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Abstract

This paper concentrates on the global regularity of classical solution to the 2%D
magnetic Bénard system with partial dissipation, magnetic diffusion, and thermal
diffusivity (i.e, horizontal dissipation, horizontal magnetic diffusion, and horizontal
thermal diffusivity; vertical dissipation, vertical magnetic diffusion, and vertical
thermal diffusivity). For the 2%D magnetic Bénard system with full dissipation,
magnetic diffusion, and thermal diffusivity, the global existence and uniqueness can
be obtained by the standard energy method. However, can the classical solution for

the 2%D incompressible magnetic Bénard system still keep its global regularity when
losing some partial dissipation, magnetic diffusion, and thermal diffusivity terms? We
will give a rigorous proof to the global regularity for the 2%D magnetic Bénard system
with horizontal and vertical dissipation, magnetic diffusion, and thermal diffusivity
respectively in this paper. Furthermore, we also show that any possible finite time
blow-up can be controlled by the L*°-norm of the vertical velocity and magnetic
components, not include the temperature component (see Theorems 1.1 and 1.2).
The results extend the recent work by Cheng and Du (J. Math. Fluid Mech.
17:769-797, 2015), and generalize the recent works by Regmi (Math. Methods Appl.
Sci. 40:1497-1504, 2017), and Ma and Zhang (Bound. Value Probl. 2018:79, 2018).
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1 Introduction

The 2D incompressible magnetic Bénard system can be represented in the form

Qu+ (- V)u+ Vp = 10xxtt + 20yytu + (b - V)b + bey,

;b + (- V)b = v10xxb + 120,,b + (b - V)u,

0,0 + (1 V)0 = k10,40 + k20,0 + 14 - €3, (1.1)
V.-u=V-b=0,

”(x,y; 0) = MO(x’y)’ b(x;y; O) = bO(x’y)r Q(x,y, O) = 90(%)’),
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where £ > 0, (x,7) € R?, u(x, y,t) = (u1(x, 9, t), ua(x, , ) is a vector field denoting the veloc-
ity, b(x,y,t) = (b1(x, 9, ), ba(x, 9, 1)) is a vector field denoting the magnetic, 6 = 0(x,y,¢t) is a
scalar function denoting the temperature, and p is the scalar pressure. The forcing term
e, in the velocity equation models the acting of the buoyancy force on the fluid motion
and e; = (0, 1) the unit vector in the vertical direction. u - e; models the Rayleigh—Bénard
convection in a heated inviscid fluid. The parameters 11 > 0, up > 0,v; >0, v, > 0,k > 0,
and k, > 0 are six non-dimensional constants. When (41 = w2, V1 = v, and k1 = Ky, (1.1)
reduces to the 2D standard incompressible magnetic Bénard system.

The magnetic Bénard problem comes from the convection motions in a heated and in-
compressible fluid. In a homogeneous, viscous, and electrically conducting fluid, the con-
vection will occur if the temperature gradient passes a certain critical threshold in two
horizontal layers and the convection is permeated by an imposed uniform magnetic field,
normal to the layers, and heated from below. The magnetic Bénard problem illuminates
the heat convection phenomenon under the presence of the magnetic field (e.g., [21]).

The global regularity to 2D magnetic Bénard problem with full dissipation and magnetic
diffusion (i.e., 1 = (2 = v1 = v5 = 1, k1 = k = 0) was proved by Zhou, Fan, and Nakamura
[26]. Later, Cheng and Du improved this result in [5]. Recently, Ma [16] established the
global well-posedness and conditional regularity for the 2D incompressible magnetic Bé-
nard fluid system with mixed partial viscosity. It is currently unknown whether the solu-
tions of the 3D magnetic Bénard fluid system are globally regular (in time). The author in
[15] dealt with the Cauchy problem to the 3D system of incompressible magnetic Bénard
Zaan) * 18002 gy + 16002 g
where ¢ is a suitably small positive number, the 3D magnetic Bénard system with mixed

fluids. He proved that as the initial data satisfy ||u|| <eg,
partial dissipation, magnetic diffusion, and thermal diffusivity admits global smooth so-
lutions. In [13], we investigated the blow-up criteria of strong solutions and a regularity
criterion of weak solutions for the magnetic Bénard fluid system in R? in a sense of scaling
invariant by employing a different decomposition for nonlinear terms. More precisely, the
strong solution (i, b, 0) of a magnetic Bénard fluid system is proved to be smooth on (0, T']

provided the velocity field u satisfies

welt (0, T;X,(R%) witho<r<1,
or the gradient field of velocity Vu satisfies

Vi el (0,T;%, (R?) witho<y <1.
Moreover, we proved that if the following conditions hold:

uel™(0,T;X1(R%) and |lull o1, @3) < &
where ¢ > 0 is a suitable small constant, then the strong solution («, b,6) of magnetic Bé-
nard fluid system can also be extended beyond ¢ = T. Finally, we showed that if some
partial derivatives of the velocity components, magnetic components, and temperature

components (i.e., Vi, Vb, V6) belong to the multiplier space, the solution (i, b, 6) actually
is smooth on (0, T').
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If we neglect the thermal effects in the fluid motion, the 2D magnetic Bénard system
can be specialized to the well-known 2D magnetohydrodynamics (MHD) system

et + (1 - Ve + Vp = (110xxtd + 20yy1i + (b - V)b,
b+ (1 - V)b = v104b + 120,,b + (b - V)u,
V.-u=V-b=0,

(1.2)
u(x,y,0) = uo(x,y), b(x,y,0) = bo(x,y),

where (x,y) € R2, £ >0, u = (u1(x,9,£), u2(x, 9, £)), p = p(x, 3, t), and b = (b1 (x, 9, t), b2 (x, 9, £))
denote the velocity vector, scalar pressure, and the magnetic field of the fluid, respectively.
The MHD system has attracted quite a lot of attention lately from various authors. Actu-
ally, there is a considerable body of literature on the global regularity of the MHD system.
We recall here, without any claim of completeness, [3, 6, 7, 24] and the references cited
therein.

