

RESEARCH Open Access

Existence results for a generalization of the time-fractional diffusion equation with variable coefficients

Kangqun Zhang^{1*}

*Correspondence: chkqnju@hotmail.com 1 Department of Mathematics and Physics, Nanjing Institute of Technology, Nanjing, China

Abstract

In this paper we consider the Cauchy problem of a generalization of time-fractional diffusion equation with variable coefficients in \mathbb{R}^{n+1}_+ , where the time derivative is replaced by a regularized hyper-Bessel operator. The explicit solution of the inhomogeneous linear equation for any $n \in \mathbb{Z}^+$ and its uniqueness in a weighted Sobolev space are established. The key tools are Mittag-Leffler functions, M-Wright functions and Mikhlin multiplier theorem. At last, we obtain the existence of solution of the semilinear equation for n=1 by using a fixed point theorem.

MSC: 34A08; 35R11

Keywords: Fractional diffusion equation; Mittag-Leffler function; M-Wright function; Mikhlin multiplier theorem; Weighted Sobolev space; Existence

1 Introduction

In this paper we study the existence of solutions for the following generalization of the time-fractional diffusion equation with variable coefficients:

$$\begin{cases} \mathcal{C}(t^{\theta} \frac{\partial}{\partial t})^{\alpha} u - \Delta u = f & \text{in } \mathbb{R}^{n+1}_{+}, \\ u(0, x) = \varphi(x), \end{cases}$$
 (1)

where $\mathbb{R}^{n+1}_+ = (0, +\infty) \times \mathbb{R}^n$, $\Delta = \sum_{i=1}^n \partial_{x_i}^2$ is the Laplace differential operator, $C(t^\theta \frac{\partial}{\partial t})^\alpha$ stands for a Caputo-like counterpart to hyper-Bessel operator of order $\alpha \in (0, 1)$ and the parameter $\theta < 1$.

Fractional models are proved to be more adequate than those of integer order for some problems in science and engineering. Fractional differential equations play a very important role in the mathematical modeling of various physical systems [8, 10, 14, 20, 30]. The investigation of (1) is inspired by the fractional extension of the diffusion equation governing the law of the fractional Brownian motion [3, 22]:

$$\left(t^{1-2H}\frac{\partial}{\partial t}\right)^{\alpha}u(t,x) = H^{\alpha}\frac{\partial^{2}}{\partial x^{2}}u(t,x), \quad \alpha \in (0,1), H \in (0,1), x \in \mathbb{R},$$
(2)

Zhang Boundary Value Problems (2019) 2019:10 Page 2 of 11

where $(t^{1-2H}\frac{\partial}{\partial t})^{\alpha}$ is a hyper-Bessel type operator. Set $y = H^{\frac{\alpha}{2}}x$ and $1 - 2H = \theta$, then (2) is reduced into

$$\left(t^{\theta} \frac{\partial}{\partial t}\right)^{\alpha} u(t, y) - \frac{\partial^{2}}{\partial y^{2}} u(t, y) = 0, \quad \alpha \in (0, 1), \theta \in (-1, 1), x \in \mathbb{R},$$
(3)

which is a special case of (1). For the general case, [11, 12] provided the definition of the operator $(t^{\theta} \frac{\partial}{\partial t})^{\alpha}$ for $\alpha \in (0,1]$ and $\theta \in \mathbb{R}$ when studying the fractional diffusions and fractional relaxation.

The hyper-Bessel operator reads

$$L = t^{a_1} \frac{d}{dt} t^{a_2} \frac{d}{dt} \cdots \frac{d}{dt} t^{a_{n+1}}, \quad t > 0,$$
 (4)

where a_i , $i=1,2,\ldots,n+1$, are real numbers and $n\in\mathbb{Z}^+$. To the best of our knowledge, the fractional power L^α of the hyper-Bessel operator was first introduced by Dimovski [9] and developed by McBride and Lamb [19, 23, 24]. The theory of L^α has been applied to solve various problems, such as diffusive transport [11, 12, 29], Brownian motion [3, 22, 25–28]. Recently, Al-Musalhi, Al-Salti, and Karimov generalized $(t^\theta \frac{d}{dt})^\alpha$ to the Caputo-like counterpart of hyper-Bessel operator $C(t^\theta \frac{\partial}{\partial t})^\alpha$ in [1] defined by

$${}^{\mathcal{C}}\left(t^{\theta}\frac{d}{dt}\right)^{\alpha}f(t) = \left(t^{\theta}\frac{d}{dt}\right)^{\alpha}f(t) - \frac{f(0)t^{-\alpha(1-\theta)}}{(1-\theta)^{-\alpha}\Gamma(1-\theta)}, \quad 0 < \alpha < 1, \theta < 1.$$

They used Erdélyi-Kober fractional integral to express the hyper-Bessel operator and established the series solution by considering both direct and inverse source problem in a rectangular domain. In [2], Al-Saqabi and his collaborators considered Volterra integral equation of the second kind and a fractional differential equation, involving Erdélyi-Kober fractional integral or differential operator. The explicit solutions of these equations were derived by use of transmutation method. For a special case of $\theta = 0$ and $\alpha > 1$, the existence of unique solution was established by use of a perturbation argument and Green's function in [4, 5]. In [13], applying a direct variational approach and the theory of the fractional derivative spaces, the existence of infinitely many distinct positive solutions were given. For more results related to hyper-Bessel operator and Erdélyi-Kober fractional integral or differential operator, see [6, 29, 31] and references therein. However, these methods and techniques cannot be directly employed to the multidimensional or the nonlinear case in Sobolev space. In this paper, we will go a step further to form the explicit solution in multidimensional space, then use Mittag-Leffler functions and Mikhlin's multiplier theorem to obtain the weighted $\dot{H}^{s,p}$, $1 and <math>L^{\infty}$ estimate of the solution. At last, we form a contractible mapping to show the existence of solution of the semilinear problem in a suitable fractional derivative Sobolev space. The main idea is motivated in the proof of [32, 33]. The existence of solutions in Banach spaces were also investigated in [7, 13, 34– 38] and the necessary and sufficient conditions on the initial data for the solvability of a space-fractional semilinear parabolic equation were obtained in [17].

