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Abstract
This paper is a continuation of Meng and Zhong in (Discrete Contin. Dyn. Syst., Ser. B
19:217–230, 2014). We go on studying the property of the global attractor for some
damped wave equation with critical exponent. The difference between this paper
and Meng and Zhong in (Discrete Contin. Dyn. Syst., Ser. B 19:217–230, 2014) is that
the origin is not a local minimum point but rather a saddle point of the Lyapunov
function F for the symmetric dynamical systems. Using the abstract result established
in Zhang et al. in (Nonlinear Anal., Real World Appl. 36:44–55, 2017), we prove the
existence of multiple equilibrium points in the global attractor for some wave
equations under some suitable assumptions in the case that the origin is an unstable
equilibrium point.
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1 Introduction
In this paper, we consider the following weakly damped wave equation:

⎧
⎪⎪⎨

⎪⎪⎩

utt + ut – �u – λu + ϕ(u) = 0, (x, t) ∈ Ω ×R
+,

u = 0, (x, t) ∈ ∂Ω ×R
+,

u(x, 0) = u0(x), ut(x, 0) = u1(x) x ∈ Ω ,

(1.1)

where Ω ⊂ R3 is a bounded domain with smooth boundary ∂Ω . Let

0 < λ1 < λ2 ≤ · · · ≤ λm < λm+1 < · · ·

be the sequence of eigenvalues of –� on H1
0 (Ω), and let ej be the eigenfunctions corre-

sponding to λj, j = 1, 2, . . . . Here we assume that λ ∈ (λm,λm+1). We also impose the fol-
lowing assumptions on the nonlinear term ϕ:

(A) ϕ ∈ C(R) is of the form

ϕ(s) = s3 – β|s|γ s,
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where β is a parameter, and 0 < γ < 2. The number 3 is called the critical exponent,
since the nonlinearity f is not compact in this case.

The existence of the global attractor (see Definition 2.2) for wave equations like (1.1)
has been studied extensively by many authors; we refer to [1, 2, 11, 14] and the references
therein for more detail.

We now want to examine the attractor itself in more detail. In concise, we study the
properties of the global attractor and obtain the existence of multiple equilibrium points
(see Def. 2.6) in the global attractor in H1

0 (Ω) × L2(Ω).
It is well known that if a system or a semigroup {S(t)}t≥0 has a global attractor A in a

Banach space X and has a Lyapunov function F (see Def. 2.5) on some neighborhood of
A, then

A = W u(E),

where E is the set of all fixed points, and W u(E) is the unstable manifold (see Def. 2.8)
of E . Furthermore, if E is discrete, then

A = W u(E) =
⋃

z∈E
W u(z),

(see [12, 14] etc.). On the other hand, all complete bounded orbits lie in the global attractor
A (see[12] etc.), that is,

{
θ (t) : θ (t) is a complete bounded orbit of

{
S(t)

}

t≥0

} ⊂A.

We also note that the global attractor is connected if the phase space is connected (see
[12, 14] etc). As the phase spaces we consider are usually Hilbert or Banach spaces, the
global attractor is connected.

In this case, each complete bounded orbit θ (t) is always connected to some pair of fixed
points of a semigroup {S(t)}t≥0, and θ (t) is contained in the unstable manifold from the one
fixed point (see Def. 2.6) and the stable manifold (see Def. 2.7) from the other fixed point.
From this point of view, if the number of fixed points in A is large, then the structure of
such an attractor can be completely specified by a list of fixed points that are joined to each
other. Thus, it is meaningful for us to investigate the multiplicity of equilibrium points in
the global attractor A.

To the best of our knowledge, there are few related results. Fortunately, recently, the
authors in [18] and [16] established the criterions to show the existence of the multiplicity
of equilibrium points under some proper conditions.

In detail, if the semigroup {S(t)}t≥0 is odd and the Lyapunov function F is even, and if
the origin is a strictly local minimum point of F , then the authors in [18] have proved the
existence of the multiple equilibrium points in the global attractors for the symmetric dy-
namical systems by estimating the lower bound of Z2 index of two disjoint subsets of the
global attractor for which one subset is located in the area where the Lyapunov function F
is positive and the other subset is located in the area where the Lyapunov function F is neg-
ative. As applications, the authors have considered the reaction–diffusion equations [18],
wave equations [8, 9], and p-Laplacian equation [15] and proved that the corresponding
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semigroups {S(t)}t≥0 possess at least 2n pairs of different fixed points in the global attrac-
tor A.

