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Abstract
In this paper we consider the Cauchy problem of a generalization of time-fractional
diffusion equation with variable coefficients in R

n+1
+ , where the time derivative is

replaced by a regularized hyper-Bessel operator. The explicit solution of the
inhomogeneous linear equation for any n ∈ Z

+ and its uniqueness in a weighted
Sobolev space are established. The key tools are Mittag-Leffler functions,M-Wright
functions and Mikhlin multiplier theorem. At last, we obtain the existence of solution
of the semilinear equation for n = 1 by using a fixed point theorem.
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1 Introduction
In this paper we study the existence of solutions for the following generalization of the
time-fractional diffusion equation with variable coefficients:

⎧
⎨

⎩

C(tθ ∂
∂t )αu – �u = f in R

n+1
+ ,

u(0, x) = ϕ(x),
(1)

where R
n+1
+ = (0, +∞) × R

n, � =
∑n

i=1 ∂2
xi

is the Laplace differential operator, C(tθ ∂
∂t )α

stands for a Caputo-like counterpart to hyper-Bessel operator of order α ∈ (0, 1) and the
parameter θ < 1.

Fractional models are proved to be more adequate than those of integer order for some
problems in science and engineering. Fractional differential equations play a very impor-
tant role in the mathematical modeling of various physical systems [8, 10, 14, 20, 30]. The
investigation of (1) is inspired by the fractional extension of the diffusion equation gov-
erning the law of the fractional Brownian motion [3, 22]:

(

t1–2H ∂

∂t

)α

u(t, x) = Hα ∂2

∂x2 u(t, x), α ∈ (0, 1), H ∈ (0, 1), x ∈R, (2)
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where (t1–2H ∂
∂t )α is a hyper-Bessel type operator. Set y = H α

2 x and 1 – 2H = θ , then (2) is
reduced into

(

tθ ∂

∂t

)α

u(t, y) –
∂2

∂y2 u(t, y) = 0, α ∈ (0, 1), θ ∈ (–1, 1), x ∈ R, (3)

which is a special case of (1). For the general case, [11, 12] provided the definition of the
operator (tθ ∂

∂t )α for α ∈ (0, 1] and θ ∈ R when studying the fractional diffusions and frac-
tional relaxation.

The hyper-Bessel operator reads

L = ta1
d
dt

ta2
d
dt

· · · d
dt

tan+1 , t > 0, (4)

where ai, i = 1, 2, . . . , n + 1, are real numbers and n ∈ Z
+. To the best of our knowledge,

the fractional power Lα of the hyper-Bessel operator was first introduced by Dimovski [9]
and developed by McBride and Lamb [19, 23, 24]. The theory of Lα has been applied to
solve various problems, such as diffusive transport [11, 12, 29], Brownian motion [3, 22,
25–28]. Recently, Al-Musalhi, Al-Salti, and Karimov generalized (tθ d

dt )α to the Caputo-like
counterpart of hyper-Bessel operator C(tθ ∂

∂t )α in [1] defined by

C
(

tθ d
dt

)α

f (t) =
(

tθ d
dt

)α

f (t) –
f (0)t–α(1–θ )

(1 – θ )–αΓ (1 – θ )
, 0 < α < 1, θ < 1.

They used Erdélyi–Kober fractional integral to express the hyper-Bessel operator and es-
tablished the series solution by considering both direct and inverse source problem in a
rectangular domain. In [2], Al-Saqabi and his collaborators considered Volterra integral
equation of the second kind and a fractional differential equation, involving Erdélyi–Kober
fractional integral or differential operator. The explicit solutions of these equations were
derived by use of transmutation method. For a special case of θ = 0 and α > 1, the existence
of unique solution was established by use of a perturbation argument and Green’s func-
tion in [4, 5]. In [13], applying a direct variational approach and the theory of the fractional
derivative spaces, the existence of infinitely many distinct positive solutions were given.
For more results related to hyper-Bessel operator and Erdélyi–Kober fractional integral or
differential operator, see [6, 29, 31] and references therein. However, these methods and
techniques cannot be directly employed to the multidimensional or the nonlinear case in
Sobolev space. In this paper, we will go a step further to form the explicit solution in mul-
tidimensional space, then use Mittag-Leffler functions and Mikhlin’s multiplier theorem
to obtain the weighted Ḣs,p, 1 < p < +∞ and L∞ estimate of the solution. At last, we form
a contractible mapping to show the existence of solution of the semilinear problem in a
suitable fractional derivative Sobolev space. The main idea is motivated in the proof of
[32, 33]. The existence of solutions in Banach spaces were also investigated in [7, 13, 34–
38] and the necessary and sufficient conditions on the initial data for the solvability of a
space-fractional semilinear parabolic equation were obtained in [17].