Suppose that the magnetic field b = 0, system (1.1) is nothing but the so-called Bénard
system

O+ (- V)u+ Vp = 110xult + U0y + ey,  (%,9) € R2%,t>0,
30 + (- V)0 = k10,0 + k20,0 + 14 - €3, (x,9) e R2%,£>0,

(1.3)
V-u=0, (x,9) e R%, £ >0,

u(x,9,0) =uo(x,y),  0(x50) =07y, (xy) ecR?

where u = u(x,y,t) = (u1(x, 9, 2), u2(x,9, 1)) : R? x [0,00) — R?, denotes the velocity field
of a 2D incompressible fluid. The term p = p(x,,t) : R? x [0,00) — R denotes the usual
pressure which can be recovered from the first and the third equation in (1.3) by taking
the divergence and then inverting the Laplacian operator. The scalar function 6 = 0(x, y, t)
quantifies the temperature variation in a gravity field. The Bénard system describes the
Rayleigh—Bénard convective motion in a heated 2D inviscid incompressible fluid under
thermal effects (see, e.g., [1, 8, 9, 19, 22, 25]). Especially, Ma and Zhang [18] wrote the
velocity equation of the Bénard system in its two components and considered the global
weak solution of the resulting 2D Bénard system with partial dissipation.

However, the questions of global regularity or finite time singularity of the weak solu-
tions of 3D magnetic Bénard system, MHD system, and Bénard system are still challenging
open problems. Many attempts have been made, but there are no satisfactory results. It
is of interest to study the regularity of weak solutions under additional critical growth
conditions on the velocity, the magnetic, the temperature, or the pressure. There are nu-
merous papers related to the regularity criteria of 3D MHD system (see [4, 10—12] and the
references therein).

The 2D flow generates a large family of 3D flow with vorticity stretching [20]. We refer to
these as 2%D flows because the flow in the z direction is predetermined by the underlying
2D flows. Recently, Cheng and Du [5] proved the global regularity (in time) for 2D mag-
netic Bénard system with mixed partial viscosity. Ma and Zhang [18] studied the global
existence of weak solutions and regularity criteria for the 2D Bénard system with partial
dissipation. Later, Ma [16] generalized the results in [18] and established the global well-
posedness and conditional regularity for the 2D incompressible magnetic Bénard fluid
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system with mixed partial viscosity. One natural question is “Can we extend these results
related to the 2D magnetic Bénard system to the Z%D magnetic Bénard system?”

In this paper, motivated by the works [5, 14, 16—18, 23], we will firstly study the global
regularity of classical solution to a Z%D (i.e., u, b, 0, and p are independent of z) magnetic
Bénard system with horizontal dissipation, horizontal magnetic diffusion, and horizontal
thermal diffusivity. Next, we will consider the global regularity of 2%D magnetic Bénard
system with vertical dissipation, vertical magnetic diffusion, and vertical thermal diffusiv-
ity.

Let

u= (uly U, M3) = (12’ u?)); b = (bb b2: b3) = (5! bB)y

6 = (ax; 83/), A = Oy + 8yyy
then we can formulate the Z%D magnetic Bénard system as follows:

O+ (it - V)it + Vp = 10yl + M0yl + (b-V)b,
Qs + (i - V)uz = 1 Otz + M20yyU3 + (b-V)bs +0,
3b + (i1 - V)b = v18b + v2,b + (b- V)i,

8tb3 + (it . ﬁ)bg =V axxbg + Uzayybg + (E . 6)%3, (14')
30 + (i1 - V)0 = k1020 + k20,0 + 3,
V.-u=V-b=0,

M(x’y’ 0) = Mo(x:y), b(xd’, O) = bo(x:y% 9(?6,)’, O) = 90(96731)7

where u : R? x [0, 00) — R? denotes the fluid velocity field, b : R? x [0, 00) — R3 magnetic
field, 6 : R? x [0,00) — R temperature, and p : R? x [0,00) — R pressure.

It is well known that the vorticity w = V x u = (0,13, —0,u3, Oy — 0yu1) = (w1, w3, w3) =
(@, w3) and the current density j = V x b = (0,b3, —0,b3, 0xby — dyb1) = (j1,/2,/3) = (7,]'3) play
an important role in establishing the regularity for a magnetic Bénard system. Taking the
curl operator for the first four equations and applying V to both sides of the fifth equation

in (1.4), system (1.4) can be written as follows:

dwr + (- Voy = (@ Vug + (b - V)i = (- V)by + 18w + 12dyy01 + 0,6,
dwy + (71 - V)wy = (& - Vg + (b - V)jy = (- V)by + 1 8xxr + 129y — 3,6,
dws + (it - V)ws = (b~ Vjz + 1 a3 + L2dyyo3,
dj1 + @~ Vi = G- Vug + (b - V)wr = (@ - V)b + 181 + 1281,
Qo+ (@~ Vo= (G- Vg + (b - V)wy — (@ - V)b + 18sfs + 128,
B3 + (1t - @)jg

= (b V)ws + V)3 + Vayyjz + 20xD1 (0,11 + 0xthn) — 20521 (0xby + 0,b1),
VO + V(- V)8] = k1 Vb +k2V 3,0 + V.

Now let us state our main results as follows.
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Our first goal is to consider the Z%D magnetic Bénard system with horizontal dissipa-

tion, horizontal magnetic diffusion, and horizontal thermal diffusivity

it + (i1 V)it + Vp = 1 0xyii + (b - V)b,
douz + (it - V)uz = w1 dxetiz + (b - V)bs + 6,
3b+ (- V)b =v10b + (b- V)i,

8:b3 + (it - Vb3 = v19ycbs + (b - Vus, (1.6)
8,0 + (it - V)0 = k10,40 + 3,
V.-u=V-b=0,

u(x,y,0) = up(x, ), b(x,7,0) = by(x,y), 0(x,y,0) = 6p(x, 7).

