute values of the stress before the peaks, while after the
peaks, the increase of the speed of the heat source leads to increases in them. Increasing
the values of the speed of the heat source leads to decreasing of the strain and the dis-
placement values. The results and the figures have max or min points because the effect
of the heat source is working in the interval x < υt so the temperature increment increases
rapidly, while in the interval x ≥ υt the heat source disappears, which makes the temper-
ature increment decrease rapidly. Accordingly, all the other functions will be affected by
this attitude. In other words, the value of the position x = υt is a critical position because
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Figure 4 The cubical dilatation distribution for various values of heat source speed

Figure 5 The displacement component ux distribution for various values of heat source

it separates between the existence of the heat source and its disappearance. The effects of
the moving heat source of the current results agree with the results in (Youssef [22–24];
Youssef, Al-Lehaibi [25]).

Figures 6–9 represent the temperature increment, stress, strain, and displacement com-
ponent ux distributions, respectively, for a wide range of heat source speed υ and a wide
range of distance x when y = z = 0.5 to illustrate the effect of the heat source speed on all
the studied functions. These figures agree with the results of Figs. 2–5.

9 Conclusions
• The value of the speed of the heat source has significant effects on the temperature

increment, stress, strain, and displacement distributions.
• The values of the peak points for all the studied functions increase when the speed of

the moving heat source increases.
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Figure 6 The temperature increment distribution for a wide range of heat source speed when y = z = 0.5

Figure 7 The stress distribution for a wide range of heat source speed when y = z = 0.5

Figure 8 The strain distribution for a wide range of heat source speed when y = z = 0.5

• The temperature increment, stress, strain, and displacement have different behavior
before and after the critical position x = υt, which separates between the existence of
the heat source and its disappearance.

• The positions along the y and z axes have significant effects on all the studied
functions.
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Figure 9 The displacement component ux distribution for a wide range of heat source speed when
y = z = 0.5
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