This paper is organized as follows: In Sect. 2, the related results of Mittag-Leffler
functions and M-Wright functions are recalled. The explicit solution of a related time-
fractional ordinary differential equation is established. In Sect. 3, in terms of the ex-
plicit solution given in Sect. 2, we derive the existence and uniqueness of solution u ∈
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C([0, +∞), Lp(Rn)) ∩ C((0, +∞), Ḣk,p(Rn)) ∩ Cα((0, +∞), Lp(Rn)), k = 1, 2 of the corre-
sponding linear problem. In the last section, by use a fixed point theorem we show the
existence of solution u ∈ C([0, T), Lp(R)) ∩ C((0, T), Ḣk,p(R)) ∩ Cα((0, T), Lp(R)), k = 1, 2 of
the semilinear problem for a fixed positive number T .

2 Preliminaries
In this section we present some necessary definitions and auxiliary results for the con-
venience of the reader, then establish the explicit solution of the Cauchy problem of a
time-fractional ordinary differential equation.

First, we recall Mittag-Leffler function Eδ,β (z) with two parameters, which can be found
in [15, 16] or [30],

Eδ,β (z) =
∞∑

k=0

zk

Γ (δk + β)
, �(δ) > 0,�(β) > 0. (5)

Lemma 2.1

d
dy

Eδ,β (y) =
Eδ,β–1(y) – (β – 1)Eδ,β (y)

δy
, (6)

dm

dym

(
yβ–1Eδ,β

(
yδ

))
= yβ–m–1Eδ,β–m

(
yα

)
, �(β – m) > 0, m ∈N. (7)

Lemma 2.2 Let δ < 2, β ∈R and πδ
2 < μ < min{π ,πδ}. Then we have the following estimate:

∣
∣Eδ,β (y)

∣
∣ ≤ M

1 + |y| , μ ≤ | arg y| ≤ π .

where M denotes a positive constant.

Lemma 2.3 For each k ∈ Z
+ and any �(α) > 0, β ∈ R, 0 ≤ δ ≤ 1, there exists a positive

constant Ck such that

|y|k
∣
∣
∣
∣

dk

dyk

(
yδEα,β (y)

)
∣
∣
∣
∣ ≤ Ck . (8)

Proof For k = 1, (8) directly follows from (6) in Lemma 2.1 and Lemma 2.2.
For k = 2, y2 d2

dy2 = (y d
dy )2 – y d

dy . Then it is enough to show (y d
dy )2(yδEα,β (y)) is bounded.

By a direct computation in terms of (6), we get that

(

y
d
dy

)2(
yδEα,β (y)

)

=
1
α

y
d
dy

(
yδ

(
Eα,β–1(y) – (β – 1)Eα,β(y)

))
+ δy

d
dy

(
yδEα,β (y)

)
.

This reduces to k = 1. Hence, (8) holds for k = 2. Furthermore, following the same idea,
we conclude that (y d

dy )k(yδEα,β (y)) is bounded for any k ∈ Z
+.

By induction, assume for k – 1 that

|y|k–1
∣
∣
∣
∣

dk–1

dyk–1

(
yδEα,β(y)

)
∣
∣
∣
∣ ≤ Ck–1, (9)
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yk–1 dk–1

dyk–1 =
k–1∑

i=1

bi

(

y
d
dy

)i

, (10)

where bi are constants. Then by use of (6) or (7), we have

yk
(

d
dy

)k(
yδEα,β (y)

)

= y
d
dy

( k–1∑

i=1

bi

(

y
d
dy

)i(
yδEα,β(y)

)
)

=
k∑

i=1

di

(

y
d
dy

)i(
yδEα,β(y)

)
. (11)

It follows from (9) and (11) that (8) holds. �

From (8) we can prove the following.

Corollary 2.4 For each γ ∈ Z+ and any α > 0, β ∈ R, 0 ≤ δ ≤ 1, there exists a positive
constant Cγ such that

∣
∣
∣
∣|ξ |γ ∂γ

∂ξγ

(
yδEα,β(y)

)
∣
∣
∣
∣ ≤ Cγ , (12)

where y = –ρ–α|ξ |2tρα .