Theorem 1.1 Given a positive time T € (0,00). Suppose that (ug, by,0) € H*(R?) and V -
uo=V-by=0.Let (u,b,0) be a corresponding local smooth solution of (1.6) at the interval
(0, T). If one of the following three conditions holds

T
/ a1, 52)| 2t < 005 1)
0
T
/ 13,001 1% it < 00 (L.8)
0
T
/ 13,6112 di < o0, (19)
0

then the solution (u,b,0) can be extended beyond T.

Our second goal is to consider the Z%D magnetic Bénard system with vertical dissipa-

tion, vertical magnetic diffusion, and vertical thermal diffusivity

it + (i1~ V)it + Vp = uadyyii + (b - V)b,
Btz + (i1 - V)ug = M20yyl3 + (b-V)bs +6,
db + (@~ V)b =v20,,b + (b- V)i,

b3 + (it - V)bs = 39,3 + (b - V)us, (1.10)
30 + (i1~ V)0 = K20y, + us,
V.#=V-b=0,

u(x,y,0) = ug(x, y), b(x,y,0) = bo(x,y), 0(x,9,0) = 6p(x, y).
Theorem 1.2 Given a positive time T € (0, 00). Suppose that (ug, bo,0) € H*(R?) and V -

uyg=V-by=0.Let (u,b,0) be a corresponding local smooth solution of (1.10) at the interval
(0, T). If one of the following three conditions holds

T
/ Gtz )| dlt < 005 (L11)
0

T
/ 105142172 it < 005 (1.12)
0

Page 5 of 21
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T
/ 13,62, dt < oo, (1L.13)
0

then the solution (u,b,0) can be extended beyond T.

Remark 1.1 Itis clear that Theorem 1.1 and Theorem 1.2 here improve the results of Case
6 and Case 9 in Theorem 3 in [5] on the global regularity to the 2D magnetic Bénard sys-
tem. More precisely, the conditional global regularity they established for the horizontal
dissipation, horizontal diffusion, and horizontal thermal diffusivity is [|0,u1 |12 7,12®2) <
00 or ||3yb1 || 120, 1;12(R2)) < 00, and the conditional global regularity for the vertical dissipa-

tion, vertical diffusion, and vertical thermal diffusivity is only ||0,u3 |l 2(0,7,12(r2)) < 0

Remark 1.2 Our main results generalize the recent work by Regmi [23], in which they
study the global regularity of classical solution to a 23D magnetohydrodynamic system
with horizontal dissipation and horizontal magnetic diffusion, and with vertical dissipa-
tion and vertical magnetic diffusion, but they do not consider the thermal effects. Our
main results also extend the recent works [16, 18], where they study the global regularity

for the 2D Bénard and magnetic Bénard systems.

Remark 1.3 Our methods are similar to the 2D magnetic Bénard system with horizontal
dissipation, horizontal magnetic diffusion, and horizontal thermal diffusivity [5]. How-
ever, in the presence of the vortex stretching term, the mathematical analysis for 2%D is
harder than for 2D case.

Remark 1.4 Our results also show that any possible finite time blow-up can be controlled
by the L*°-norm of the vertical components of the velocity field and magnetic field (see
(1.7) in Theorem 1.1 and (1.11) in Theorem 1.2).

2 The proof of Theorem 1.1
In this paper, all constants will be denoted by C that is a generic constant depending only
on the quantities specified in the context.

This section is devoted to the proof of Theorem 1.1. Now we explain the main process
involved in proving Theorem 1.1 and the methods used here. The general approach to
establish the global existence and regularity results consists of two main steps. The first
step assesses the local (in time) well-posedness, while the second extends the local solution
into a global one by obtaining global (in time) a priori bounds. For the systems of equations
concerned here, the local well-posedness follows from a standard approach and shall be
skipped here. Our main efforts are devoted to proving the necessary global a priori bounds.
More precisely, we show that, for some 7> 0and ¢ < T,

|, b,6 <C, (2.1)

)HH2(R2)
where C denotes a bound that depends on T and the initial data.

To begin with, the following anisotropic Sobolev inequality which bounds a triple-
product in terms of the Lebesgue norms of the functions and their directional derivatives

is needed, please see for example [2].
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Lemma 2.1 Letf, g, h, 0,g, 9,h € L*(R?). Then there exists an absolute constant C such
that

1 1 1 1
//R2 [fehldxdy < CIIf 2 llgll 2 10xgll 2 111 2 19yl -
Now let us move to proving the main theorem.
2.1 Casei

Under condition (1.7).
We first state the global L2-bound.

Lemma 2.2 Assume that (uo, bo,0) € H*(R?). Let (u,b,0) be a corresponding solution of
(1.6). Then (u, b,0) obeys the following global L*>-bound:

t t
lull2s + 16117 + 10175 + pa /0 l10x24l|7> dT + vy /0 1050112, dr
g 2
+i f 18012, d < C||(ut0,bo, 60)| 22)
0
foranyt>0.

Proof Taking the L2-inner product of (i, us, 1;, b3, 0) with (1.6), respectively, yields

1d . ) L
EEHM”; + |9t 3 :/Az(b~V)b~udxdy,

1d - .
——||u3||§2+u1||axu3||§z:// (b-V)b3~u3dxdy+ff 6. us dxdy,
2dt RZ ]RZ

1d - - Lo
S B + w 0Bl = /fRz(” )it bdxdy,
1db2 a.bs| = (b-Vus -bydxd
EE” sll72 + vill0xbsllya = N uz - by dx dy,
1d

EE”QHEZ +K1||3x9||%2 ://1;2 uz -0 dxdy.