This paper is organized as follows: In Sect. 2, the related results of Mittag-Leffler functions and M-Wright functions are recalled. The explicit solution of a related time-fractional ordinary differential equation is established. In Sect. 3, in terms of the explicit solution given in Sect. 2, we derive the existence and uniqueness of solution $u \in$

Zhang Boundary Value Problems (2019) 2019:10 Page 3 of 11

 $C([0,+\infty),L^p(\mathbb{R}^n))\cap C((0,+\infty),\dot{H}^{k,p}(\mathbb{R}^n))\cap C^{\alpha}((0,+\infty),L^p(\mathbb{R}^n)),\ k=1,2$ of the corresponding linear problem. In the last section, by use a fixed point theorem we show the existence of solution $u\in C([0,T),L^p(\mathbb{R}))\cap C((0,T),\dot{H}^{k,p}(\mathbb{R}))\cap C^{\alpha}((0,T),L^p(\mathbb{R})),\ k=1,2$ of the semilinear problem for a fixed positive number T.

2 Preliminaries

In this section we present some necessary definitions and auxiliary results for the convenience of the reader, then establish the explicit solution of the Cauchy problem of a time-fractional ordinary differential equation.

First, we recall Mittag-Leffler function $E_{\delta,\beta}(z)$ with two parameters, which can be found in [15, 16] or [30],

$$E_{\delta,\beta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\delta k + \beta)}, \quad \Re(\delta) > 0, \Re(\beta) > 0.$$
 (5)

Lemma 2.1

$$\frac{d}{dy}E_{\delta,\beta}(y) = \frac{E_{\delta,\beta-1}(y) - (\beta-1)E_{\delta,\beta}(y)}{\delta y},\tag{6}$$

$$\frac{d^m}{dy^m} \left(y^{\beta - 1} E_{\delta, \beta} \left(y^{\delta} \right) \right) = y^{\beta - m - 1} E_{\delta, \beta - m} \left(y^{\alpha} \right), \quad \Re(\beta - m) > 0, m \in \mathbb{N}.$$
 (7)

Lemma 2.2 Let $\delta < 2$, $\beta \in \mathbb{R}$ and $\frac{\pi\delta}{2} < \mu < \min\{\pi, \pi\delta\}$. Then we have the following estimate:

$$|E_{\delta,\beta}(y)| \leq \frac{M}{1+|y|}, \quad \mu \leq |\arg y| \leq \pi.$$

where M denotes a positive constant.

Lemma 2.3 For each $k \in \mathbb{Z}^+$ and any $\Re(\alpha) > 0$, $\beta \in \mathbb{R}$, $0 \le \delta \le 1$, there exists a positive constant C_k such that

$$|y|^k \left| \frac{d^k}{dy^k} (y^{\delta} E_{\alpha,\beta}(y)) \right| \le C_k. \tag{8}$$

Proof For k = 1, (8) directly follows from (6) in Lemma 2.1 and Lemma 2.2.

For k = 2, $y^2 \frac{d^2}{dy^2} = (y \frac{d}{dy})^2 - y \frac{d}{dy}$. Then it is enough to show $(y \frac{d}{dy})^2 (y^\delta E_{\alpha,\beta}(y))$ is bounded. By a direct computation in terms of (6), we get that

$$\left(y\frac{d}{dy}\right)^{2}\left(y^{\delta}E_{\alpha,\beta}(y)\right)$$

$$=\frac{1}{\alpha}y\frac{d}{dy}\left(y^{\delta}\left(E_{\alpha,\beta-1}(y)-(\beta-1)E_{\alpha,\beta}(y)\right)\right)+\delta y\frac{d}{dy}\left(y^{\delta}E_{\alpha,\beta}(y)\right).$$

This reduces to k = 1. Hence, (8) holds for k = 2. Furthermore, following the same idea, we conclude that $(y\frac{d}{dy})^k(y^\delta E_{\alpha,\beta}(y))$ is bounded for any $k \in \mathbb{Z}^+$.

By induction, assume for k-1 that

$$|y|^{k-1} \left| \frac{d^{k-1}}{dy^{k-1}} \left(y^{\delta} E_{\alpha,\beta}(y) \right) \right| \le C_{k-1}, \tag{9}$$

$$y^{k-1} \frac{d^{k-1}}{dy^{k-1}} = \sum_{i=1}^{k-1} b_i \left(y \frac{d}{dy} \right)^i, \tag{10}$$

where b_i are constants. Then by use of (6) or (7), we have

$$y^{k} \left(\frac{d}{dy}\right)^{k} \left(y^{\delta} E_{\alpha,\beta}(y)\right)$$

$$= y \frac{d}{dy} \left(\sum_{i=1}^{k-1} b_{i} \left(y \frac{d}{dy}\right)^{i} \left(y^{\delta} E_{\alpha,\beta}(y)\right)\right)$$

$$= \sum_{i=1}^{k} d_{i} \left(y \frac{d}{dy}\right)^{i} \left(y^{\delta} E_{\alpha,\beta}(y)\right). \tag{11}$$

It follows from (9) and (11) that (8) holds.

From (8) we can prove the following.