Next, we choose the version of Mikhlin’s multiplier theorem given in [18] as our lemma.

Lemma 2.5 Let a(ξ ) be the symbol of a singular integral operator A in R
n. Suppose that

a(ξ ) ∈ C∞(Rn \ {0}), and there is some positive constant M for all ξ �= 0 such that

|ξ ||γ |
∣
∣
∣
∣
∂γ a(ξ )
∂ξγ

∣
∣
∣
∣ ≤ M, 0 ≤ |γ | ≤ 1 +

[n]
2

.

Then, A is a bounded linear operator from Lp(Rn) into itself for 1 < p < +∞, and its operator
norm depends only on M, n and p.

Based on expression (5), the explicit solution of the following problem of the inhomo-
geneous time-fractional differential equation

⎧
⎨

⎩

C(tθ d
dt )αu(t) = –λu(t) + f (t), t > 0,

u(0) = u0,
(13)

is obtained, where u0 is a constant number, θ < 1, 0 < α < 1.

Theorem 2.6 Consider problem (13). Then there is an explicit solution, which is given in
the integral form

u(t) = u0Eα,1
(
λ∗tρα

)
+

1
ρα

∫ t

0

(
tρ – sρ

)α–1Eα,α
(
λ∗(tρ – sρ

)α)
f (s) d

(
sρ

)
, (14)

where ρ = 1 – θ and λ∗ = – λ
ρα .
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Proof In terms of Lemma 2.7 given in [1], the expression of u(t) is written as

u(t) = u0Eα,1
(
λ∗tρα

)
+

1
ραΓ (α)

∫ t

0

(
tρ – sρ

)α–1f (s) d
(
sρ

)

+
λ∗

ρα

∫ t

0

(
tρ – sρ

)2α–1Eα,2α

(
λ∗(tρ – sρ

)α)
f (s) d

(
sρ

)

= u0Eα,1
(
λ∗tρα

)
+

1
ραΓ (α)

∫ t

0

(
tρ – sρ

)α–1

× (
1 + Γ (α)λ∗(tρ – sρ

)αEα,2α

(
λ∗(tρ – sρ

)α))
f (s) d

(
sρ

)
, (15)

Besides, the integrand in the last integral of (16) satisfies

1 + Γ (α)yαEα,2α

(
yα

)

= 1 + Γ (α)
∞∑

k=0

y(k+1)α

Γ (kα + 2α)

= 1 + Γ (α)
∞∑

k=1

ykα

Γ (kα + α)

= Γ (α)
∞∑

k=0

ykα

Γ (kα + α)

= Γ (α)Eα,α
(
yα

)
. (16)

Then substituting (16) into (15) with yα = λ∗(tρ – sρ)α , the explicit solution (14) is estab-
lished.

Hence, we complete the proof of Theorem 2.6. �

Last, we recite the asymptotic behavior of M-Wright function derived in [21], which is
defined as

Mν(y) =
∞∑

n=0

(–y)n

n!Γ (–nν + 1 – ν)
, ν ∈ (0, 1).

Lemma 2.7 Given a(ν) = 1√
2π (1–ν) > 0, b(ν) = 1–ν

ν
> 0 for some ν , the asymptotic represen-

tation of M-Wright function for large y is

Mν

(
y
ν

)

∼ a(ν)y
ν– 1

2
1–ν e–b(ν)y

1
1–ν .

3 Existence and uniqueness of solution of the linear problem
In this section, based on Theorem 2.6, Mattag-Leffler function, M-Wright functions and
Mikhlin multiplier theorem, we show the existence of Lp solution of the corresponding
linear problem (1) for any n ∈ Z

+.
We first consider the linear problem

⎧
⎨

⎩

C(tθ ∂
∂t )αu – �u = f (t, x) in R

n+1
+ ,

u(0, x) = ϕ(x).
(17)
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Taking partial Fourier transformation with respect to x in Eq. (17) yields the following
problem:

⎧
⎨

⎩

C(tθ ∂
∂t )αû(t, ξ ) = –|ξ |2û(t, ξ ) + f̂ (t, ξ ) in R

n+1
+ ,

û(0, ξ ) = ϕ̂(ξ ),

where û(t, ξ ) = F(u(t, x)) =
∫

Rn e–ix·ξ u(t, x) dx.
Set λ = |ξ |2 in (11). According to Theorem 2.6, the solution of (17) is given by

u(t, x) = u0(t, x) +
1
ρα

∫ t

0

(
tρ – sρ

)α–1
F

–1(Eα,α
(
–ρ–α|ξ |2(tρ – sρ

)α)
f (s, ξ )