Adding them up, we have

1 - ~ - 2
Ea(llullfz + lluslF2 + 16172 + 1bsll72 + 10172) + pr || (0, Deu3) |
= 2
+ 01 [ (3:b, :b3) |75 + k1 [10:0117

:2// u3~9dxdy,
R2

where we have used the identities

//RZ(Z).@)IS-ﬁdxdy+//Rz(];.6)g.5dxdy=0,

// (Z)~6)bg~u3dxdy+// (l;-@)ug-bgdxdyzo.
R? R2
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Applying Holder’s inequality yields

| &

~n2 2 72 2 2 ~ 2
(N2l7s + sl + 1072 + 1B317s + 101172) + a1 ]| (9xths D3| ;2

Y
Q.

t
01| @, 83 |2 + k1| 8:011% < C(llus]Z + 101%).

Gronwall’s inequality then implies

t
7 7 ~ 2
Nl + sl + 1813 + 1312, + 1013 + 12 f | (B, e143) | de
0
t _ 9 t
+v1/ (8., 04b3) |} dT +K1/ 0,017, dt <C
0 0

for any 0 < £ < T, where C depends only on the initial data. O
We next prove the global H 1_bound for u, b, and 6.

Proposition 2.3 Assume that (1, by, 00) satisfies the condition stated in Theorem 1.1. Let
(1, b,0) be the corresponding solution of (1.6). Then (u,b,0) satisfies, for any T > 0 and
t<T,

| 26,5,6) | 1 2 < Cre Jo e Woo #1b11 700 ) T (2.3)
where C, is a constant depending on T and the initial data and C, is a pure constant.
Proof Proposition 2.3 is an easy consequence of Lemmas 2.4 and 2.5. O
Lemma 2.4 Consider (1.5) with pi1 >0, (1o =0, v1 >0, vy =0, k1 > 0, k3 = 0. Assume that

(¢10, bo, B0) satisfies the condition stated in Theorem 1.1. Let (u, b,0) be the corresponding
solution of (1.6). Then ws and js satisfy

T T
lwsll?s + llj3l72 + ma / 10xs]|2 dt + vy f 1053112, dt < C (2.4)
0 0

provided fOT | (21, b1)| 700 dt < 00 for some T > 0.
Proof Set
1
Ei(0) 2 (Jos®] 2 + [s0]2)*

Taking the inner product of the third and sixth equations in (1.5) with w3 and js, respec-
tively, then integrating by parts in R?, we get

d .
mFE(t) + [l 0xws |7y + V11031122

Page 8 of 21
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M1 V1 .
= 7||3xa)3||1%2 + 3”%]3”%2

+ Clur oo + 15111700 + N8xull 72 + 19:B1172) F3(2), (2.5)

where

L =-2 // b10yyurj3 dx dy, L =-2 // b10yu10,j3 dx dy,
R2 R?

13 = 2/:/ axblaxuzjg dxdy, 14 =-2 // axl/ll axszg dxdy,
R2 R2
15 = 2// blaxyulaxbz dxdy, ]6 = 2// blaxbtlaxybz dxdy,
R2 R2
]7 =-4 // M13yb18xyb1 dxdy,
R2

and we have used Lemma 2.1, Cauchy-Schwarz’s inequality, and Young’s inequality.
Taking advantage of Gronwall’s inequality, together with Lemma 2.2, we complete the
proof of this lemma. 0

Lemma 2.5 Consider (1.5) with pi; >0, itp =0, v1 >0, vy =0, k1 > 0, k3 = 0. Assume that
(¢40, bo, B0) satisfies the condition stated in Theorem 1.1. Let (u, b,0) be the corresponding
solution of (1.6). Then &, j, and V0 satisfy

T T
1612 + 1712 + 19012, + ua / 18|12 di + v, / 1012 dt
0 0
T ~
+ K1 f IV8:1l7, dt < C (2.6)
0

provided fOT | (211, b1)| 300 dt < 00 for some T > 0.

Proof Set

G0 2 (o2 + [0 + | F6)|)%.

Multiplying the first, second, forth, fifth, and seventh equations of (1.5) with w1, 3, j1, 2,
and V6 respectively, integrating them in space domain and adding the resulting equations
together, we have

1d

5 7710 + | Geeon, Bxen) | 1o + v1 | @i, ) [z + 1 190617

28
n - v ~ K1, ~
=D i< Sl + 1415 + S IVa61 + CADGHD), (2.7)
i=1

where

]1 =-2 // ula)laxwl dxdy, ]2 = // wlayule dxdy,
R2 R2

J3 :// b1 0,11 dx dy, Ja = // b1j10,w1 dx dy,
R? R?
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]5 = —// ngybla)l dxdy, ]6 = /:/ ay9w1 dxdy,
R2 R2
Jo = // W1 0xUws dx dy, Js = 2// U110,y dx dy,
R2 R2
Jo= —// jlaxbza)z dxdy, Jio = —/:/ b13sza)2 dxdy:
R2 R2
Ju = —// bijpdswrdxdy,  Ji2= —// b dxdy,
R2 R2
Ji3=-2 // wjrourdxdy, = f/ J1dyurja dx dy,
R2 R2
]15 = /f blaxa)ljl dxdy, ]16 = // blwlale dxd)’»
R2 R2
]17 = —// a)zaybljl dxdy, ]18 = // jlaxu2j2 dxdy,
R2 R2
Ji9 = 2// U1jo0yjo dx dy, Ja0 = —// w10xbaj dx dy,
R2 R2

Jo1 = —// b10ywojr dx dy, Joo = —/f b1w20,j, dx dy,
R2 R2

Jos = 2//}1{{2 U1 050 0,0 dx dy, Joa = —//Rz 0142050 0,0 dix dy,
Jos = —/‘./]1@2 0y110,00,0 dx dy, Jos =2 //R2 10,0 0x,0 dx dy,
Jo7 = //RZ 013050 dx dy, Jog = ././11%2 dyu3d,0 dx dy,
and we have applied Lemma 2.1, Young’s inequality, and the simple facts

8yw2 = —0xW1, aij = - le:
T

dyuy = dxthy — w3 = / [19y241 17, dt < oo,

0

T
dbr= by —js = / 13,6112, dt < o,

0
and A1 (£) = (|u [l 7o + 10,0175 + [18y201 1175 + 16111 7oc + 13D 75 + 13yD1 175 + 1).