Corollary 2.4 For each $\gamma \in Z^+$ and any $\alpha > 0$, $\beta \in \mathbb{R}$, $0 \le \delta \le 1$, there exists a positive constant C_{γ} such that

$$\left| |\xi|^{\gamma} \frac{\partial^{\gamma}}{\partial \xi^{\gamma}} \left(y^{\delta} E_{\alpha,\beta}(y) \right) \right| \le C_{\gamma}, \tag{12}$$

where $y = -\rho^{-\alpha} |\xi|^2 t^{\rho\alpha}$.

Next, we choose the version of Mikhlin's multiplier theorem given in [18] as our lemma.

Lemma 2.5 Let $a(\xi)$ be the symbol of a singular integral operator A in \mathbb{R}^n . Suppose that $a(\xi) \in C^{\infty}(\mathbb{R}^n \setminus \{0\})$, and there is some positive constant M for all $\xi \neq 0$ such that

$$|\xi|^{|\gamma|} \left| \frac{\partial^{\gamma} a(\xi)}{\partial \xi^{\gamma}} \right| \le M, \quad 0 \le |\gamma| \le 1 + \frac{[n]}{2}.$$

Then, A is a bounded linear operator from $L^p(\mathbb{R}^n)$ into itself for 1 , and its operator norm depends only on M, n and p.

Based on expression (5), the explicit solution of the following problem of the inhomogeneous time-fractional differential equation

$$\begin{cases}
C(t^{\theta} \frac{d}{dt})^{\alpha} u(t) = -\lambda u(t) + f(t), & t > 0, \\
u(0) = u_0,
\end{cases}$$
(13)

is obtained, where u_0 is a constant number, $\theta < 1$, $0 < \alpha < 1$.

Theorem 2.6 Consider problem (13). Then there is an explicit solution, which is given in the integral form

$$u(t) = u_0 E_{\alpha,1} \left(\lambda^* t^{\rho \alpha}\right) + \frac{1}{\rho^{\alpha}} \int_0^t \left(t^{\rho} - s^{\rho}\right)^{\alpha - 1} E_{\alpha,\alpha} \left(\lambda^* \left(t^{\rho} - s^{\rho}\right)^{\alpha}\right) f(s) d(s^{\rho}), \tag{14}$$

where $\rho = 1 - \theta$ and $\lambda^* = -\frac{\lambda}{\rho^{\alpha}}$.

Zhang Boundary Value Problems (2019) 2019:10 Page 5 of 11

Proof In terms of Lemma 2.7 given in [1], the expression of u(t) is written as

$$u(t) = u_0 E_{\alpha,1} \left(\lambda^* t^{\rho \alpha} \right) + \frac{1}{\rho^{\alpha} \Gamma(\alpha)} \int_0^t \left(t^{\rho} - s^{\rho} \right)^{\alpha - 1} f(s) \, d(s^{\rho})$$

$$+ \frac{\lambda^*}{\rho^{\alpha}} \int_0^t \left(t^{\rho} - s^{\rho} \right)^{2\alpha - 1} E_{\alpha,2\alpha} \left(\lambda^* \left(t^{\rho} - s^{\rho} \right)^{\alpha} \right) f(s) \, d(s^{\rho})$$

$$= u_0 E_{\alpha,1} \left(\lambda^* t^{\rho \alpha} \right) + \frac{1}{\rho^{\alpha} \Gamma(\alpha)} \int_0^t \left(t^{\rho} - s^{\rho} \right)^{\alpha - 1}$$

$$\times \left(1 + \Gamma(\alpha) \lambda^* \left(t^{\rho} - s^{\rho} \right)^{\alpha} E_{\alpha,2\alpha} \left(\lambda^* \left(t^{\rho} - s^{\rho} \right)^{\alpha} \right) \right) f(s) \, d(s^{\rho}), \tag{15}$$

Besides, the integrand in the last integral of (16) satisfies

$$1 + \Gamma(\alpha) y^{\alpha} E_{\alpha,2\alpha} (y^{\alpha})$$

$$= 1 + \Gamma(\alpha) \sum_{k=0}^{\infty} \frac{y^{(k+1)\alpha}}{\Gamma(k\alpha + 2\alpha)}$$

$$= 1 + \Gamma(\alpha) \sum_{k=1}^{\infty} \frac{y^{k\alpha}}{\Gamma(k\alpha + \alpha)}$$

$$= \Gamma(\alpha) \sum_{k=0}^{\infty} \frac{y^{k\alpha}}{\Gamma(k\alpha + \alpha)}$$

$$= \Gamma(\alpha) E_{\alpha,\alpha} (y^{\alpha}). \tag{16}$$

Then substituting (16) into (15) with $y^{\alpha} = \lambda^* (t^{\rho} - s^{\rho})^{\alpha}$, the explicit solution (14) is established.

Hence, we complete the proof of Theorem 2.6.

Last, we recite the asymptotic behavior of M-Wright function derived in [21], which is defined as

$$M_{\nu}(y) = \sum_{n=0}^{\infty} \frac{(-y)^n}{n!\Gamma(-n\nu+1-\nu)}, \quad \nu \in (0,1).$$

Lemma 2.7 Given $a(v) = \frac{1}{\sqrt{2\pi(1-v)}} > 0$, $b(v) = \frac{1-v}{v} > 0$ for some v, the asymptotic representation of M-Wright function for large y is

$$M_{\nu}\left(\frac{y}{\nu}\right) \sim a(\nu)y^{\frac{\nu-\frac{1}{2}}{1-\nu}}e^{-b(\nu)y^{\frac{1}{1-\nu}}}.$$

3 Existence and uniqueness of solution of the linear problem

In this section, based on Theorem 2.6, Mattag-Leffler function, M-Wright functions and Mikhlin multiplier theorem, we show the existence of L^p solution of the corresponding linear problem (1) for any $n \in \mathbb{Z}^+$.

