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Abstract
This paper concentrates on the global regularity of classical solution to the 21

2D
magnetic Bénard system with partial dissipation, magnetic diffusion, and thermal
diffusivity (i.e., horizontal dissipation, horizontal magnetic diffusion, and horizontal
thermal diffusivity; vertical dissipation, vertical magnetic diffusion, and vertical
thermal diffusivity). For the 21

2D magnetic Bénard system with full dissipation,
magnetic diffusion, and thermal diffusivity, the global existence and uniqueness can
be obtained by the standard energy method. However, can the classical solution for
the 21

2D incompressible magnetic Bénard system still keep its global regularity when
losing some partial dissipation, magnetic diffusion, and thermal diffusivity terms? We
will give a rigorous proof to the global regularity for the 2 1

2D magnetic Bénard system
with horizontal and vertical dissipation, magnetic diffusion, and thermal diffusivity
respectively in this paper. Furthermore, we also show that any possible finite time
blow-up can be controlled by the L∞-norm of the vertical velocity and magnetic
components, not include the temperature component (see Theorems 1.1 and 1.2).
The results extend the recent work by Cheng and Du (J. Math. Fluid Mech.
17:769–797, 2015), and generalize the recent works by Regmi (Math. Methods Appl.
Sci. 40:1497–1504, 2017), and Ma and Zhang (Bound. Value Probl. 2018:79, 2018).
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1 Introduction
The 2D incompressible magnetic Bénard system can be represented in the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu + (u · ∇)u + ∇p = μ1∂xxu + μ2∂yyu + (b · ∇)b + θe2,

∂tb + (u · ∇)b = ν1∂xxb + ν2∂yyb + (b · ∇)u,

∂tθ + (u · ∇)θ = κ1∂xxθ + κ2∂yyθ + u · e2,

∇ · u = ∇ · b = 0,

u(x, y, 0) = u0(x, y), b(x, y, 0) = b0(x, y), θ (x, y, 0) = θ0(x, y),

(1.1)
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where t > 0, (x, y) ∈R
2, u(x, y, t) = (u1(x, y, t), u2(x, y, t)) is a vector field denoting the veloc-

ity, b(x, y, t) = (b1(x, y, t), b2(x, y, t)) is a vector field denoting the magnetic, θ = θ (x, y, t) is a
scalar function denoting the temperature, and p is the scalar pressure. The forcing term
θe2 in the velocity equation models the acting of the buoyancy force on the fluid motion
and e2 = (0, 1) the unit vector in the vertical direction. u · e2 models the Rayleigh–Bénard
convection in a heated inviscid fluid. The parameters μ1 ≥ 0, μ2 ≥ 0, ν1 ≥ 0, ν2 ≥ 0, κ1 ≥ 0,
and κ2 ≥ 0 are six non-dimensional constants. When μ1 = μ2, ν1 = ν2, and κ1 = κ2, (1.1)
reduces to the 2D standard incompressible magnetic Bénard system.

The magnetic Bénard problem comes from the convection motions in a heated and in-
compressible fluid. In a homogeneous, viscous, and electrically conducting fluid, the con-
vection will occur if the temperature gradient passes a certain critical threshold in two
horizontal layers and the convection is permeated by an imposed uniform magnetic field,
normal to the layers, and heated from below. The magnetic Bénard problem illuminates
the heat convection phenomenon under the presence of the magnetic field (e.g., [21]).

The global regularity to 2D magnetic Bénard problem with full dissipation and magnetic
diffusion (i.e., μ1 = μ2 = ν1 = ν2 = 1, κ1 = κ2 = 0) was proved by Zhou, Fan, and Nakamura
[26]. Later, Cheng and Du improved this result in [5]. Recently, Ma [16] established the
global well-posedness and conditional regularity for the 2D incompressible magnetic Bé-
nard fluid system with mixed partial viscosity. It is currently unknown whether the solu-
tions of the 3D magnetic Bénard fluid system are globally regular (in time). The author in
[15] dealt with the Cauchy problem to the 3D system of incompressible magnetic Bénard
fluids. He proved that as the initial data satisfy ‖u0‖2

H1(R3) + ‖b0‖2
H1(R3) + ‖θ0‖2

H1(R3) ≤ ε,
where ε is a suitably small positive number, the 3D magnetic Bénard system with mixed
partial dissipation, magnetic diffusion, and thermal diffusivity admits global smooth so-
lutions. In [13], we investigated the blow-up criteria of strong solutions and a regularity
criterion of weak solutions for the magnetic Bénard fluid system in R

3 in a sense of scaling
invariant by employing a different decomposition for nonlinear terms. More precisely, the
strong solution (u, b, θ ) of a magnetic Bénard fluid system is proved to be smooth on (0, T]
provided the velocity field u satisfies

u ∈ L
2

1–r
(
0, T ; Ẋr

(
R

3)) with 0 ≤ r < 1,

or the gradient field of velocity ∇u satisfies

∇u ∈ L
2

2–γ
(
0, T ; Ẋγ

(
R

3)) with 0 ≤ γ ≤ 1.

Moreover, we proved that if the following conditions hold:

u ∈ L∞(
0, T ; Ẋ1

(
R

3)) and ‖u‖L∞(0,T ;Ẋ1(R3)) < ε,

where ε > 0 is a suitable small constant, then the strong solution (u, b, θ ) of magnetic Bé-
nard fluid system can also be extended beyond t = T . Finally, we showed that if some
partial derivatives of the velocity components, magnetic components, and temperature
components (i.e., ∇̃ũ, ∇̃b̃, ∇̃θ ) belong to the multiplier space, the solution (u, b, θ ) actually
is smooth on (0, T).
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If we neglect the thermal effects in the fluid motion, the 2D magnetic Bénard system
can be specialized to the well-known 2D magnetohydrodynamics (MHD) system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tu + (u · ∇)u + ∇p = μ1∂xxu + μ2∂yyu + (b · ∇)b,

∂tb + (u · ∇)b = ν1∂xxb + ν2∂yyb + (b · ∇)u,

∇ · u = ∇ · b = 0,

u(x, y, 0) = u0(x, y), b(x, y, 0) = b0(x, y),

(1.2)

where (x, y) ∈ R
2, t > 0, u = (u1(x, y, t), u2(x, y, t)), p = p(x, y, t), and b = (b1(x, y, t), b2(x, y, t))

denote the velocity vector, scalar pressure, and the magnetic field of the fluid, respectively.
The MHD system has attracted quite a lot of attention lately from various authors. Actu-
ally, there is a considerable body of literature on the global regularity of the MHD system.
We recall here, without any claim of completeness, [3, 6, 7, 24] and the references cited
therein.