Applying Gronwall’s inequality, together with A, (¢) is an integrable function over (0, T'),
we obtain

T T
GL(t) + 1 / | Bac01, dy0) | 7, dt + w1 / | @y, :2) | it
0 0
T ~
v [ 19001 de < C
0

for any ¢ < T, where C depends on T and the initial H'-norm. Especially, (2.6) is proven.
This completes the proof of Lemma 2.5. d

Finally, we prove Theorem 1.1 by establishing the global H2-bound for the solution.
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Proof of Theorem 1.1. As we explained before, it suffices to establish the global H?-bound
in order to prove Theorem 1.1. The rest of this proof we devote to establishing the global
H?*-bound.

Set

- - 1
B () £ (IVesllZ + 1 Vsl72) %
Consider (1.5) with @1 >0, s =0, v; >0, v, =0, k1 > 0, k = 0. Dotting the third and

sixth equations in (1.5) by Aws and Ajs, respectively, and integrating them over spatial

domain, we have

ld, S 2 S i 1(2
5 752 + 1l Vsl + vl Vsl

19
[ Vs
=Y K< 71||vaxw3||§z + 31 IVaj3l% + CAs(8)F2(D), (2.8)
i=1

where

K= //W 0yl 0,30y w3 dx dy, K = //}1@2 0t Oy w30y w3 dix dy,
K; = f/]RZ Oyuy 0y w30,w3 dx dy, K, = //R2 0y 120, w30y 3 dx dy,
Ks = 2//]1;2 0yw30,b10yj3 dx dy, Kg = 2,//]R2 0xw30xby 0,3 dx dy,
K; = 2/‘/]Rz 0yw30,b10,j3 dx dy, Kg = 2//R2 b1 0xyw30yj3 dx dy,
Ky = 2/[};2 b10yw30xy3 dx dy, Kio=— //]1;2 U1 0xj30,j3 dx dy,
Ky = _//RZ 05142 0xj30yj3 dx dy, Ky = _//]RZ 0,11 0xj30,j3 dx dy,
Kiz=- //RZ 0y U2 0yj30,3 dx dy, Kiy=-2 //]1@2 0xb1(3yuy + Ox1)Oxj3 dx dy,
Kis =2 / /R  Buybr(Byas + ,102)0y 3 ey,

Kig=2 //]1;2 0xb10,(0yu1 + 0x142)0,j3 dx dy,

K7 =2 //RZ 05141 (052 + 0yb1)0syjz dx dy,

Kig=-2 //]1{2 Oyt (0xby + 0,b1)0,j3 dx dy,

l(lg =-2 // 8xu18y(8xb2 + aybl)ang dxdy,
R2

2
2 2 2 2 2 2 P12 3
and Ax () = (1017, + 110yua 17, + 16111700 + 10:B1 75 + 10yb1 175 + sl Fa + 13l 72 + (19x2ell /5 +

2 2
ljll ) 10xsll %> + (lwsl?, + 13xbl125) 11573112, + 1) is also an integrable function over (0, T).
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It thus follows from Gronwall’s inequality that

T T
IVesll7, + 11Vjsl72 + M1/ IV dws]l7, dt + Vl/ Va7, dt < C, (2.9)
0 0

where C depends on T and the initial H2-norm. Therefore, we obtain the desired H?2-
bound for u3 and b3.
At last, we establish the global H?-bound for u1, us, b1, by, and 6. Similarly, consider
(1.5) with 1 >0, up =0, v1 >0, 1, =0, k1 >0, ko = 0.
Set
Go() & (IVaI7, + V]2, + ||A9||Lz) .

Taking the inner product of the first, second, forth, and fifth equations in (1.5) with Awl,
Aw,, Ajy, and Ajy, and integrating by parts, we obtain

- < S . <. = = 2
5 77 IVerll + IVer i + 1VilE + 1Vial72) + pa | (Vasor, Voswn) |

18
1| (Vi Vo) |12 = > L (2.10)
i=1

where

L1=—// le VM Va)ldxdy, L2=—// (d)@)ulﬁa)ldxdy,
R2

// (b-Vjy - Awydxdy,  Ly= / G- V)b - Aw, dxdy,
R2 R2
L5=—// Vs - Vu - Vo, dxdy, Lﬁz—// (@ Vuy - Awy dxdy,
R2
/ (b-Vj,- Awydxdy,  Lg= / G- V)b, - Awydxdy,
R2
L9 = —// 6]1 . 61/1 . 6]1 dxdy, L10 = —// (; @)ul . A]l dxdy,
R2 R2
Ly =- / (b-V)or - Ajydxdy,  Lip= / (@- V)b, - Aj, dxdy,
R2 R2
L13 = —// 6}2 . 6” . 6]2 dxdy, L14 = —/ (; 6)%2 . A}z dxdy,
R2 R2
L15 = —/ (L . 6)6{)2 . A]z dxdy, L16 = // ((I) . 6)b2 . A}z dxdy,
R2 R2

Li7 = —// ayG . Awl dxdy, Lig= // 0,0 - Aa)g dxdy
R2 R2

Applying V to the seventh equation in (1.5) and taking the L?-inner product with A#,
and integrating by parts, we obtain

. xon X 2
EE”AGHLZ + k1| A3:01}2

—// A[(ﬂ . 6)9] . A@dxdy+ // Aus - Adedy:ng + L. (2.11)
R2 R2
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Adding (2.10) and (2.11) yields

1d ~ - - - -
5 710+ | (Var, Vawn) |12 + v (Vo Vag) [z + a1 20,011,

20
- ZL,». (2.12)
i=1

We now estimate L; through Ly as follows:

4
M1~ 2 2 ~
Li=) Ly< E||V3xw1||iz + (sl 7o + 18yual7 + 8x2ell 2 1x03 1 o) IV eon 17,
i=1

L= —/:/ Oyl 0y 0y dx dy, Ly = —/f Ox U 0y w10y dxdy,
R2 R2

ng = —/f Byulaxwl Bywl dxdy, L14 = - // 8yu28ya)13yw1 dxdy,
R2 RrR2

8
Ly+Ly= Z(in +Lg;)
-1

2U1 |~
== IVo,1 172 + C((I19:26l1 72 + 10yu1 172 + 1) [ 0xes 172 + (110:D 113

2 2 2 L 2
+ 18,6111z + 12172 + 1) 18x311 72 + Issall 21 z03]) )5 + 18,2011l 5 I Vsl
+IVaslizs + (1861117 + 1)IVjal72 + 1) (IVerllZz + I Vel + [1Vll72)

2 2 2 2 2
+ C(llwrllza + llwallza + 18573172 + Wil + 121172),

where

Ly = —/Az Oy 30yt Dy dx dy, Ly =— //1;2 0y 1305y U Ox 01 dX dy,
Lys = —//1;2 Oxx 30,11 0501 dx dy, Lyy=— //Rz 0x13 0y 11 0x01 dX dy,
Lys = //}1‘§2 Oxyb30yby 0 01 dx dy, Log = //R2 0yb30,y by 0,01 dx dy,
Ly, = ‘//]1;2 Dxxb30,b1 0,01 dx dy, Ly = //]1;2 0xb30,y b1 0,01 dx dy,
Ly = //}1@2 0y U305 u1 0y dx dy, Ly = .//RZ 0y U3 0xytt1 0y w1 dx dy,
Lyz=— f./]RZ Oxyl30y 11 0y dx dy, Ly =— fAZ O30y 1ty 0y dx dy,
Lys = —//ﬂ;z 0yyb30xb1 0,1 dx dy, Ly = _//]RZ 0yb30xyb1 0,1 dx dy,

L47 = // 8xyb38yb18ya)1 dxdy, L48 = // 8xb38yyb18yw1 dxdy;
R2 R2
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4
VI, &q - , = = .
Ly + L= E fi < E||V3x]1||iz + C(1+ 10:b1172 19531172 (Ve 172 + V1]l 72),
i=1

where
ﬁl = 2// 8xw18xb13xj1 dxdy, ﬂz = 2// 8xa)18xb28yj1 dxdy,
R2 R2

ﬁg =2 _/_A;z 8ywlayb1 8x]1 dxdy, ﬁ4 =2 _/_A;z Bya)laybzayjl dxdy,

4
Ui, = 2 2, =~
Ly=) L5 < To IV aalfa + C(I0I7: + 19,117 + 10.24] 21350311 2) I Veon |,
i=1

L51 = —// 3xu18xa)23x0)2 dxdy, L52 = —// axuzaxwzaywz dxdy,
R2 R2

L53 = —// 8yu18xw28yw2 dxdy, L54 = - // 8yu28ya)28yw2 dxdy,
R2 R2

8
L6+L8=Z(L6i+L8i)
i=1
< 2090 w12, + CU(10.tll2 + 1)1 3usl® + (132512 + 5]
= 1V l7a + C((1Bx2ll T2 + 1) 18uws 72 + (13N + sl
+ 1) 1843117 + 1) (V1 1% + Va2 + 1 Vi l2s + V2l 2)

2 .2 2
+ C(llwall7z + I1ll2 + [1j21172)

where

Lei = // OxyU30x U 05 dx dy, Lgy = // 0y U3 0xx U 0y dx dy,
R2 R2

L63 = —/f Bxxugayugaxwz dx d_)/, L64 = - // 8xu38xyu28xw2 dx dy,
R2 R2

Les = —//]Rz Oxyb305by0x 0 dx dy,
Le¢; = / /R , Oxxb30,b2 055 dx dy,
Lgi = //}1&2 0,y U305 U2 0y dx dy,
Lgz = //}1@2 Oy 305141 Oy dx dy,
Lgs = _.//]RZ 0yyb30,b2 0,5 dx dy,

L87 = - // axybgaxbl 3),(,()2 dx dy,
R2

4
‘) nd . . — nd "
Ly +Lis= ) 0 < 1o IVasjallfa + C(L+ 18:b17218517) (1 VeallZ2 + V72117 ),
i=1

Leg = — / /R , 0xxD20,b30x 0 dx dy,
Leg = / /R , 0xb30,y by 05 dx dy,
Lg = .//RZ 0y U3 0xyUn 0y dix dy,
Lgy = //R2 0130y 11 Oy dx dy,

Lgg = _.//]RZ 0y D305y b2 0,5 dx dy,

ng = - // axbgaxybl 8ya)2 dx dy,
R2

Page 14 of 21
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where

<>1 = 2//2 wazaxbl asz dxdy, <>2 = 2//2 8xw28xb23yj2 dxdy,
R R

<>3 = 2//]1%2 aya)zayblasz dxdy, <>4 = 2/42 8ya)28yb28yj2 dxdy,

4
Vi e 3 v
Lo = E Lo < ﬁ”vaxhﬂiz + C(I10x21 72 + 18yua 172 + 1Bxtell 10503l ) 1 Vi1 72,
i-1

where

Lo = —//2 Oyt 0xj10xj1 dx dy, Loy = —//2 Ox 1 0xj10yj1 dx dy,
R R

L93 = —/:/.2 Byulaleayjl dxdy, L94 = —//2 ayu28yjlayj1 dxdy;
R R

8
Liyg+Lip= Z(Lmi + Li2;)
i-1
=< %”63 |2 +C((llo ull?, + | dyua |1 +1) ]| 0xe> 17 + (119 b|?
=12 xJ1 12 12 yA1l 2 xW3 112 xZll 2
) o 2 2 2 2
+[10yb1ll7> + 1)||3x]3||Lz +18xull 2 19xsll 2 + 18yuall 5 I Vsl 2y