We first consider the linear problem

$$\begin{cases} {}^{C}(t^{\theta}\frac{\partial}{\partial t})^{\alpha}u - \triangle u = f(t,x) & \text{in } \mathbb{R}^{n+1}_{+}, \\ u(0,x) = \varphi(x). \end{cases}$$
 (17)

Zhang Boundary Value Problems (2019) 2019:10 Page 6 of 11

Taking partial Fourier transformation with respect to x in Eq. (17) yields the following problem:

$$\begin{cases} {}^{\mathcal{C}}(t^{\theta}\frac{\partial}{\partial t})^{\alpha}\hat{u}(t,\xi) = -|\xi|^{2}\hat{u}(t,\xi) + \hat{f}(t,\xi) & \text{in } \mathbb{R}^{n+1}_{+}, \\ \hat{u}(0,\xi) = \hat{\varphi}(\xi), \end{cases}$$

where $\hat{u}(t,\xi) = \mathfrak{F}(u(t,x)) = \int_{\mathbb{R}^n} e^{-ix\cdot\xi} u(t,x) dx$.

Set $\lambda = |\xi|^2$ in (11). According to Theorem 2.6, the solution of (17) is given by

$$u(t,x) = u_0(t,x) + \frac{1}{\rho^{\alpha}} \int_0^t \left(t^{\rho} - s^{\rho} \right)^{\alpha - 1} \mathfrak{F}^{-1} \left(E_{\alpha,\alpha} \left(-\rho^{-\alpha} |\xi|^2 \left(t^{\rho} - s^{\rho} \right)^{\alpha} \right) f(s,\xi) \right) d(s^{\rho}), \quad (18)$$

where

$$u_0(t,x) = \mathfrak{F}^{-1}(\hat{\varphi}(\xi)E_{\alpha,1}(-\rho^{-\alpha}|\xi|^2t^{\rho\alpha})). \tag{19}$$

Theorem 3.1 Set $1 , <math>\alpha \in (0,1)$, $\theta < 1$. Suppose $\varphi \in C_0^{\infty}(\mathbb{R}^n)$, $f \in C_0^{\infty}(\mathbb{R}^{n+1})$, then there exists a unique solution $u \in C([0,+\infty),L^p(\mathbb{R}^n)) \cap C((0,+\infty),\dot{H}^{k,p}(\mathbb{R}^n)) \cap C^{\alpha}((0,+\infty),L^p(\mathbb{R}^n))$ of problem (17), which is represented by (18) under Fourier transformation and satisfies

$$\sum_{k=0}^{2} \left\| t^{\delta_{k}} u(t,\cdot) \right\|_{\dot{H}^{k,p}(\mathbb{R}^{n})} + \left\| t^{\delta_{2} \mathcal{C}} \left(t^{\theta} \frac{\partial}{\partial t} \right)^{\alpha} u(t,\cdot) \right\|_{L^{p}(\mathbb{R}^{n})} \\
\lesssim \left\| \varphi \right\|_{L^{p}(\mathbb{R}^{n})} + t^{\delta_{2}} \int_{0}^{1} \sum_{k=0}^{2} \left(1 - s^{\rho} \right)^{\alpha - 1 - \frac{k\alpha}{2}} \left\| f(st,\cdot) \right\|_{L^{p}(\mathbb{R}^{n})} d(s^{\rho}), \tag{20}$$

where $\dot{H}^{k,p}(\mathbb{R}^n)$ denotes the homogeneous Sobolev space, $\delta_k = \frac{\rho \alpha k}{2}$, $\rho = 1 - \theta$.

Proof It follows from (18)–(19) that

$$\begin{split} &\|u(t,\cdot)\|_{\dot{H}^{\delta,p}(\mathbb{R}^{n})} \\ &= \|\mathfrak{F}^{-1}(|\xi|^{\delta}\hat{u}(t,\xi))\|_{L^{p}(\mathbb{R}^{n})} \\ &\leq \|\mathfrak{F}^{-1}(|\xi|^{\delta}\hat{u}_{0}(t,\xi))\|_{L^{p}(\mathbb{R}^{n})} \\ &+ \|\mathfrak{F}^{-1}\left(\frac{|\xi|^{\delta}}{\rho^{\alpha}}\int_{0}^{t}\left(t^{\rho}-s^{\rho}\right)^{\alpha-1}E_{\alpha,\alpha}\left(-\rho^{-\alpha}|\xi|^{2}\left(t^{\rho}-s^{\rho}\right)^{\alpha}\right)\hat{f}(s,\xi)\,d(s^{\rho})\right)\|_{L^{p}(\mathbb{R}^{n})} \\ &\lesssim \|\mathfrak{F}^{-1}\left(\hat{\varphi}(\xi)t^{-\frac{\rho\alpha\delta}{2}}\left(-\rho^{-\alpha}|\xi|^{2}t^{\rho\alpha}\right)^{\frac{\delta}{2}}E_{\alpha,1}\left(-\rho^{-\alpha}|\xi|^{2}t^{\rho\alpha}\right)\right)\|_{L^{p}(\mathbb{R}^{n})} + \int_{0}^{t}\left(t^{\rho}-s^{\rho}\right)^{\alpha-1-\frac{\delta\alpha}{2}} \\ &\times \|\mathfrak{F}^{-1}\left(\left(-\rho^{-\alpha}|\xi|^{2}\left(t^{\rho}-s^{\rho}\right)^{\alpha}\right)^{\frac{\delta}{2}}E_{\alpha,\alpha}\left(-\rho^{-\alpha}|\xi|^{2}\left(t^{\rho}-s^{\rho}\right)^{\alpha}\right)\hat{f}(s,\xi)\right)\|_{L^{p}(\mathbb{R}^{n})}\,d(s^{\rho}). \end{split}$$