)
d
(
sρ

)
, (18)

where

u0(t, x) = F
–1(ϕ̂(ξ )Eα,1

(
–ρ–α|ξ |2tρα

))
. (19)

Theorem 3.1 Set 1 < p < +∞, α ∈ (0, 1), θ < 1. Suppose ϕ ∈ C∞
0 (Rn), f ∈ C∞

0 (Rn+1
+ ), then

there exists a unique solution u ∈ C([0, +∞), Lp(Rn)) ∩ C((0, +∞), Ḣk,p(Rn)) ∩ Cα((0, +∞),
Lp(Rn)) of problem (17), which is represented by (18) under Fourier transformation and
satisfies

2∑

k=0

∥
∥tδk u(t, ·)∥∥Ḣk,p(Rn) +

∥
∥
∥
∥tδ2C

(

tθ ∂

∂t

)α

u(t, ·)
∥
∥
∥
∥

Lp(Rn)

� ‖ϕ‖Lp(Rn) + tδ2

∫ 1

0

2∑

k=0

(
1 – sρ

)α–1– kα
2
∥
∥f (st, ·)∥∥Lp(Rn) d

(
sρ

)
, (20)

where Ḣk,p(Rn) denotes the homogeneous Sobolev space, δk = ραk
2 , ρ = 1 – θ .

Proof It follows from (18)–(19) that

∥
∥u(t, ·)∥∥Ḣδ,p(Rn)

=
∥
∥F–1(|ξ |δû(t, ξ )

)∥
∥

Lp(Rn)

≤ ∥
∥F–1(|ξ |δû0(t, ξ )

)∥
∥

Lp(Rn)

+
∥
∥
∥
∥F

–1
( |ξ |δ

ρα

∫ t

0

(
tρ – sρ

)α–1Eα,α
(
–ρ–α|ξ |2(tρ – sρ

)α)
f̂ (s, ξ ) d

(
sρ

)
)∥

∥
∥
∥

Lp(Rn)

�
∥
∥F–1(ϕ̂(ξ )t– ραδ

2
(
–ρ–α|ξ |2tρα

) δ
2 Eα,1

(
–ρ–α|ξ |2tρα

))∥
∥

Lp(Rn) +
∫ t

0

(
tρ – sρ

)α–1– δα
2

× ∥
∥F–1((–ρ–α|ξ |2(tρ – sρ

)α) δ
2 Eα,α

(
–ρ–α|ξ |2(tρ – sρ

)α)
f̂ (s, ξ )

)∥
∥

Lp(Rn) d
(
sρ

)
. (21)

Let y = –ρ–α|ξ |2(tρ – sρ)α , then (12) yields

|ξ |γ
∣
∣
∣
∣

∂γ

∂ξγ

(
y

δ
2 Eα,β(y)

)
∣
∣
∣
∣ ≤ Cγ .
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According to Lemma 2.5, we have

∥
∥F–1(ϕ̂(ξ )t– ραδ

2 y
δ
2 Eα,1(y)

)∥
∥

Lp(Rn) � t– ραδ
2 ‖ϕ‖Lp(Rn), (22)

∥
∥F–1(y

δ
2 Eα,α(y)f̂ (s, ξ )

)∥
∥

Lp(Rn) �
∥
∥f (s, ·)∥∥Lp(Rn). (23)

Substituting (22)–(23) into (21), we get

∥
∥u(t, ·)∥∥Ḣδ,p(Rn) � t– ραδ

2

(

‖ϕ‖Lp(Rn) + tρα

∫ 1

0

(
1 – sρ

)α–1– δα
2
∥
∥f (st, ·)∥∥Lp(Rn) d

(
sρ

)
)

.

Summing up with δ = 0, 1, 2, we arrive at the following estimate:

2∑

k=0

∥
∥tδk u(t, ·)∥∥Ḣk,p(Rn) � ‖ϕ‖Lp(Rn)

+ tρα

∫ 1

0

2∑

k=0

(
1 – sρ

)α–1– kα
2
∥
∥f (st, ·)∥∥Lp(Rn) d

(
sρ

)
(24)

with δk = ραk
2 .