Suppose that the magnetic field b ≡ 0, system (1.1) is nothing but the so-called Bénard
system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tu + (u · ∇)u + ∇p = μ1∂xxu + μ2∂yyu + θe2, (x, y) ∈R
2, t > 0,

∂tθ + (u · ∇)θ = κ1∂xxθ + κ2∂yyθ + u · e2, (x, y) ∈R
2, t > 0,

∇ · u = 0, (x, y) ∈R
2, t > 0,

u(x, y, 0) = u0(x, y), θ (x, y, 0) = θ0(x, y), (x, y) ∈R
2,

(1.3)

where u = u(x, y, t) = (u1(x, y, t), u2(x, y, t)) : R2 × [0,∞) → R
2, denotes the velocity field

of a 2D incompressible fluid. The term p = p(x, y, t) : R2 × [0,∞) → R denotes the usual
pressure which can be recovered from the first and the third equation in (1.3) by taking
the divergence and then inverting the Laplacian operator. The scalar function θ = θ (x, y, t)
quantifies the temperature variation in a gravity field. The Bénard system describes the
Rayleigh–Bénard convective motion in a heated 2D inviscid incompressible fluid under
thermal effects (see, e.g., [1, 8, 9, 19, 22, 25]). Especially, Ma and Zhang [18] wrote the
velocity equation of the Bénard system in its two components and considered the global
weak solution of the resulting 2D Bénard system with partial dissipation.

However, the questions of global regularity or finite time singularity of the weak solu-
tions of 3D magnetic Bénard system, MHD system, and Bénard system are still challenging
open problems. Many attempts have been made, but there are no satisfactory results. It
is of interest to study the regularity of weak solutions under additional critical growth
conditions on the velocity, the magnetic, the temperature, or the pressure. There are nu-
merous papers related to the regularity criteria of 3D MHD system (see [4, 10–12] and the
references therein).

The 2D flow generates a large family of 3D flow with vorticity stretching [20]. We refer to
these as 2 1

2 D flows because the flow in the z direction is predetermined by the underlying
2D flows. Recently, Cheng and Du [5] proved the global regularity (in time) for 2D mag-
netic Bénard system with mixed partial viscosity. Ma and Zhang [18] studied the global
existence of weak solutions and regularity criteria for the 2D Bénard system with partial
dissipation. Later, Ma [16] generalized the results in [18] and established the global well-
posedness and conditional regularity for the 2D incompressible magnetic Bénard fluid
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system with mixed partial viscosity. One natural question is “Can we extend these results
related to the 2D magnetic Bénard system to the 2 1

2 D magnetic Bénard system?”
In this paper, motivated by the works [5, 14, 16–18, 23], we will firstly study the global

regularity of classical solution to a 2 1
2 D (i.e., u, b, θ , and p are independent of z) magnetic

Bénard system with horizontal dissipation, horizontal magnetic diffusion, and horizontal
thermal diffusivity. Next, we will consider the global regularity of 2 1

2 D magnetic Bénard
system with vertical dissipation, vertical magnetic diffusion, and vertical thermal diffusiv-
ity.

Let

u = (u1, u2, u3) = (ũ, u3), b = (b1, b2, b3) = (b̃, b3),

∇̃ = (∂x, ∂y), �̃ = ∂xx + ∂yy,

then we can formulate the 2 1
2 D magnetic Bénard system as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t ũ + (ũ · ∇̃)ũ + ∇̃p = μ1∂xxũ + μ2∂yyũ + (b̃ · ∇̃)b̃,

∂tu3 + (ũ · ∇̃)u3 = μ1∂xxu3 + μ2∂yyu3 + (b̃ · ∇̃)b3 + θ ,

∂t b̃ + (ũ · ∇̃)b̃ = ν1∂xxb̃ + ν2∂yyb̃ + (b̃ · ∇̃)ũ,

∂tb3 + (ũ · ∇̃)b3 = ν1∂xxb3 + ν2∂yyb3 + (b̃ · ∇̃)u3,

∂tθ + (ũ · ∇̃)θ = κ1∂xxθ + κ2∂yyθ + u3,

∇̃ · ũ = ∇̃ · b̃ = 0,

u(x, y, 0) = u0(x, y), b(x, y, 0) = b0(x, y), θ (x, y, 0) = θ0(x, y),

(1.4)

where u : R2 × [0,∞) →R
3 denotes the fluid velocity field, b : R2 × [0,∞) → R

3 magnetic
field, θ : R2 × [0,∞) →R temperature, and p : R2 × [0,∞) →R pressure.

It is well known that the vorticity ω = ∇ × u = (∂yu3, –∂xu3, ∂xu2 – ∂yu1) = (ω1,ω2,ω3) =
(ω̃,ω3) and the current density j = ∇ × b = (∂yb3, –∂xb3, ∂xb2 – ∂yb1) = (j1, j2, j3) = (j̃, j3) play
an important role in establishing the regularity for a magnetic Bénard system. Taking the
curl operator for the first four equations and applying ∇̃ to both sides of the fifth equation
in (1.4), system (1.4) can be written as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tω1 + (ũ · ∇̃)ω1 = (ω̃ · ∇̃)u1 + (b̃ · ∇̃)j1 – (j̃ · ∇̃)b1 + μ1∂xxω1 + μ2∂yyω1 + ∂yθ ,

∂tω2 + (ũ · ∇̃)ω2 = (ω̃ · ∇̃)u2 + (b̃ · ∇̃)j2 – (j̃ · ∇̃)b2 + μ1∂xxω2 + μ2∂yyω2 – ∂xθ ,

∂tω3 + (ũ · ∇̃)ω3 = (b̃ · ∇̃)j3 + μ1∂xxω3 + μ2∂yyω3,

∂t j1 + (ũ · ∇̃)j1 = (j̃ · ∇̃)u1 + (b̃ · ∇̃)ω1 – (ω̃ · ∇̃)b1 + ν1∂xxj1 + ν2∂yyj1,

∂t j2 + (ũ · ∇̃)j2 = (j̃ · ∇̃)u2 + (b̃ · ∇̃)ω2 – (ω̃ · ∇̃)b2 + ν1∂xxj2 + ν2∂yyj2,

∂t j3 + (ũ · ∇̃)j3
= (b̃ · ∇̃)ω3 + ν1∂xxj3 + ν2∂yyj3 + 2∂xb1(∂yu1 + ∂xu2) – 2∂xu1(∂xb2 + ∂yb1),

∂t∇̃θ + ∇̃[(ũ · ∇̃)θ ] = κ1∇̃∂xxθ + κ2∇̃∂yyθ + ∇̃u3.