Let $\gamma = -\rho^{-\alpha} |\xi|^2 (t^\rho - s^\rho)^\alpha$, then (12) yields

$$|\xi|^{\gamma}\left|\frac{\partial^{\gamma}}{\partial \xi^{\gamma}}\left(y^{\frac{\delta}{2}}E_{\alpha,\beta}(y)\right)\right|\leq C_{\gamma}.$$

Zhang Boundary Value Problems (2019) 2019:10 Page 7 of 11

According to Lemma 2.5, we have

$$\|\mathfrak{F}^{-1}(\hat{\varphi}(\xi)t^{-\frac{\rho\alpha\delta}{2}}y^{\frac{\delta}{2}}E_{\alpha,1}(y))\|_{L^{p}(\mathbb{R}^{n})} \lesssim t^{-\frac{\rho\alpha\delta}{2}}\|\varphi\|_{L^{p}(\mathbb{R}^{n})},\tag{22}$$

$$\|\mathfrak{F}^{-1}(y^{\frac{\delta}{2}}E_{\alpha,\alpha}(y)\hat{f}(s,\xi))\|_{L^{p}(\mathbb{R}^{n})} \lesssim \|f(s,\cdot)\|_{L^{p}(\mathbb{R}^{n})}.$$
(23)

Substituting (22)–(23) into (21), we get

$$\left\|u(t,\cdot)\right\|_{\dot{H}^{\delta,p}(\mathbb{R}^n)}\lesssim t^{-\frac{\rho\alpha\delta}{2}}\bigg(\|\varphi\|_{L^p(\mathbb{R}^n)}+t^{\rho\alpha}\int_0^1 \big(1-s^\rho\big)^{\alpha-1-\frac{\delta\alpha}{2}}\left\|f(st,\cdot)\right\|_{L^p(\mathbb{R}^n)}d\big(s^\rho\big)\bigg).$$

Summing up with $\delta = 0, 1, 2$, we arrive at the following estimate:

$$\sum_{k=0}^{2} \|t^{\delta_{k}} u(t,\cdot)\|_{\dot{H}^{k,p}(\mathbb{R}^{n})} \lesssim \|\varphi\|_{L^{p}(\mathbb{R}^{n})} + t^{\rho\alpha} \int_{0}^{1} \sum_{k=0}^{2} (1-s^{\rho})^{\alpha-1-\frac{k\alpha}{2}} \|f(st,\cdot)\|_{L^{p}(\mathbb{R}^{n})} d(s^{\rho}) \tag{24}$$

with $\delta_k = \frac{\rho \alpha k}{2}$. For the term $C(t^{\theta} \frac{\partial}{\partial t})^{\alpha} u(t,\cdot)$, we will use Eq. (17) to estimate as follows:

$$\left\| {}^{\mathcal{C}} \left(t^{\theta} \frac{\partial}{\partial t} \right)^{\alpha} u(t, \cdot) \right\|_{L^{p}(\mathbb{R}^{n})} \\
= \left\| \Delta u + f(t, x) \right\|_{L^{p}(\mathbb{R}^{n})} \\
\lesssim \left\| u(t, \cdot) \right\|_{\dot{H}^{2,p}(\mathbb{R}^{n})} + \left\| f(t, \cdot) \right\|_{L^{p}(\mathbb{R}^{n})} \\
\lesssim t^{-\rho \alpha} \left(\left\| \varphi \right\|_{L^{p}(\mathbb{R}^{n})} + t^{\rho \alpha} \int_{0}^{1} \sum_{t=0}^{2} \left(1 - s^{\rho} \right)^{\alpha - 1 - \frac{k\alpha}{2}} \left\| f(st, \cdot) \right\|_{L^{p}(\mathbb{R}^{n})} d(s^{\rho}) \right). \tag{25}$$

Combing (24) and (25), we arrive at (20), which implies the existence and uniqueness of solution $u \in C([0,+\infty), L^p(\mathbb{R}^n)) \cap C((0,+\infty), \dot{H}^{k,p}(\mathbb{R}^n)) \cap C^{\alpha}((0,+\infty), L^p(\mathbb{R}^n)), k = 1, 2.$

Thus, we complete the proof of Theorem 3.1.

4 Existence of solution of the semilinear problem

In this section, we consider the semilinear problem (1) in the half-space \mathbb{R}^2_+ and show the existence of a solution by use of a fixed point theorem.

We assume a condition on the nonlinear term with a positive constant C so that

$$|f(u)| \lesssim |u|^{\mu}, \qquad |f^{(k)}(u)| \lesssim C, \quad \mu > 1, k = 1, 2.$$
 (26)

The L^{∞} -norm estimate of $u_0(t,x)$ is necessary, with $u_0(t,x)$ defined in (19).

Theorem 4.1

$$\|u_0(t,\cdot)\|_{L^{\infty}(\mathbb{R}^2_+)} \lesssim \|\varphi\|_{L^{\infty}(\mathbb{R})}. \tag{27}$$

Zhang Boundary Value Problems (2019) 2019:10 Page 8 of 11

Proof It follows from (19) that

$$u_0(t,x) = \mathfrak{F}^{-1}\left(E_{\alpha,1}\left(-\rho^{-\alpha}|\xi|^2t^{\rho\alpha}\right)\right) * \varphi(x),$$

and then we arrive

$$\|u_0(t,\cdot)\|_{L^{\infty}(\mathbb{R}^2_+)} \lesssim \|\mathfrak{F}^{-1}(E_{\alpha,1}(-\rho^{-\alpha}|\xi|^2t^{\rho\alpha}))\|_{L^{\infty}((0,+\infty),L^1(\mathbb{R}))} \|\varphi\|_{L^{\infty}(\mathbb{R})}.$$
(28)