On the other hand, if the origin is no longer a strictly local minimum point but a saddle
point of F , then we cannot estimate the lower bound of Z2 index of the global attractor
by the method or technique in [18]. Fortunately, in [16], by proving a new lemma, which
is analogous to the intersection lemma in [13], we can still prove the existence of mul-
tiple fixed points in a global attractor for some symmetric semigroups with a Lyapunov
function F . To be precise, in [16] the authors have mainly obtained the following results.

Theorem 1.1 Let X be a Banach space, and let {S(t)}t≥0 be a continuous semigroup on X.
Assume that {S(t)}t≥0 satisfies the following conditions:

(A′
1) S(t) : X → X is odd for each t ≥ 0,

(A′
2) {S(t)}t≥0 possesses a global attractor A in X ,

(A′
3) {S(t)}t≥0 has a C0 even Lyapunov function F on X ,

(A′
4) There exist two closed subspaces X+ and X– of X satisfying

(A′
4-i) codim X+ ≤ dim X– < ∞ and X = X+ + X–, and

(A′
4-ii) there exist two positive constants α and � such that

F|X+∩∂B(0,δ) ≥ α,

where B(0,�) is a ball of radius � in X with center at the origin,
(A′

4-iii) there exist two positive constants R and 0 < ρ < R such that

F|X–∩∂B(0,R) < inf
v∈∂B(0,ρ)

F(v) < F(0) = 0.

Then we have:
(i)

γ (A∩ F–1((–∞, 0])
) ≥ dim X–,

where δ = infv∈∂B(0,ρ) F(v) < 0 and F–1((–∞, δ]) = {u ∈ X : F(u) ≤ δ},
(ii)

γ
(
A∩ F–1([α,∞))

) ≥ dim X– – codim X+,

where F–1([α,∞)) = {u ∈ X : α ≤ F(u) < ∞}.

Theorem 1.2 Let {S(t)}t≥0 be a continuous semigroup on X. Under the assumptions of
Theorem 1.1, the semigroup {S(t)}t≥0 possesses at least dim X– – codim X+ pairs of different
fixed points in A∩ F–1((0,∞)).

As an application of Theorems 1.1 and 1.2, the authors have considered the reaction–
diffusion equations in [16] and the p-Laplacian equation in [7].

The current paper is mostly related to [9] and motivated by [16]. In [9] the authors have
proved the existences of multiple equilibrium points in the global attractor of (1.1) with
λ = 0. The essential difference between this paper and [9] is that the origin is not a local
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minimum point but a saddle point of the corresponding Lyapunov function. Also, com-
pared with the reaction–diffusion equations in [16], the phase space of the wave equation
is the product space H1

0 (Ω) × L2(Ω); nevertheless, to apply Theorem 1.1, one key point is
to decompose the phrase space, and we present a new strategy to decompose the product
space (see the proof of Theorem 3.3 in detail).

The rest of the paper is organized as follows. In the next section, for the convenience
of the reader, we provide some preliminaries. In Sect. 3, by applying Theorems 1.1 and
1.2, we consider the existence of multiple stationary solutions for some symmetric wave
equation with weak damping.

Throughout this paper, X is a Banach space endowed with norm ‖ · ‖X , and C is any
positive constant which may be different from line to line and even in the same line.

2 Preliminaries
We first give some basic definitions about semigroups and global attractors, which can be
found in [1, 4, 10, 12, 14] and references therein.

Definition 2.1 Let {S(t)}t≥0 be a family of operators on X. We say that {S(t)}t≥0 is a C0

semigroup on X if {S(t)}t≥0 satisfies the following conditions:
(i) S(0) = Id (the identity),

(ii) S(t)S(s) = S(t + s) for all t, s ≥ 0,
(iii) S(tn)xn → S(t)x if tn → t and xn → x in X .

Definition 2.2 Let {S(t)}t≥0 be a continuous semigroup on X. A subset A in X is called a
global attractor if

(1) A is invariant, that is, S(t)A = A for all t ≥ 0,
(2) A is compact in X ,
(3) A attracts S(t)B as t → ∞ for each bounded subset B in X .

Now we restate the results (see [1, 11, 14] etc.) about the well-posedness of the solutions
and the existence of the global attractor for (1.1).

Theorem 2.3 Under assumption (A), for any T > 0 and (u0, u1) ∈ H1
0 (Ω) × L2(Ω), there

exists a unique solution of (1.1) such that

(u, ut) ∈ C
(
[0, T]; H1

0 (Ω) × L2(Ω)
)
.

We define the mappings

S(t) : (u0, u1) → (
u(t), ut(t)

)
(2.1)

for all t ∈ R. By Theorem 2.3 it is easy to see that {S(t)}t≥0 is a C0-semigroup in the energy
phase space H1

0 (Ω) × L2(Ω).