(1.5)

Now let us state our main results as follows.
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Our first goal is to consider the 2 1
2 D magnetic Bénard system with horizontal dissipa-

tion, horizontal magnetic diffusion, and horizontal thermal diffusivity

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t ũ + (ũ · ∇̃)ũ + ∇̃p = μ1∂xxũ + (b̃ · ∇̃)b̃,

∂tu3 + (ũ · ∇̃)u3 = μ1∂xxu3 + (b̃ · ∇̃)b3 + θ ,

∂t b̃ + (ũ · ∇̃)b̃ = ν1∂xxb̃ + (b̃ · ∇̃)ũ,

∂tb3 + (ũ · ∇̃)b3 = ν1∂xxb3 + (b̃ · ∇̃)u3,

∂tθ + (ũ · ∇̃)θ = κ1∂xxθ + u3,

∇̃ · ũ = ∇̃ · b̃ = 0,

u(x, y, 0) = u0(x, y), b(x, y, 0) = b0(x, y), θ (x, y, 0) = θ0(x, y).

(1.6)

Theorem 1.1 Given a positive time T ∈ (0,∞). Suppose that (u0, b0, θ0) ∈ H2(R2) and ∇ ·
u0 = ∇ · b0 = 0. Let (u, b, θ ) be a corresponding local smooth solution of (1.6) at the interval
(0, T). If one of the following three conditions holds

∫ T

0

∥
∥(u1, b1)

∥
∥2

L∞ dt < ∞; (1.7)

∫ T

0
‖∂yu1‖2

L2 dt < ∞; (1.8)

∫ T

0
‖∂yb1‖2

L2 dt < ∞, (1.9)

then the solution (u, b, θ ) can be extended beyond T .

Our second goal is to consider the 2 1
2 D magnetic Bénard system with vertical dissipa-

tion, vertical magnetic diffusion, and vertical thermal diffusivity

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t ũ + (ũ · ∇̃)ũ + ∇̃p = μ2∂yyũ + (b̃ · ∇̃)b̃,

∂tu3 + (ũ · ∇̃)u3 = μ2∂yyu3 + (b̃ · ∇̃)b3 + θ ,

∂t b̃ + (ũ · ∇̃)b̃ = ν2∂yyb̃ + (b̃ · ∇̃)ũ,

∂tb3 + (ũ · ∇̃)b3 = ν2∂yyb3 + (b̃ · ∇̃)u3,

∂tθ + (ũ · ∇̃)θ = κ2∂yyθ + u3,

∇̃ · ũ = ∇̃ · b̃ = 0,

u(x, y, 0) = u0(x, y), b(x, y, 0) = b0(x, y), θ (x, y, 0) = θ0(x, y).

(1.10)

Theorem 1.2 Given a positive time T ∈ (0,∞). Suppose that (u0, b0, θ0) ∈ H2(R2) and ∇ ·
u0 = ∇ ·b0 = 0. Let (u, b, θ ) be a corresponding local smooth solution of (1.10) at the interval
(0, T). If one of the following three conditions holds

∫ T

0

∥
∥(u2, b2)

∥
∥2

L∞ dt < ∞; (1.11)

∫ T

0
‖∂xu2‖2

L2 dt < ∞; (1.12)
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∫ T

0
‖∂xb2‖2

L2 dt < ∞, (1.13)

then the solution (u, b, θ ) can be extended beyond T .

Remark 1.1 It is clear that Theorem 1.1 and Theorem 1.2 here improve the results of Case
6 and Case 9 in Theorem 3 in [5] on the global regularity to the 2D magnetic Bénard sys-
tem. More precisely, the conditional global regularity they established for the horizontal
dissipation, horizontal diffusion, and horizontal thermal diffusivity is ‖∂yu1‖L2(0,T ;L2(R2)) <
∞ or ‖∂yb1‖L2(0,T ;L2(R2)) < ∞, and the conditional global regularity for the vertical dissipa-
tion, vertical diffusion, and vertical thermal diffusivity is only ‖∂xu2‖L2(0,T ;L2(R2)) < ∞.

Remark 1.2 Our main results generalize the recent work by Regmi [23], in which they
study the global regularity of classical solution to a 2 1

2 D magnetohydrodynamic system
with horizontal dissipation and horizontal magnetic diffusion, and with vertical dissipa-
tion and vertical magnetic diffusion, but they do not consider the thermal effects. Our
main results also extend the recent works [16, 18], where they study the global regularity
for the 2D Bénard and magnetic Bénard systems.

Remark 1.3 Our methods are similar to the 2D magnetic Bénard system with horizontal
dissipation, horizontal magnetic diffusion, and horizontal thermal diffusivity [5]. How-
ever, in the presence of the vortex stretching term, the mathematical analysis for 2 1

2 D is
harder than for 2D case.

Remark 1.4 Our results also show that any possible finite time blow-up can be controlled
by the L∞-norm of the vertical components of the velocity field and magnetic field (see
(1.7) in Theorem 1.1 and (1.11) in Theorem 1.2).

2 The proof of Theorem 1.1
In this paper, all constants will be denoted by C that is a generic constant depending only
on the quantities specified in the context.