+ (13,6117, + 1) Vas |2, + 1Vjsll 2 + 1) (IVor 12, + Vsl

=12 = . 12 2 2 .02 .2
+ Vil + IV2ll72) + Cllworll7 + llwall7s + 1all72 + [121172),
where

Ligy = —/:/2 Oxyb30y 20,1 dx dy, Ly = —f/2 yb30xyU20xj1 dx dy,
R R

Ly = —f/ Oxxb30y 11 0,1 dx dy, Lipy = —f/ 0xb305y 11 04j1 dx dy,
R? R2

Ligs = //]Rz Oxyt30,by 0xj1 dx dy,
Lig7 = /‘AZ Oxx30yb10yj1 dx dy,
Lo = /[1;2 0yyb30,11 0,1 dx dy,
L3 = —//R2 Oxyb30y 1101 dx dy,
Liys = //1;2 0y u30,b1 0,1 dx dy,

Liy7 = /f2 Ouytt30,b1 0,1 dx dy,
R

4
M1, . e
Lys = E Lizi < Ellvaxlzlliz + C(I0xu1 72 + 18yua 172 + 1Bxell 1850311 )2) 1 Va1 72
i=1

Ligs = //]Rz 0yu30xyb20,j1 dx dy,
Liog = //1‘@2 0xU30xyb10,j1 dx dy,
Lig = /./1;{2 0y 30y 14101 dx dy,
Ly =— //}1{2 0xb30,y 110,51 dx dy,
Ly = //}RZ 0y U3 0xyb10yj1 dx dy,

Ligs = //2 0x130yyb10yj1 dx dy,
R

2
3
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where

Lz = —//2 0y 11 0xj20xj2 dx dy,
R

Lz = —//2 y110xja dyjia dx dy,
R

8
Lis+Lig= Z(leu‘ +Li6i)

i=1

5u1 ~ . .
< 1—21||V3x]2||fz + C((lI0x2ell 25 + 1) 10xs |75 + (19:b1175 + 1) [|4/311%

Liz =~ //2 0t Df2 Oyjio dx dy,
R

L134 =— //2 Byuzangayjz dxdy,
R

2 2
3 3 T 112 G112 G2
+0sull 2 19x w31 > + 1) (IVeor l72 + I Va 72 + 1Vl 72

.2 2 2 : 12 : 12
+IViall2) + Cllorli7a + lwallz + ol + l2ll72),

where

Ly = /./]R2 Oxyb30x 12 0xj2 dx dy,
Liyz = —f/Rz Oxx D30y U 0o dx dy,
Ligs = _//ﬂ‘gz Oxy 305D 0xjr dx dy,
Lig7 = //1;2 Oxx30yb20yja dx dy,
Lig1 = /[1;{2 0yyb30,120yj> dx dy,
Ligs = //1;2 Oxyb30x141 0,2 dx dy,
Ligs = _/‘./]RZ 0y U30xb2 0y dx dy,

L167 = - //2 axyugaxblayjz dxdy,
R

Ligp = /./]R2 yb30xxth20xjr dx dy,
Liga =~ fAz 0xb30xy Uy 0xjr dx dy,
Lige =~ //RZ 0yU30xx by 0xjr dx dy,

Ligg = //1‘@2 0xU30xyb20xj2 dx dy,

Ligy = /./1;{2 0y D30,y 1420y dx dy,

Ligy = //1;2 0xb30xy11 0, dx dy,
Lies = — //]R2 0y U305y b2 0> dx dy,

L168 = —f/2 axugaxyblayjz dxdy,
R

S 02 & 2 Xo12
L7 + Lig < [Vanllj2 + Va7 + [|AO]]}2,

2
3

2
3

~ ~ 2 2 K1 ~
Ly < C||Vawws7s + CIVO| LI Vs 5 I1AG]7, + vy |A0:0112;2

2 2
ENIRY 3 A 2
+ Cllasll 2 IVasll 1 A8,

K1, ~ ~ ~
Lao = 1 A0:0112;2 + Cllwali7> + IVl + A0 3.

After combining all inequalities, we have

1
2dt

< % | (FVo,01, Vo) | + %”(%xhﬁasz) 12, + CAs(DGA(®) + CA4(r), (2.13)

d - ~ ~ ~ -
—GA(0) + | (Vaw1, V) | 1 + 1| (Vauit, V) |72 + w1 A,011%

Page 16 of 21
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2 2
where As(t) = (102 + (13wl + 10,1l + Dldswsl? + 19l 10:03] % +

2 2 2
2 S, 2 3 3 y 3 2 2 : 112 s 12
@b11% + DI V312, + (a5 + sl 21V eos 2 + (18112 + 18,5112, + l72l% + sl 2, +

D2 + (19,61 12, + D19 122) and Aa(e) = (lon 2, + leoall 2 + 11125 + a2, + 10473]12%)
are integrable over (0, T').

Thanks to Gronwall’s inequality and the estimate for || (1, b, 6)|| ;2 in (2.2), the estimate for
(@3, /3)]l 2 in (2.4), the bound for ||(@,], VO)||2 in (2.6), and the bound for [|(Vws, Vjs)||2

in (2.9), we reach
||V67)||i2 + ||Vj||%2 + ||A9||i2 + M1/ || (Vaxwlrvawa)”Lz dt
0

T T
+1) f | (Y1, Vouia) |22 dt + 11 f 1A3,011% dt < C, (2.14)
0 0

where C depends on T and the initial H2-norm.

Thus taking the global H'-bound for w, w,, w3 together with the global H'-bound for
j1, j2, j3 and the global H2-bound for 6, we obtain the global H2-bound for (u, b, ) of 2%D
magnetic Bénard system with horizontal dissipation, horizontal magnetic diffusion, and

horizontal thermal diffusivity.