For the term C(tθ ∂
∂t )αu(t, ·), we will use Eq. (17) to estimate as follows:

∥
∥
∥
∥
C
(

tθ ∂

∂t

)α

u(t, ·)
∥
∥
∥
∥

Lp(Rn)

=
∥
∥�u + f (t, x)

∥
∥

Lp(Rn)

�
∥
∥u(t, ·)∥∥Ḣ2,p(Rn) +

∥
∥f (t, ·)∥∥Lp(Rn)

� t–ρα

(

‖ϕ‖Lp(Rn) + tρα

∫ 1

0

2∑

k=0

(
1 – sρ

)α–1– kα
2
∥
∥f (st, ·)∥∥Lp(Rn) d

(
sρ

)
)

. (25)

Combing (24) and (25), we arrive at (20), which implies the existence and uniqueness of
solution u ∈ C([0, +∞), Lp(Rn)) ∩ C((0, +∞), Ḣk,p(Rn)) ∩ Cα((0, +∞), Lp(Rn)), k = 1, 2.

Thus, we complete the proof of Theorem 3.1. �

4 Existence of solution of the semilinear problem
In this section, we consider the semilinear problem (1) in the half-space R

2
+ and show the

existence of a solution by use of a fixed point theorem.
We assume a condition on the nonlinear term with a positive constant C so that

∣
∣f (u)

∣
∣ � |u|μ,

∣
∣f (k)(u)

∣
∣ � C, μ > 1, k = 1, 2. (26)

The L∞-norm estimate of u0(t, x) is necessary, with u0(t, x) defined in (19).

Theorem 4.1

∥
∥u0(t, ·)∥∥L∞(R2

+) � ‖ϕ‖L∞(R). (27)
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Proof It follows from (19) that

u0(t, x) = F
–1(Eα,1

(
–ρ–α|ξ |2tρα

)) ∗ ϕ(x),

and then we arrive

∥
∥u0(t, ·)∥∥L∞(R2

+) �
∥
∥F–1(Eα,1

(
–ρ–α|ξ |2tρα

))∥
∥

L∞((0,+∞),L1(R))‖ϕ‖L∞(R). (28)

The Fourier transformation of M-Wright function given by (4.15) in [12] is

F
(
Mν

(|x|)) = 2E2ν,1
(
–|ξ |2),

which implies

F
–1(Eα,1

(
–ρ–α|ξ |2tρα

))
=

ρ
α
2

2t
ρα
2

M α
2

(
ρ

α
2 |x|t– ρα

2
)
.

Then by a direct computation in terms of the analytic expression of M-Wright function
and the asymptotics for large variables given in Lemma 2.7, we have

∥
∥F–1(Eα,1

(
–ρ–α|ξ |2tρα

))∥
∥

L∞((0,+∞),L1(R))

≤
∥
∥
∥
∥

ρ
α
2

2t
ρα
2

M α
2

(
ρ

α
2 |x|t– ρα

2
)
∥
∥
∥
∥

L∞((0,+∞),L1(R))

≤ C. (29)

Substituting (29) into (28), we obtain (27).
This concludes the proof of Theorem 4.1. �

Theorem 4.2 Set 1 < p < +∞, α ∈ (0, 1), θ < 1. Suppose ϕ ∈ C∞
0 (R) and let f (t, x, ·) satisfy

(26), then there exists a solution u ∈ C([0, T), Lp(R))∩C((0, T), Ḣk,p(R))∩Cα((0, T), Lp(R)),
k = 1, 2 to problem (1) for some positive constant T .

Proof Set SM denote a closed set given by

SM ≡
{

u ∈ C
(
[0, T), Lp(R)

) ∩ C
(
(0, T), Ḣk,p(R)

)

∩ Cα
(
(0, T), Lp(R)

)
: sup

t∈(0,T)

∥
∥u(t, ·)∥∥SM

≤ M
}

,

where

∥
∥u(t, ·)∥∥SM

=
2∑

k=0

∥
∥tδk u(t, ·)∥∥Ḣk,p(R) +

∥
∥
∥
∥tδ2C

(

tθ ∂

∂t

)α

u(t, ·)
∥
∥
∥
∥

Lp(R)

and δk = ραk
2 , ρ = 1 – θ , the positive constants T and M will be given in the following.
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Consider the nonlinear mapping F in SM such that

Fu = F
–1(ϕ̂(ξ )Eα,1

(
–ρ–α|ξ |2tρα

)

+
1
ρα

∫ t

0

(
tρ – sρ

)α–1Eα,α
(
–ρ–α|ξ |2(tρ – sρ

)α f̂
(
s, ξ , u(s, ξ )

)
d
(
sρ

))
.