This section is devoted to the proof of Theorem 1.1. Now we explain the main process
involved in proving Theorem 1.1 and the methods used here. The general approach to
establish the global existence and regularity results consists of two main steps. The first
step assesses the local (in time) well-posedness, while the second extends the local solution
into a global one by obtaining global (in time) a priori bounds. For the systems of equations
concerned here, the local well-posedness follows from a standard approach and shall be
skipped here. Our main efforts are devoted to proving the necessary global a priori bounds.
More precisely, we show that, for some T > 0 and t ≤ T ,

∥
∥(u, b, θ )

∥
∥

H2(R2) ≤ C, (2.1)

where C denotes a bound that depends on T and the initial data.
To begin with, the following anisotropic Sobolev inequality which bounds a triple-

product in terms of the Lebesgue norms of the functions and their directional derivatives
is needed, please see for example [2].
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Lemma 2.1 Let f , g , h, ∂xg , ∂yh ∈ L2(R2). Then there exists an absolute constant C such
that

∫∫

R2
|fgh|dx dy ≤ C‖f ‖L2‖g‖ 1

2
L2‖∂xg‖ 1

2
L2‖h‖ 1

2
L2‖∂yh‖ 1

2
L2 .

Now let us move to proving the main theorem.

2.1 Case i
Under condition (1.7).

We first state the global L2-bound.

Lemma 2.2 Assume that (u0, b0, θ0) ∈ H2(R2). Let (u, b, θ ) be a corresponding solution of
(1.6). Then (u, b, θ ) obeys the following global L2-bound:

‖u‖2
L2 + ‖b‖2

L2 + ‖θ‖2
L2 + μ1

∫ t

0
‖∂xu‖2

L2 dτ + ν1

∫ t

0
‖∂xb‖2

L2 dτ

+ κ1

∫ t

0
‖∂xθ‖2

L2 dτ ≤ C
∥
∥(u0, b0, θ0)

∥
∥2

L2 (2.2)

for any t ≥ 0.

Proof Taking the L2-inner product of (ũ, u3, b̃, b3, θ ) with (1.6), respectively, yields

1
2

d
dt

‖ũ‖2
L2 + μ1‖∂xũ‖2

L2 =
∫∫

R2
(b̃ · ∇̃)b̃ · ũ dx dy,

1
2

d
dt

‖u3‖2
L2 + μ1‖∂xu3‖2

L2 =
∫∫

R2
(b̃ · ∇̃)b3 · u3 dx dy +

∫∫

R2
θ · u3 dx dy,

1
2

d
dt

‖b̃‖2
L2 + ν1‖∂xb̃‖2

L2 =
∫∫

R2
(b̃ · ∇̃)ũ · b̃ dx dy,

1
2

d
dt

‖b3‖2
L2 + ν1‖∂xb3‖2

L2 =
∫∫

R2
(b̃ · ∇̃)u3 · b3 dx dy,

1
2

d
dt

‖θ‖2
L2 + κ1‖∂xθ‖2

L2 =
∫∫

R2
u3 · θ dx dy.

Adding them up, we have

1
2

d
dt

(‖ũ‖2
L2 + ‖u3‖2

L2 + ‖b̃‖2
L2 + ‖b3‖2

L2 + ‖θ‖2
L2

)
+ μ1

∥
∥(∂xũ, ∂xu3)

∥
∥2

L2

+ ν1
∥
∥(∂xb̃, ∂xb3)

∥
∥2

L2 + κ1‖∂xθ‖2
L2

= 2
∫∫

R2
u3 · θ dx dy,

where we have used the identities
∫∫

R2
(b̃ · ∇̃)b̃ · ũ dx dy +

∫∫

R2
(b̃ · ∇̃)ũ · b̃ dx dy = 0,

∫∫

R2
(b̃ · ∇̃)b3 · u3 dx dy +

∫∫

R2
(b̃ · ∇̃)u3 · b3 dx dy = 0.
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Applying Hölder’s inequality yields

1
2

d
dt

(‖ũ‖2
L2 + ‖u3‖2

L2 + ‖b̃‖2
L2 + ‖b3‖2

L2 + ‖θ‖2
L2

)
+ μ1

∥
∥(∂xũ, ∂xu3)

∥
∥2

L2

+ ν1
∥
∥(∂xb̃, ∂xb3)

∥
∥2

L2 + κ1‖∂xθ‖2
L2 ≤ C

(‖u3‖2
L2 + ‖θ‖2

L2
)
.

Gronwall’s inequality then implies

‖ũ‖2
L2 + ‖u3‖2

L2 + ‖b̃‖2
L2 + ‖b3‖2

L2 + ‖θ‖2
L2 + μ1

∫ t

0

∥
∥(∂xũ, ∂xu3)

∥
∥2

L2 dτ

+ ν1

∫ t

0

∥
∥(∂xb̃, ∂xb3)

∥
∥2

L2 dτ + κ1

∫ t

0
‖∂xθ‖2

L2 dτ ≤ C

for any 0 < t ≤ T , where C depends only on the initial data. �

We next prove the global H1-bound for u, b, and θ .

Proposition 2.3 Assume that (u0, b0, θ0) satisfies the condition stated in Theorem 1.1. Let
(u, b, θ ) be the corresponding solution of (1.6). Then (u, b, θ ) satisfies, for any T > 0 and
t ≤ T ,

∥
∥(u, b, θ )

∥
∥

H1(R2) ≤ C1eC2
∫ t

0 (‖u1‖2
L∞ +‖b1‖2

L∞ ) dτ , (2.3)

where C1 is a constant depending on T and the initial data and C2 is a pure constant.

Proof Proposition 2.3 is an easy consequence of Lemmas 2.4 and 2.5. �

Lemma 2.4 Consider (1.5) with μ1 > 0, μ2 = 0, ν1 > 0, ν2 = 0, κ1 > 0, κ2 = 0. Assume that
(u0, b0, θ0) satisfies the condition stated in Theorem 1.1. Let (u, b, θ ) be the corresponding
solution of (1.6). Then ω3 and j3 satisfy

‖ω3‖2
L2 + ‖j3‖2

L2 + μ1

∫ T

0
‖∂xω3‖2

L2 dt + ν1

∫ T

0
‖∂xj3‖2

L2 dt ≤ C (2.4)

provided
∫ T

0 ‖(u1, b1)‖2
L∞ dt < ∞ for some T > 0.

Proof Set

F1(t) �
(∥
∥ω3(t)

∥
∥2

L2 +
∥
∥j3(t)

∥
∥2

L2
) 1

2 .