The Fourier transformation of M-Wright function given by (4.15) in [12] is

$$\mathfrak{F}(M_{\nu}(|x|)) = 2E_{2\nu,1}(-|\xi|^2),$$

which implies

$$\mathfrak{F}^{-1}\big(E_{\alpha,1}\big(-\rho^{-\alpha}|\xi|^2t^{\rho\alpha}\big)\big) = \frac{\rho^{\frac{\alpha}{2}}}{2t^{\frac{\rho\alpha}{2}}}M_{\frac{\alpha}{2}}\big(\rho^{\frac{\alpha}{2}}|x|t^{-\frac{\rho\alpha}{2}}\big).$$

Then by a direct computation in terms of the analytic expression of M-Wright function and the asymptotics for large variables given in Lemma 2.7, we have

$$\begin{split} & \left\| \mathfrak{F}^{-1} \left(E_{\alpha,1} \left(-\rho^{-\alpha} |\xi|^2 t^{\rho \alpha} \right) \right) \right\|_{L^{\infty}((0,+\infty),L^1(\mathbb{R}))} \\ & \leq \left\| \frac{\rho^{\frac{\alpha}{2}}}{2t^{\frac{\rho \alpha}{2}}} M_{\frac{\alpha}{2}} \left(\rho^{\frac{\alpha}{2}} |x| t^{-\frac{\rho \alpha}{2}} \right) \right\|_{L^{\infty}((0,+\infty),L^1(\mathbb{R}))} \\ & \leq C. \end{split}$$

$$\tag{29}$$

Substituting (29) into (28), we obtain (27).

This concludes the proof of Theorem 4.1.

Theorem 4.2 Set $1 , <math>\alpha \in (0,1)$, $\theta < 1$. Suppose $\varphi \in C_0^{\infty}(\mathbb{R})$ and let $f(t,x,\cdot)$ satisfy (26), then there exists a solution $u \in C([0,T),L^p(\mathbb{R})) \cap C((0,T),\dot{H}^{k,p}(\mathbb{R})) \cap C^{\alpha}((0,T),L^p(\mathbb{R}))$, k = 1,2 to problem (1) for some positive constant T.

Proof Set S_M denote a closed set given by

$$S_M \equiv \left\{ u \in C([0,T), L^p(\mathbb{R})) \cap C((0,T), \dot{H}^{k,p}(\mathbb{R})) \right.$$
$$\left. \cap C^{\alpha}\left((0,T), L^p(\mathbb{R})\right) : \sup_{t \in (0,T)} \left\| u(t,\cdot) \right\|_{S_M} \le M \right\},$$

where

$$\left\| u(t,\cdot) \right\|_{S_M} = \sum_{k=0}^2 \left\| t^{\delta_k} u(t,\cdot) \right\|_{\dot{H}^{k,p}(\mathbb{R})} + \left\| t^{\delta_2 \mathcal{C}} \left(t^{\theta} \frac{\partial}{\partial t} \right)^{\alpha} u(t,\cdot) \right\|_{L^p(\mathbb{R})}$$

and $\delta_k = \frac{\rho \alpha k}{2}$, $\rho = 1 - \theta$, the positive constants T and M will be given in the following.

Zhang Boundary Value Problems (2019) 2019:10 Page 9 of 11

Consider the nonlinear mapping F in S_M such that

$$Fu = \mathfrak{F}^{-1}(\hat{\varphi}(\xi)E_{\alpha,1}(-\rho^{-\alpha}|\xi|^{2}t^{\rho\alpha})$$

$$+ \frac{1}{\rho^{\alpha}} \int_{0}^{t} (t^{\rho} - s^{\rho})^{\alpha-1} E_{\alpha,\alpha}(-\rho^{-\alpha}|\xi|^{2}(t^{\rho} - s^{\rho})^{\alpha} \hat{f}(s,\xi,u(s,\xi)) d(s^{\rho})).$$

On the one hand, in terms of a modified result of Theorem 3.1 and Theorem 4.1, we arrive at

$$\begin{aligned} \|Fu(t,\cdot)\|_{S_{M}} &\lesssim \|\varphi\|_{L^{p}(\mathbb{R})} + t^{\delta_{2}} \int_{0}^{1} \left(\sum_{k=0}^{2} (1-s^{\rho})^{\alpha-1-\frac{k\alpha}{2}} \|f(u)(st,\cdot)\|_{L^{p}(\mathbb{R})} \right) d(s^{\rho}) \\ &\lesssim \|\varphi\|_{L^{p}(\mathbb{R})} + t^{\delta_{2}} \int_{0}^{1} \left(\sum_{k=0}^{1} (1-s^{\rho})^{\alpha-1-\frac{k\alpha}{2}} \|u(st,\cdot)\|_{L^{p}(\mathbb{R})} \|u(st,\cdot)\|_{L^{\infty}(\mathbb{R}^{2}_{+})} \right. \\ &+ \left. (1-s^{\rho})^{\frac{\alpha}{2}-1} (st)^{-\delta_{1}} \|(st)^{\delta_{1}} \partial_{i}u(st,\cdot)\|_{L^{p}(\mathbb{R})} \right) d(s^{\rho}) \\ &\lesssim \|\varphi\|_{L^{p}(\mathbb{R})} + t^{\delta_{2}} \|\varphi\|_{L^{\infty}(\mathbb{R})}^{\mu-1} \sum_{k=0}^{1} \int_{0}^{1} (1-s^{\rho})^{\alpha-1-\frac{k\alpha}{2}} \|u(st,\cdot)\|_{L^{p}(\mathbb{R})} \\ &+ t^{\delta_{1}} \int_{0}^{1} (1-s^{\rho})^{\frac{\alpha}{2}-1} s^{-\delta_{1}} \|(st)^{\delta_{1}} \partial_{i}u(st,\cdot)\|_{L^{p}(\mathbb{R})} d(s^{\rho}) \\ &\leq C_{0} \|\varphi\|_{L^{p}(\mathbb{R})} + C_{1} \left(t^{\delta_{2}} \|\varphi\|_{L^{\infty}(\mathbb{R})}^{\mu-1} + t^{\delta_{1}} \right) \sup_{t\in(0,T)} \|u(t,\cdot)\|_{S_{M}}. \end{aligned} \tag{30}$$