2.2 Caseii

Under conditions (1.8) and (1.9). For these two cases, the proof is much similar to the
previous case. Since the higher-order estimates can be obtained as in case (1.7), provided
that the uniform lower-order estimates have been done, it suffices to establish the lower-

order estimates of the solutions with the aid of regularity criterion.

2.2.1 Subcase &: suppose that fOT |9y ||%2 dt < oo for some T >0

Proposition 2.6 Assume that (ug, by, 0y) satisfies the condition stated in Theorem 1.1. Let
(u,b,0) be the corresponding solution of (1.6). Then (u,b,0) satisfies, for any T > 0 and
t<T,

t 2
) 2, < Cae o1 Bl e, (2.15)

|, 5,0
where Cs is a constant depending on T and the initial data and C, is a pure constant.
Proof Proposition 2.6 is an easy consequence of Lemmas 2.7 and 2.8. O
Lemma 2.7 Consider (1.5) with pi; >0, itp =0, v1 >0, vy =0, k1 > 0, k3 = 0. Assume that

(¢10, bo, B0) satisfies the condition stated in Theorem 1.1. Let (u, b,0) be the corresponding
solution of (1.6). Then ws and j3 satisfy

T T
lwsll?s + llj3l72 + ma / 10xws]|2 dt + vy f 1843117, dt < C (2.16)
0 0

provided fOT 19y ||%2 dt < oo for some T > 0.
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Proof The lower-order estimates of u3 and b3 follow from (2.5):

5 EFIZ(” + w1 [10xs]| 7y + V1|31 22

=Ol+02+03+O4+O5

< %”ax]é”%z + C(119.2l 72 + (Null2 + 1) 10yua 172) 172 (2.17)
where
O, = 2//1;2 0xb10yuyj3 dx dy, O, = 2//]1%2 0y 0xUsj3 dx dy,
O3=-2 /./]RZ 051 0xboj3 dx dy, Oy = 2//]1%2 U1 0xyb1j3 dx dy,

O5 = 2// ulayblaxjg dxdy
R2

Thanks to Gronwall’s inequality and the criterion fOT |9y 2e1 ||i2 dt < 00, we have
(s, j3) ||L00(0]T;L2(]R2)) + mall0x@sll 20,722y + V1l 031l 120,522 m2)) < C. (2.18)
This completes the proof of Lemma 2.7. O
Lemma 2.8 Consider (1.5) with pu; >0, ity =0, v1 >0, vy =0, k1 > 0, k3 = 0. Assume that

(10, bo, 0y) satisfies the condition stated in Theorem 1.1. Let (u, b,0) be the corresponding
solution of (1.6). Then &, j, and V0 satisfy

T T
11 + 1P + 19612 + f 13:651% dt + vy / 1112 de
0 0

T
. f 198,01, dt < C 2.19)
0

provided fOT |9y 21 ||i2 dt < oo for some T > 0.

Proof The proof of Lemma 2.8 is similar to [5]. So we omit the details. O

2.2.2 Subcase ®: suppose that fOT 19,61 ||i2 dt < oo for some T >0

Proposition 2.9 Assume that (4, bo, 00) satisfies the condition stated in Theorem 1.1. Let
(1, b,0) be the corresponding solution of (1.6). Then (u, b,0) satisfies, for any T > 0 and
t<T,

t 2
| (s, 5,6) “Hl(]RZ) < CgeSoho bl dr (2.20)

where Cs is a constant depending on T and the initial data and Ce is a pure constant.

Proof Proposition 2.9 is an easy consequence of Lemmas 2.10 and 2.11. O

Page 18 of 21
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Lemma 2.10 Counusider (1.5) with 11 >0, 1, =0, v1 >0, v, =0, k1 > 0, k3 = 0. Assume that
(¢60, bo, 00) satisfies the condition stated in Theorem 1.1. Let (u, b,0) be the corresponding
solution of (1.6). Then ws and j3 satisfy

T T
leoslZ + s l% + / aos|% dt + vy / a2 dt < C (2.21)
0 0

provided fOT 18,1112, dt < o0 for some T > 0.

Proof Similar to the previous arguments, the lower-order estimates of u#3 and b3 follow
from (2.5):

1d

2 EF%(LL) + 1[853 72 + vi |03 22

=Q1+ Qo+ Q3+ Qu+ Qs

= Slg.sll}y + 13513
+ C(||3xu||§z + (||b||%2 + 1)||3yb1||iz)(||w3||iz + ||fs||i2), (2.22)
where
Qi=-2 //R2 b10yyurj3 dx dy, Qy=-2 //}RZ b10yuy0,j3 dx dy,
Qs = 2//}1%2 0,10y usj3 dx dy, Qy=-2 //RZ 0511 0xDoj3 dx dy,

Qs=-2 //2 axulaybljg dxdy
R
Taking advantage of Gronwall’s inequality and the criterion foT 10,61 ||i2 dt < oo gives
(s, j3) ||Loo(o,T;L2(R2)) + p1ll0xwsll 20,22y + Vil 0uf3ll 200,12 m2)) < C. (2.23)
Thus we complete the proof of Lemma 2.10. d

Lemma 2.11 Counusider (1.5) with 11 >0, 1o =0, v1 >0, v, =0, k1 > 0, k3 = 0. Assume that
(¢40, bo, 00) satisfies the condition stated in Theorem 1.1. Let (u, b,0) be the corresponding
solution of (1.6). Then &, j, and V0 satisfy

T T
112 + 1712 + 19012 + / 19 l1% di + v, / 101 dt
0 0
T ~
+K1/ Vo012, dt <C (2.24)
0

provided fOT 19,51 ||i2 dt < oo for some T > 0.
Proof Using the similar arguments as in [5], we can easily obtain this lemma. O

In view of the above arguments, we have completed the proof of Theorem 1.1. The proof
of Theorem 1.2 is similar, so we leave it to the interested readers.
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