Taking the inner product of the third and sixth equations in (1.5) with ω3 and j3, respec-
tively, then integrating by parts in R

2, we get

1
2

d
dt

F2
1 (t) + μ1‖∂xω3‖2

L2 + ν1‖∂xj3‖2
L2

=
7∑

i=1

Ii
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≤ μ1

2
‖∂xω3‖2

L2 +
ν1

2
‖∂xj3‖2

L2

+ C
(‖u1‖2

L∞ + ‖b1‖2
L∞ + ‖∂xu‖2

L2 + ‖∂xb‖2
L2

)
F2

1 (t), (2.5)

where

I1 = –2
∫∫

R2
b1∂xyu1j3 dx dy, I2 = –2

∫∫

R2
b1∂yu1∂xj3 dx dy,

I3 = 2
∫∫

R2
∂xb1∂xu2j3 dx dy, I4 = –2

∫∫

R2
∂xu1∂xb2j3 dx dy,

I5 = 2
∫∫

R2
b1∂xyu1∂xb2 dx dy, I6 = 2

∫∫

R2
b1∂xu1∂xyb2 dx dy,

I7 = –4
∫∫

R2
u1∂yb1∂xyb1 dx dy,

and we have used Lemma 2.1, Cauchy–Schwarz’s inequality, and Young’s inequality.
Taking advantage of Gronwall’s inequality, together with Lemma 2.2, we complete the

proof of this lemma. �

Lemma 2.5 Consider (1.5) with μ1 > 0, μ2 = 0, ν1 > 0, ν2 = 0, κ1 > 0, κ2 = 0. Assume that
(u0, b0, θ0) satisfies the condition stated in Theorem 1.1. Let (u, b, θ ) be the corresponding
solution of (1.6). Then ω̃, j̃, and ∇̃θ satisfy

‖ω̃‖2
L2 + ‖j̃‖2

L2 + ‖∇̃θ‖2
L2 + μ1

∫ T

0
‖∂xω̃‖2

L2 dt + ν1

∫ T

0
‖∂xj̃‖2

L2 dt

+ κ1

∫ T

0
‖∇̃∂xθ‖2

L2 dt ≤ C (2.6)

provided
∫ T

0 ‖(u1, b1)‖2
L∞ dt < ∞ for some T > 0.

Proof Set

G1(t) �
(∥
∥ω̃(t)

∥
∥2

L2 +
∥
∥j̃(t)

∥
∥2

L2 +
∥
∥∇̃θ (t)

∥
∥2

L2
) 1

2 .

Multiplying the first, second, forth, fifth, and seventh equations of (1.5) with ω1, ω2, j1, j2,
and ∇̃θ respectively, integrating them in space domain and adding the resulting equations
together, we have

1
2

d
dt

G2
1(t) + μ1

∥
∥(∂xω1, ∂xω2)

∥
∥2

L2 + ν1
∥
∥(∂xj1, ∂xj2)

∥
∥2

L2 + κ1‖∇̃∂xθ‖2
L2

=
28∑

i=1

Ji ≤ μ1

2
‖∂xω̃‖2

L2 +
ν1

2
‖∂xj̃‖2

L2 +
κ1

2
‖∇̃∂xθ‖2

L2 + CA1(t)G2
1(t), (2.7)

where

J1 = –2
∫∫

R2
u1ω1∂xω1 dx dy, J2 =

∫∫

R2
ω1∂yu1ω2 dx dy,

J3 =
∫∫

R2
b1∂xj1ω1 dx dy, J4 =

∫∫

R2
b1j1∂xω1 dx dy,
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J5 = –
∫∫

R2
j2∂yb1ω1 dx dy, J6 =

∫∫

R2
∂yθω1 dx dy,

J7 =
∫∫

R2
ω1∂xu2ω2 dx dy, J8 = 2

∫∫

R2
u1ω2∂xω2 dx dy,

J9 = –
∫∫

R2
j1∂xb2ω2 dx dy, J10 = –

∫∫

R2
b1∂xj2ω2 dx dy,

J11 = –
∫∫

R2
b1j2∂xω2 dx dy, J12 = –

∫∫

R2
∂xθω2 dx dy,

J13 = –2
∫∫

R2
u1j1∂xj1 dx dy, J14 =

∫∫

R2
j1∂yu1j2 dx dy,

J15 =
∫∫

R2
b1∂xω1j1 dx dy, J16 =

∫∫

R2
b1ω1∂xj1 dx dy,

J17 = –
∫∫

R2
ω2∂yb1j1 dx dy, J18 =

∫∫

R2
j1∂xu2j2 dx dy,

J19 = 2
∫∫

R2
u1j2∂xj2 dx dy, J20 = –

∫∫

R2
ω1∂xb2j2 dx dy,

J21 = –
∫∫

R2
b1∂xω2j2 dx dy, J22 = –

∫∫

R2
b1ω2∂xj2 dx dy,

J23 = 2
∫∫

R2
u1∂xθ∂xxθ dx dy, J24 = –

∫∫

R2
∂xu2∂xθ∂yθ dx dy,

J25 = –
∫∫

R2
∂yu1∂xθ∂yθ dx dy, J26 = –2

∫∫

R2
u1∂yθ∂xyθ dx dy,

J27 =
∫∫

R2
∂xu3∂xθ dx dy, J28 =

∫∫

R2
∂yu3∂yθ dx dy,

and we have applied Lemma 2.1, Young’s inequality, and the simple facts

∂yω2 = –∂xω1, ∂yj2 = –∂xj1,

∂yu1 = ∂xu2 – ω3 ⇒
∫ T

0
‖∂yu1‖2

L2 dt < ∞,

∂yb1 = ∂xb2 – j3 ⇒
∫ T

0
‖∂yb1‖2

L2 dt < ∞,

and A1(t) = (‖u1‖2
L∞ + ‖∂xu‖2

L2 + ‖∂yu1‖2
L2 + ‖b1‖2

L∞ + ‖∂xb‖2
L2 + ‖∂yb1‖2

L2 + 1).
Applying Gronwall’s inequality, together with A1(t) is an integrable function over (0, T),

we obtain

G2
1(t) + μ1

∫ T

0

∥
∥(∂xω1, ∂xω2)

∥
∥2

L2 dt + ν1

∫ T

0

∥
∥(∂xj1, ∂xj2)

∥
∥2

L2 dt

+ κ1

∫ T

0
‖∇̃∂xθ‖2

L2 dt ≤ C

for any t ≤ T , where C depends on T and the initial H1-norm. Especially, (2.6) is proven.
This completes the proof of Lemma 2.5. �

Finally, we prove Theorem 1.1 by establishing the global H2-bound for the solution.
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Proof of Theorem 1.1. As we explained before, it suffices to establish the global H2-bound
in order to prove Theorem 1.1. The rest of this proof we devote to establishing the global
H2-bound.