Theorem 2.4 Under assumption (A), for any fixed β , problem (1.1) has a global attractor
Aβ in H1

0 (Ω) × L2(Ω).

Next, we briefly recall the notions of a Lyapunov function, stable manifolds, unstable
manifolds, and the Z2 index; see [3, 6, 12–14] and references therein for more detail.
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Definition 2.5 A Lyapunov function for S(t) on a positively invariant set X ⊂ H is a con-
tinuous function Φ : X →R such that

(i) for each u0 ∈ X , the function t �→ Φ(S(t)u0) is nonincreasing, and
(ii) if Φ(S(τ )u) = Φ(u) for some τ > 0, then u is a fixed point of S(t).

Definition 2.6 A fixed point (or a stationary point, or an equilibrium point) is a point
u0 ∈ H such that

S(t)u0 = u0 ∀t ≥ 0.

If z is a fixed point, and H is the phase space, then we have the following definitions.

Definition 2.7 The stable manifold of z is the set

W s(z) =
{

u0 ∈ H : S(t)u0 is defined for all t, S(t)u0 → z as t → ∞.
}

Definition 2.8 The unstable manifold of z is the set

W u(z) =
{

u0 ∈ H : S(t)u0 is defined for all t, S(–t)u0 → z as t → ∞.
}

Denote the class of closed symmetric subsets of X by

A = {A ⊂ X : A is closed, A = –A}.

Definition 2.9 Let A ∈ A, A 
= ∅. The Krasnoselskii genus or Z2 index γ (A) of A is defined
by

γ (A) =

⎧
⎪⎪⎨

⎪⎪⎩

inf{m : ∃h ∈ C0(A,Rm\{0}), h(–u) = –h(u)}
∞, if {m : ∃h ∈ C0(A,Rm\{0}), h(–u) = –h(u)} = ∅,

in particular, if 0 ∈ A,

and γ (∅) = 0.

3 Main results
In this section, we consider the property of the global attractor Aβ of (1.1) and obtain that
there are at least n pairs of different fixed points in the global attractor Aβ . We first give
two lemmas. Their proofs are similar to those in [9], and we omit them.

Lemma 3.1 For any fixed β , the semigroup {S(t)}t≥0 associated with the solutions of (1.1)
is odd, and the global attractor Aβ obtained in Theorem 2.4 is symmetric.

Define the energy function

F(φ) = F(u, ut) =
∫

Ω

{
1
2
(|∇u|2 + |ut|2

)
–

λ

2
|u|2 + Φ(u)

}

dx, (3.1)

where φ = (u, ut), and Φ(u) =
∫ u

0 ϕ(s) ds is the primitive function of ϕ(u).
Hereafter, we denote v = ut and v0 = ut(0) = u1.
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Lemma 3.2 The function F(φ) defined by (3.1) is an even Lyapunov function on H1
0 (Ω) ×

L2(Ω) for the semigroup {S(t)}t≥0.

Theorem 3.3 Suppose assumption (A) holds, let Aβ be the global attractor of (1.1) for
any fixed β , and let F be the Lyapunov function on X = H1

0 (Ω) × L2(Ω) for the semigroup
{S(t)}t≥0 defined by (3.1). Then for any natural number n, there exists β large enough, and
there exist closed subspaces X+ and X– of X such that:

(i) X = X+ + X–,
(ii) dim X– – codim X+ ≥ n,

(iii) there exist α > 0 and δ > 0 such that F|X+∩∂B(0,δ) ≥ α,
(iv) there exist R and 0 < ρ < R such that

F|X–∩∂B(0,R) < inf
φ∈∂B(0,ρ)

F(φ) < F(0) = 0.

Proof Let Y = H1
0 (Ω) and Z = L2(Ω). Denote by Y + the closed subspace of Y spanned by

ek , k = m + j, j = 1, 2, . . . , that is,

Y + = span{ek : k = m + j, j = 1, 2, . . .},

where the closure is taken in Y . For any natural number n, denote

Y – = span{ek : k = 1, 2, . . . , m + n}.

Set X– = Y – × {0} and X+ = Y + × Z. Then we easily obtain

X = X+ + X–

and

dim X– – codim X+ = n.

In the following, we prove (iii). For any φ ∈ X+, we have

‖∇u‖2
L2(Ω) ≥ λm+1‖u‖2

L2(Ω).