Take T such that

$$\frac{1}{2} - C_1 \left(T^{\delta_2} \| \varphi \|_{L^{\infty}(\mathbb{R})}^{\mu - 1} + T^{\delta_1} \right) > 0, \tag{31}$$

then for $M = 2C_0 \|\varphi\|_{L^p(\mathbb{R}^n)}$, (30)–(31) yield

$$\sup_{t \in (0,T)} \|Fu(t,\cdot)\|_{S_M} \le M. \tag{32}$$

This demonstrates that the mapping F maps S_M into itself.

On the other hand, for any $u \in S_M$, $v \in S_M$, by a direct computation, we have

$$\begin{split} & \left\| (Fu - Fv)(t, \cdot) \right\|_{S_{M}} \\ & \lesssim t^{\delta_{2}} \int_{0}^{1} \sum_{k=0}^{1} \left(1 - s^{\rho} \right)^{\alpha - 1 - \frac{k\alpha}{2}} \left\| f(u)(st, \cdot) - f(v)(st, \cdot) \right\|_{L^{p}(\mathbb{R})} d(s^{\rho}) \\ & + t^{\delta_{2}} \int_{0}^{1} \left(1 - s^{\rho} \right)^{\frac{\alpha}{2} - 1} \left\| \partial_{i} (f(u) - f(v))(st, \cdot) \right\|_{L^{p}(\mathbb{R})} d(s^{\rho}) \\ & \lesssim t^{\delta_{2}} \int_{0}^{1} \sum_{k=0}^{1} \left(1 - s^{\rho} \right)^{\alpha - 1 - \frac{k\alpha}{2}} \left\| (u - v)(st, \cdot) \right\|_{L^{p}(\mathbb{R})} \left(\left\| u \right\|_{L^{\infty}(\mathbb{R}^{2}_{+})}^{\mu - 1} + \left\| v \right\|_{L^{\infty}(\mathbb{R}^{2}_{+})}^{\mu - 1} \right) d(s^{\rho}) \end{split}$$

Zhang Boundary Value Problems (2019) 2019:10 Page 10 of 11

$$+ t^{\delta_{1}} \int_{0}^{1} (1 - s^{\rho})^{\frac{\alpha}{2} - 1} s^{\delta_{1}} (\|\partial_{i}(u - v)(st, \cdot)\|_{L^{p}(\mathbb{R})} + \|(u - v)(st, \cdot)\|_{L^{p}(\mathbb{R})}) d(s^{\rho})$$

$$\leq C_{1} (T^{\delta_{2}} \|\varphi\|_{L^{\infty}(\mathbb{R})}^{\mu - 1} + T^{\delta_{1}}) \sup_{t \in (0, T)} \|(u - v)(t, \cdot)\|_{S_{M}}.$$
(33)

According to (31) and (33), one has

$$\sup_{t \in (0,T)} \| (Fu - Fv)(t, \cdot) \|_{S_M} < \sup_{t \in (0,T)} \| (u - v)(t, \cdot) \|_{S_M}, \tag{34}$$

which implies that mapping F is a contraction.

In terms of (32) and (34), we confirm that mapping F has one fixed point in S_M . This concludes the proof of Theorem 4.2.

5 Conclusions

In this paper, the Cauchy problem (1) has been considered. By means of Mikhlin's multiplier theorem, in terms of Mittag-Leffler functions and M-Wright functions, we obtained an explicit solution $u \in C([0,+\infty),L^p(\mathbb{R}^n)) \cap C((0,+\infty),\dot{H}^{k,p}(\mathbb{R}^n)) \cap C^{\alpha}((0,+\infty),L^p(\mathbb{R}^n))$, k=1,2 for the linear equation with a source term. Meanwhile, the local existence of a solution of the semilinear equation in \mathbb{R}^2_+ was obtained by a fixed point theorem.

Acknowledgements

The authors wish to thank the editor and anonymous referees for their valuable suggestions.

Funding

This work was supported by NNSF of China (No. 11326152), NSF of Jiangsu Province of China (No. BK20130736) and NSF of Nanjing Institute of Technology (CKJB201709).

Availability of data and materials

Not applicable

Ethics approval and consent to participate

Not applicable.

Competing interests

The author declares to have no competing interests.

Authors' contributions

The author discussed, read and approved the final version of the manuscript.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 6 September 2018 Accepted: 10 January 2019 Published online: 16 January 2019

References

- 1. Al-Musalhi, F., Al-Salti, N., Karimov, E.: Initial boundary value problems for a fractional differential equation with hyper-Bessel operator. Fract. Calc. Appl. Anal. 21(1), 200–219 (2018)
- Al-Saqabi, B., Kiryakova, V.S.: Explicit solutions of fractional integral and differential equations involving Erdélyi–Kober operators. Appl. Math. Comput. 95(1), 1–13 (1998)
- 3. Allouba, H., Zheng, W.: Brownian-time processes: the PDE connection and the half-derivative generator. Ann. Probab. **29**(4), 1780–1795 (2001)
- 4. Bachar, I., Mâagli, H., Rădulescu, V.D.: Fractional Navier boundary value problem. Bound. Value Probl. 2016, 79 (2016)
- Bachar, I., Mâagli, H., Rădulescu, V.D.: Positive solutions for superlinear Riemann–Liouville fractional boundary-value problems. Electron. J. Differ. Equ. 2017, 240 (2017)
- Bologna, M., Svenkeson, A., West, B.J., et al.: Diffusion in heterogeneous media: an iterative scheme for finding approximate solutions to fractional differential equations with time-dependent coefficients. J. Comput. Phys. 293, 297–311 (2015)
- Cao, M., Gu, H.: Two-weight characterization for commutators of bi-parameter fractional integrals. Nonlinear Anal. 171(1), 1–20 (2018)