Set

F2(t) �
(‖∇̃ω3‖2

L2 + ‖∇̃j3‖2
L2

) 1
2 .

Consider (1.5) with μ1 > 0, μ2 = 0, ν1 > 0, ν2 = 0, κ1 > 0, κ2 = 0. Dotting the third and
sixth equations in (1.5) by �̃ω3 and �̃j3, respectively, and integrating them over spatial
domain, we have

1
2

d
dt

F2
2 (t) + μ1‖∇̃∂xω3‖2

L2 + ν1‖∇̃∂xj3‖2
L2

=
19∑

i=1

Ki ≤ μ1

2
‖∇̃∂xω3‖2

L2 +
ν1

2
‖∇̃∂xj3‖2

L2 + CA2(t)F2
2 (t), (2.8)

where

K1 =
∫∫

R2
∂xu1∂xω3∂xω3 dx dy, K2 =

∫∫

R2
∂xu2∂xω3∂yω3 dx dy,

K3 =
∫∫

R2
∂yu1∂xω3∂yω3 dx dy, K4 =

∫∫

R2
∂yu2∂yω3∂yω3 dx dy,

K5 = 2
∫∫

R2
∂xω3∂xb1∂xj3 dx dy, K6 = 2

∫∫

R2
∂xω3∂xb2∂yj3 dx dy,

K7 = 2
∫∫

R2
∂yω3∂yb1∂xj3 dx dy, K8 = 2

∫∫

R2
b1∂xyω3∂yj3 dx dy,

K9 = 2
∫∫

R2
b1∂yω3∂xyj3 dx dy, K10 = –

∫∫

R2
∂xu1∂xj3∂xj3 dx dy,

K11 = –
∫∫

R2
∂xu2∂xj3∂yj3 dx dy, K12 = –

∫∫

R2
∂yu1∂xj3∂yj3 dx dy,

K13 = –
∫∫

R2
∂yu2∂yj3∂yj3 dx dy, K14 = –2

∫∫

R2
∂xb1(∂yu1 + ∂xu2)∂xxj3 dx dy,

K15 = 2
∫∫

R2
∂xyb1(∂yu1 + ∂xu2)∂yj3 dx dy,

K16 = 2
∫∫

R2
∂xb1∂y(∂yu1 + ∂xu2)∂yj3 dx dy,

K17 = 2
∫∫

R2
∂xu1(∂xb2 + ∂yb1)∂xxj3 dx dy,

K18 = –2
∫∫

R2
∂xyu1(∂xb2 + ∂yb1)∂yj3 dx dy,

K19 = –2
∫∫

R2
∂xu1∂y(∂xb2 + ∂yb1)∂yj3 dx dy,

and A2(t) = (‖∂xu‖2
L2 +‖∂yu1‖2

L2 +‖b1‖2
L∞ +‖∂xb‖2

L2 +‖∂yb1‖2
L2 +‖ω3‖2

L2 +‖j3‖2
L2 +(‖∂xu‖ 2

3
L2 +

‖j3‖
2
3
L2 )‖∂xω3‖

2
3
L2 + (‖ω3‖2

L2 + ‖∂xb‖2
L2 )‖∂xj3‖2

L2 + 1) is also an integrable function over (0, T).
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It thus follows from Gronwall’s inequality that

‖∇̃ω3‖2
L2 + ‖∇̃j3‖2

L2 + μ1

∫ T

0
‖∇̃∂xω3‖2

L2 dt + ν1

∫ T

0
‖∇̃∂xj3‖2

L2 dt ≤ C, (2.9)

where C depends on T and the initial H2-norm. Therefore, we obtain the desired H2-
bound for u3 and b3.

At last, we establish the global H2-bound for u1, u2, b1, b2, and θ . Similarly, consider
(1.5) with μ1 > 0, μ2 = 0, ν1 > 0, ν2 = 0, κ1 > 0, κ2 = 0.

Set

G2(t) �
(‖∇̃ω̃‖2

L2 + ‖∇̃ j̃‖2
L2 + ‖�̃θ‖2

L2
) 1

2 .

Taking the inner product of the first, second, forth, and fifth equations in (1.5) with �̃ω1,
�̃ω2, �̃j1, and �̃j2, and integrating by parts, we obtain

1
2

d
dt

(‖∇̃ω1‖2
L2 + ‖∇̃ω2‖2

L2 + ‖∇̃j1‖2
L2 + ‖∇̃j2‖2

L2
)

+ μ1
∥
∥(∇̃∂xω1, ∇̃∂xω2)

∥
∥2

L2

+ ν1
∥
∥(∇̃∂xj1, ∇̃∂xj2)

∥
∥2

L2 =
18∑

i=1

Li, (2.10)

where

L1 = –
∫∫

R2
∇̃ω1 · ∇̃u · ∇̃ω1 dx dy, L2 = –

∫∫

R2
(ω̃ · ∇̃)u1 · �̃ω1 dx dy,

L3 = –
∫∫

R2
(b̃ · ∇̃)j1 · �̃ω1 dx dy, L4 =

∫∫

R2
(j̃ · ∇̃)b1 · �̃ω1 dx dy,

L5 = –
∫∫

R2
∇̃ω2 · ∇̃u · ∇̃ω2 dx dy, L6 = –

∫∫

R2
(ω̃ · ∇̃)u2 · �̃ω2 dx dy,

L7 = –
∫∫

R2
(b̃ · ∇̃)j2 · �̃ω2 dx dy, L8 =

∫∫

R2
(j̃ · ∇̃)b2 · �̃ω2 dx dy,

L9 = –
∫∫

R2
∇̃j1 · ∇̃u · ∇̃j1 dx dy, L10 = –

∫∫

R2
(j̃ · ∇̃)u1 · �̃j1 dx dy,

L11 = –
∫∫

R2
(b̃ · ∇̃)ω1 · �̃j1 dx dy, L12 =

∫∫

R2
(ω̃ · ∇̃)b1 · �̃j1 dx dy,

L13 = –
∫∫

R2
∇̃j2 · ∇̃u · ∇̃j2 dx dy, L14 = –

∫∫

R2
(j̃ · ∇̃)u2 · �̃j2 dx dy,

L15 = –
∫∫

R2
(b̃ · ∇̃)ω2 · �̃j2 dx dy, L16 =

∫∫

R2
(ω̃ · ∇̃)b2 · �̃j2 dx dy,

L17 = –
∫∫

R2
∂yθ · �̃ω1 dx dy, L18 =

∫∫

R2
∂xθ · �̃ω2 dx dy.