On the one hand, in terms of a modified result of Theorem 3.1 and Theorem 4.1, we
arrive at

∥
∥Fu(t, ·)∥∥SM

� ‖ϕ‖Lp(R) + tδ2

∫ 1

0

( 2∑

k=0

(
1 – sρ

)α–1– kα
2
∥
∥f (u)(st, ·)∥∥Lp(R)

)

d
(
sρ

)

� ‖ϕ‖Lp(R) + tδ2

∫ 1

0

( 1∑

k=0

(
1 – sρ

)α–1– kα
2
∥
∥u(st, ·)∥∥Lp(R)

∥
∥u(st, ·)∥∥μ–1

L∞(R2
+)

+
(
1 – sρ

) α
2 –1(st)–δ1

∥
∥(st)δ1∂iu(st, ·)∥∥Lp(R)

)

d
(
sρ

)

� ‖ϕ‖Lp(R) + tδ2‖ϕ‖μ–1
L∞(R)

1∑

k=0

∫ 1

0

(
1 – sρ

)α–1– kα
2
∥
∥u(st, ·)∥∥Lp(R)

+ tδ1

∫ 1

0

(
1 – sρ

) α
2 –1s–δ1

∥
∥(st)δ1∂iu(st, ·)∥∥Lp(R) d

(
sρ

)

≤ C0‖ϕ‖Lp(R) + C1
(
tδ2‖ϕ‖μ–1

L∞(R) + tδ1
)

sup
t∈(0,T)

∥
∥u(t, ·)∥∥SM

. (30)

Take T such that

1
2

– C1
(
Tδ2‖ϕ‖μ–1

L∞(R) + Tδ1
)

> 0, (31)

then for M = 2C0‖ϕ‖Lp(Rn), (30)–(31) yield

sup
t∈(0,T)

∥
∥Fu(t, ·)∥∥SM

≤ M. (32)

This demonstrates that the mapping F maps SM into itself.
On the other hand, for any u ∈ SM , v ∈ SM , by a direct computation, we have

∥
∥(Fu – Fv)(t, ·)∥∥SM

� tδ2

∫ 1

0

1∑

k=0

(
1 – sρ

)α–1– kα
2
∥
∥f (u)(st, ·) – f (v)(st, ·)∥∥Lp(R) d

(
sρ

)

+ tδ2

∫ 1

0

(
1 – sρ

) α
2 –1∥∥∂i

(
f (u) – f (v)

)
(st, ·)∥∥Lp(R) d

(
sρ

)

� tδ2

∫ 1

0

1∑

k=0

(
1 – sρ

)α–1– kα
2
∥
∥(u – v)(st, ·)∥∥Lp(R)

(‖u‖μ–1
L∞(R2

+) + ‖v‖μ–1
L∞(R2

+)

)
d
(
sρ

)
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+ tδ1

∫ 1

0

(
1 – sρ

) α
2 –1sδ1

(∥
∥∂i(u – v)(st, ·)∥∥Lp(R) +

∥
∥(u – v)(st, ·)∥∥Lp(R)

)
d
(
sρ

)

≤ C1
(
Tδ2‖ϕ‖μ–1

L∞(R) + Tδ1
)

sup
t∈(0,T)

∥
∥(u – v)(t, ·)∥∥SM

. (33)

According to (31) and (33), one has

sup
t∈(0,T)

∥
∥(Fu – Fv)(t, ·)∥∥SM

< sup
t∈(0,T)

∥
∥(u – v)(t, ·)∥∥SM

, (34)

which implies that mapping F is a contraction.
In terms of (32) and (34), we confirm that mapping F has one fixed point in SM . This

concludes the proof of Theorem 4.2. �

5 Conclusions
In this paper, the Cauchy problem (1) has been considered. By means of Mikhlin’s multi-
plier theorem, in terms of Mittag-Leffler functions and M-Wright functions, we obtained
an explicit solution u ∈ C([0, +∞), Lp(Rn)) ∩ C((0, +∞), Ḣk,p(Rn)) ∩ Cα((0, +∞), Lp(Rn)),
k = 1, 2 for the linear equation with a source term. Meanwhile, the local existence of a
solution of the semilinear equation in R

2
+ was obtained by a fixed point theorem.
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