- 8. Colombaro, I., Giusti, A., Vitali, S.: Storage and dissipation of energy in Prabhakar viscoelasticity. Mathematics **6**(2), 15
- 9. Dimovski, I.: Operational calculus for a class of differential operators. C. R. Acad. Bulg. Sci. 19(12), 1111-1114 (1966)
- Garra, R., Garrappa, R.: The Prabhakar or three parameter Mittag-Leffler function: theory and application. Commun. Nonlinear Sci. Numer. Simul. 56, 314–329 (2018)
- 11. Garra, R., Giusti, A., Mainardi, F., Pagnini, G.: Fractional relaxation with time-varying coefficient. Fract. Calc. Appl. Anal. 17(2), 424–439 (2014)
- 12. Garra, R., Orsingher, E., Polito, F.: Fractional diffusions with time-varying coefficients. J. Math. Phys. **56**(9), 093301 (2015)
- 13. Ge, B., Rădulescu, V.D., Zhang, J.C.: Infinitely many positive solutions of fractional boundary value problems. Topol. Methods Nonlinear Anal. 49(2), 647–664 (2017)
- Giusti, A., Colombaro, I.: Prabhakar-like fractional viscoelasticity. Commun. Nonlinear Sci. Numer. Simul. 56, 138–143 (2018)
- Gorenflo, R., Kilbas, A.A., Mainardi, F., et al.: Mittag-Leffler Functions, Related Topics and Applications. Springer, Berlin (2014)
- Haubold, H.J., Mathai, A.M., Saxena, R.K.: Mittag-Leffler functions and their applications. J. Appl. Math. 2011, Article ID 298628 (2011)
- 17. Hisa, K., Ishige, K.: Existence of solutions for a fractional semilinear parabolic equation with singular initial data. Nonlinear Anal. 175, 108–132 (2018)
- 18. Kim, J.U.: An L^p a priori estimate for the Tricomi equation in the upper half-space. Trans. Am. Math. Soc. **351**(11), 4611–4628 (1999)
- 19. Lamb, W., McBride, A.C.: On relating two approaches to fractional calculus. J. Math. Anal. Appl. 132(2), 590-610 (1988)
- 20. Luchko, Y.: Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation. J. Math. Anal. Appl. 374(2), 538–548 (2011)
- Mainardi, F., Mura, A., Pagnini, G.: The M-Wright function in time-fractional diffusion processes: a tutorial survey. Int. J. Differ. Equ. 2010. Article ID 104505 (2010)
- Mandelbrot, B.B., van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10(4), 422–437 (1968)
- 23. McBride, A.C.: A theory of fractional integration for generalized functions. SIAM J. Math. Anal. 6(3), 583-599 (1975)
- 24. McBride, A.C.: Fractional powers of a class of ordinary differential operators. Proc. Lond. Math. Soc. **s3-45**(3), 519–546 (1982)
- Mura, A., Mainardi, F.: A class of self-similar stochastic processes with stationary increments to model anomalous diffusion in physics. Integral Transforms Spec. Funct. 20(3–4), 185–198 (2009)
- Mura, A., Taqqu, M.S., Mainardi, F.: Non-Markovian diffusion equations and processes: analysis and simulations. Phys. A, Stat. Mech. Appl. 387(21), 5033–5064 (2008)
- 27. Orsingher, E., Beghin, L.: Fractional diffusion equations and processes with randomly varying time. Ann. Probab. 37(1), 206–249 (2009)
- 28. Orsingher, E., Polito, F.: Randomly stopped nonlinear fractional birth processes. Stoch. Anal. Appl. **31**(2), 262–292
- 29. Pagnini, G.: Erdélyi-Kober fractional diffusion. Fract. Calc. Appl. Anal. 15(1), 117-127 (2012)
- 30. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Elsevier, Amsterdam (1998)
- 31. Prabhakar, T.R.: A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. **19**(1), 7–15 (1971)
- 32. Zhang, K.: The Cauchy problem for semilinear hyperbolic equation with characteristic degeneration on the initial hyperplane. Math. Methods Appl. Sci. 41(6), 2429–2441 (2018)
- Zhang, K.: On the existence of L^p-solution of generalized Euler-Poisson-Darboux equation in the upper half-space. Bull. Braz. Math. Soc. (2018). https://doi.org/10.1007/s00574-018-00121-0
- 34. Zhang, X., Liu, L., Wu, Y.: Variational structure and multiple solutions for a fractional advection–dispersion equation. Comput. Math. Appl. **68**(12), 1794–1805 (2014)
- 35. Zhang, X., Liu, L., Wu, Y., et al.: Nontrivial solutions for a fractional advection dispersion equation in anomalous diffusion. Appl. Math. Lett. 66, 1–8 (2017)
- Zhang, X., Liu, L., Wu, Y., et al.: New result on the critical exponent for solution of an ordinary fractional differential problem. J. Funct. Spaces 2017, Article ID 3976469 (2017)
- Zhang, X., Mao, C., Liu, L., et al.: Exact iterative solution for an abstract fractional dynamic system model for bioprocess. Qual. Theory Dyn. Syst. 16(1), 205–222 (2017)
- 38. Zhu, B., Liu, L., Wu, Y.: Existence and uniqueness of global mild solutions for a class of nonlinear fractional reaction–diffusion equations with delay. Comput. Math. Appl. (2016). https://doi.org/10.1016/j.camwa.2016.01.028