Applying ∇̃ to the seventh equation in (1.5) and taking the L2-inner product with �̃θ ,
and integrating by parts, we obtain

1
2

d
dt

‖�̃θ‖2
L2 + κ1‖�̃∂xθ‖2

L2

= –
∫∫

R2
�̃

[
(ũ · ∇̃)θ

] · �̃θ dx dy +
∫∫

R2
�̃u3 · �̃θ dx dy = L19 + L20. (2.11)
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Adding (2.10) and (2.11) yields

1
2

d
dt

G2
2(t) + μ1

∥
∥(∇̃∂xω1, ∇̃∂xω2)

∥
∥2

L2 + ν1
∥
∥(∇̃∂xj1, ∇̃∂xj2)

∥
∥2

L2 + κ1‖�̃∂xθ‖2
L2

=
20∑

i=1

Li. (2.12)

We now estimate L1 through L20 as follows:

L1 =
4∑

i=1

L1i ≤ μ1

10
‖∇̃∂xω1‖2

L2 + C
(‖∂xu‖2

L2 + ‖∂yu1‖2
L2 + ‖∂xu‖ 2

3
L2‖∂xω3‖

2
3
L2

)‖∇̃ω1‖2
L2 ,

where

L11 = –
∫∫

R2
∂xu1∂xω1∂xω1 dx dy, L12 = –

∫∫

R2
∂xu2∂xω1∂yω1 dx dy,

L13 = –
∫∫

R2
∂yu1∂xω1∂yω1 dx dy, L14 = –

∫∫

R2
∂yu2∂yω1∂yω1 dx dy,

L2 + L4 =
8∑

i=1

(L2i + L8i)

≤ 2μ1

5
‖∇̃∂xω1‖2

L2 + C
((‖∂xu‖2

L2 + ‖∂yu1‖2
L2 + 1

)‖∂xω3‖2
L2 +

(‖∂xb‖2
L2

+ ‖∂yb1‖2
L2 + ‖j2‖2

L2 + 1
)‖∂xj3‖2

L2 + ‖∂xu‖ 2
3
L2‖∂xω3‖

2
3
L2 + ‖∂yu1‖

2
3
L2‖∇̃ω3‖

2
3
L2

+ ‖∇̃ω3‖2
L2 +

(‖∂yb1‖2
L2 + 1

)‖∇̃j3‖2
L2 + 1

)(‖∇̃ω1‖2
L2 + ‖∇̃ω2‖2

L2 + ‖∇̃j1‖2
L2

)

+ C
(‖ω1‖2

L2 + ‖ω2‖2
L2 + ‖∂xj3‖2

L2 + ‖j1‖2
L2 + ‖j2‖2

L2
)
,

where

L21 = –
∫∫

R2
∂xyu3∂yu2∂xω1 dx dy, L22 = –

∫∫

R2
∂yu3∂xyu2∂xω1 dx dy,

L23 = –
∫∫

R2
∂xxu3∂yu1∂xω1 dx dy, L24 = –

∫∫

R2
∂xu3∂xyu1∂xω1 dx dy,

L25 =
∫∫

R2
∂xyb3∂yb2∂xω1 dx dy, L26 =

∫∫

R2
∂yb3∂xyb2∂xω1 dx dy,

L27 =
∫∫

R2
∂xxb3∂yb1∂xω1 dx dy, L28 =

∫∫

R2
∂xb3∂xyb1∂xω1 dx dy,

L41 =
∫∫

R2
∂yyu3∂xu1∂yω1 dx dy, L42 =

∫∫

R2
∂yu3∂xyu1∂yω1 dx dy,

L43 = –
∫∫

R2
∂xyu3∂yu1∂yω1 dx dy, L44 = –

∫∫

R2
∂xu3∂yyu1∂yω1 dx dy,

L45 = –
∫∫

R2
∂yyb3∂xb1∂yω1 dx dy, L46 = –

∫∫

R2
∂yb3∂xyb1∂yω1 dx dy,

L47 =
∫∫

R2
∂xyb3∂yb1∂yω1 dx dy, L48 =

∫∫

R2
∂xb3∂yyb1∂yω1 dx dy,
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L3 + L11 =
4∑

i=1

�i ≤ ν1

12
‖∇̃∂xj1‖2

L2 + C
(
1 + ‖∂xb‖2

L2‖∂xj3‖2
L2

)(‖∇̃ω1‖2
L2 + ‖∇̃j1‖2

L2
)
,

where

�1 = 2
∫∫

R2
∂xω1∂xb1∂xj1 dx dy, �2 = 2

∫∫

R2
∂xω1∂xb2∂yj1 dx dy,

�3 = 2
∫∫

R2
∂yω1∂yb1∂xj1 dx dy, �4 = 2

∫∫

R2
∂yω1∂yb2∂yj1 dx dy,

L5 =
4∑

i=1

L5i ≤ μ1

10
‖∇̃∂xω2‖2

L2 + C
(‖∂xu‖2

L2 + ‖∂yu1‖2
L2 + ‖∂xu‖ 2

3
L2‖∂xω3‖

2
3
L2

)‖∇̃ω2‖2
L2 ,

where

L51 = –
∫∫

R2
∂xu1∂xω2∂xω2 dx dy, L52 = –

∫∫

R2
∂xu2∂xω2∂yω2 dx dy,

L53 = –
∫∫

R2
∂yu1∂xω2∂yω2 dx dy, L54 = –

∫∫

R2
∂yu2∂yω2∂yω2 dx dy,

L6 + L8 =
8∑

i=1

(L6i + L8i)

≤ 2μ1

5
‖∇̃∂xω2‖2

L2 + C
((‖∂xu‖2

L2 + 1
)‖∂xω3‖2

L2 +
(‖∂xb‖2

L2 + ‖j3‖2
L2

+ 1
)‖∂xj3‖2

L2 + 1
)(‖∇̃ω1‖2

L2 + ‖∇̃ω2‖2
L2 + ‖∇̃j1‖2

L2 + ‖∇̃j2‖2
L2

)