By the Sobolev embeddings H1
0 (Ω) ↪→ L4(Ω) and H1

0 (Ω) ↪→ Lγ +2(Ω) we have

F(φ) =
∫

Ω

{
1
2
(|∇u|2 + |v|2) –

λ

2
|u|2 + Cu4 –

β

γ + 2
|u|γ +2

}

dx

≥ 1
2
‖∇u‖2

L2(Ω) +
1
2
‖v‖2

L2(Ω) –
λ

2
‖u‖2

L2(Ω) + C‖u‖4
L4(Ω) –

β

γ + 2
‖u‖γ +2

Lγ +2(Ω)

≥
(

1
2

–
λ

2λm+1

)

‖∇u‖2
L2(Ω) +

1
2
‖v‖2

L2(Ω)

+ C‖u‖4
L4(Ω) –

β

γ + 2
C‖∇u‖γ +2

L2 (Ω), (3.2)
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which implies that, for fixed β properly large, there exists a constant δ > 0 such that, for
any φ ∈ X+ ∩ ∂B(0, δ),

F|X+∩∂B(0,δ) ≥ α,

where α is a fixed positive constant.
Finally, we prove (iv). For φ1 = (e1, ut), we have

F(εφ1) =
∫

Ω

{
1
2
ε2(|∇e1|2 + |ut|2

)
–

λ

2
|εe1|2 + Φ(εe1)

}

dx

=
∫

Ω

{
1
2
ε2(|∇e1|2 + |ut|2

)
–

λ

2
|εe1|2 + Cε4|e1|4 –

β

γ + 2
εγ +2|e1|γ +2

}

dx

=
∫

Ω

{
1
2
ε2|ut|2 +

λ1 – λ

2
|εe1|2 + Cε4|e1|4 –

β

γ + 2
εγ +2|e1|γ +2

}

dx. (3.3)

For any φ ∈ X1 = {u ∈ X|‖∇u‖L2(Ω) + ‖ut‖L2(Ω) = 1}, by the Sobolev embedding H1
0 (Ω) ↪→

L6(Ω) ↪→ L4(Ω) ↪→ Lγ +2(Ω) ↪→ L2(Ω) we deduce that there exist positive constants σ1

and σ2 such that

sup
φ∈X1

‖u‖2
L2(Ω) = σ1, sup

φ∈X1
‖u‖γ +2

Lγ +2(Ω) = (γ + 2)σ2.

Hence we get

F(sφ) =
∫

Ω

{
1
2

s2 + Cs4|u|4 –
λ

2
|su|2 –

β

γ + 2
sγ +2|u|γ +2

}

dx

≥ –
λ

2
σ1s2 – σ2βsr → 0 as s → 0. (3.4)

Combining (3.3) with (3.4), we infer that there exists ρ ∈ (0, 1) such that

–∞ < inf
φ∈∂B(0,ρ)

F(φ) < 0

for properly large β . Then, for any φ ∈ X2 := {u ∈ X– : ‖u‖H1
0 (Ω) +‖ut‖L2(Ω) = ‖u‖H1

0 (Ω) = 1},
there exists a constant θ > 0 such that

inf
φ∈X2

‖u‖γ +2
Lγ +2(Ω) = (γ + 2)θ . (3.5)

Therefore it follows from (3.5) that, for any φ ∈ X2 and μ ∈ R,

F(μφ) =
∫

Ω

{
1
2
μ2(|∇u|2 + |ut|2

)
+ Cμ4|u|4 –

λ

2
|μu|2 –

β

γ + 2
μγ +2|u|γ +2

}

dx

≤ 1
2
μ2 + Cμ4 –

λ

2λ1
μ2 – βμγ +2θ . (3.6)

We choose R such that Rγ +2θ > ργ +2σ2. Then for properly large β , we get

F|X–∩∂B(0,R) < inf
φ∈∂B(0,ρ)

F(φ) < F(0) = 0. �
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From Theorems 1.1 and 1.2, Lemmas 3.1 and 3.2, and Theorem 3.3, we obtain the fol-
lowing theorem and corollary.

Theorem 3.4 Suppose assumption (A) holds. Let Aβ be the global attractor of (1.1) for any
fixed β , and let F be a Lyapunov function on H1

0 (Ω) × L2(Ω) for the semigroup {S(t)}t≥0

defined by (2.1). Then for any natural number n, there exists β large enough such that

γ
(
Aβ ∩ F–1([α,∞)

)) ≥ n.

Corollary 3.5 Under the assumptions of Theorem 3.4, for any natural number n, there
exists β large enough such that the semigroup {S(t)}t≥0 possesses at least n pairs of different
fixed points in Aβ ∩ F–1((0,∞)).

From [5] we know that any compact set A with fractal dimension dimF A = n can be
mapped into R

2n+1 by a linear odd Hölder-continuous one-to-one projector. Similar to
Corollary 1.1 in [17], we have the following corollary.

Corollary 3.6 Suppose assumption (A) holds. Let Aβ be the global attractor of (1.1) for
any fixed β . Then

lim
β→∞ dimF Aβ = ∞.
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