+ C
(‖ω2‖2

L2 + ‖j1‖2
L2 + ‖j2‖2

L2
)
,

where

L61 =
∫∫

R2
∂xyu3∂xu2∂xω2 dx dy, L62 =

∫∫

R2
∂yu3∂xxu2∂xω2 dx dy,

L63 = –
∫∫

R2
∂xxu3∂yu2∂xω2 dx dy, L64 = –

∫∫

R2
∂xu3∂xyu2∂xω2 dx dy,

L65 = –
∫∫

R2
∂xyb3∂xb2∂xω2 dx dy, L66 = –

∫∫

R2
∂xxb2∂yb3∂xω2 dx dy,

L67 =
∫∫

R2
∂xxb3∂yb2∂xω2 dx dy, L68 =

∫∫

R2
∂xb3∂xyb2∂xω2 dx dy,

L81 =
∫∫

R2
∂yyu3∂xu2∂yω2 dx dy, L82 =

∫∫

R2
∂yu3∂xyu2∂yω2 dx dy,

L83 =
∫∫

R2
∂xyu3∂xu1∂yω2 dx dy, L84 =

∫∫

R2
∂xu3∂xyu1∂yω2 dx dy,

L85 = –
∫∫

R2
∂yyb3∂xb2∂yω2 dx dy, L86 = –

∫∫

R2
∂yb3∂xyb2∂yω2 dx dy,

L87 = –
∫∫

R2
∂xyb3∂xb1∂yω2 dx dy, L88 = –

∫∫

R2
∂xb3∂xyb1∂yω2 dx dy,

L7 + L15 =
4∑

i=1

♦i ≤ ν1

12
‖∇̃∂xj2‖2

L2 + C
(
1 + ‖∂xb‖2

L2‖∂xj3‖2
L2

)(‖∇̃ω2‖2
L2 + ‖∇̃j2‖2

L2
)
,
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where

♦1 = 2
∫∫

R2
∂xω2∂xb1∂xj2 dx dy, ♦2 = 2

∫∫

R2
∂xω2∂xb2∂yj2 dx dy,

♦3 = 2
∫∫

R2
∂yω2∂yb1∂xj2 dx dy, ♦4 = 2

∫∫

R2
∂yω2∂yb2∂yj2 dx dy,

L9 =
4∑

i=1

L9i ≤ ν1

12
‖∇̃∂xj1‖2

L2 + C
(‖∂xu‖2

L2 + ‖∂yu1‖2
L2 + ‖∂xu‖ 2

3
L2‖∂xω3‖

2
3
L2

)‖∇̃j1‖2
L2 ,

where

L91 = –
∫∫

R2
∂xu1∂xj1∂xj1 dx dy, L92 = –

∫∫

R2
∂xu2∂xj1∂yj1 dx dy,

L93 = –
∫∫

R2
∂yu1∂xj1∂yj1 dx dy, L94 = –

∫∫

R2
∂yu2∂yj1∂yj1 dx dy,

L10 + L12 =
8∑

i=1

(L10i + L12i)

≤ 5μ1

12
‖∇̃∂xj1‖2

L2 + C
((‖∂xu‖2

L2 + ‖∂yu1‖2
L2 + 1

)‖∂xω3‖2
L2 +

(‖∂xb‖2
L2

+ ‖∂yb1‖2
L2 + 1

)‖∂xj3‖2
L2 + ‖∂xu‖ 2

3
L2‖∂xω3‖

2
3
L2 + ‖∂yu1‖

2
3
L2‖∇̃ω3‖

2
3
L2

+
(‖∂yb1‖2

L2 + 1
)‖∇̃ω3‖2

L2 + ‖∇̃j3‖2
L2 + 1

)(‖∇̃ω1‖2
L2 + ‖∇̃ω2‖2

L2

+ ‖∇̃j1‖2
L2 + ‖∇̃j2‖2

L2
)

+ C
(‖ω1‖2

L2 + ‖ω2‖2
L2 + ‖j1‖2

L2 + ‖j2‖2
L2

)
,

where

L101 = –
∫∫

R2
∂xyb3∂yu2∂xj1 dx dy, L102 = –

∫∫

R2
∂yb3∂xyu2∂xj1 dx dy,

L103 = –
∫∫

R2
∂xxb3∂yu1∂xj1 dx dy, L104 = –

∫∫

R2
∂xb3∂xyu1∂xj1 dx dy,

L105 =
∫∫

R2
∂xyu3∂yb2∂xj1 dx dy, L106 =

∫∫

R2
∂yu3∂xyb2∂xj1 dx dy,

L107 =
∫∫

R2
∂xxu3∂yb1∂xj1 dx dy, L108 =

∫∫

R2
∂xu3∂xyb1∂xj1 dx dy,

L121 =
∫∫

R2
∂yyb3∂xu1∂yj1 dx dy, L122 =

∫∫

R2
∂yb3∂xyu1∂yj1 dx dy,

L123 = –
∫∫

R2
∂xyb3∂yu1∂yj1 dx dy, L124 = –

∫∫

R2
∂xb3∂yyu1∂yj1 dx dy,

L125 =
∫∫

R2
∂yyu3∂xb1∂yj1 dx dy, L126 =

∫∫

R2
∂yu3∂xyb1∂yj1 dx dy,

L127 =
∫∫

R2
∂xyu3∂yb1∂yj1 dx dy, L128 =

∫∫

R2
∂xu3∂yyb1∂yj1 dx dy,

L13 =
4∑

i=1

L13i ≤ μ1

12
‖∇̃∂xj2‖2

L2 + C
(‖∂xu‖2

L2 + ‖∂yu1‖2
L2 + ‖∂xu‖ 2

3
L2‖∂xω3‖

2
3
L2

)‖∇̃j2‖2
L2 ,
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where

L131 = –
∫∫

R2
∂xu1∂xj2∂xj2 dx dy, L132 = –

∫∫

R2
∂xu2∂xj2∂yj2 dx dy,

L133 = –
∫∫

R2
∂yu1∂xj2∂yj2 dx dy, L134 = –

∫∫

R2
∂yu2∂yj2∂yj2 dx dy,

L14 + L16 =
8∑

i=1

(L14i + L16i)

≤ 5μ1

12
‖∇̃∂xj2‖2

L2 + C
((‖∂xu‖2

L2 + 1
)‖∂xω3‖2

L2 +
(‖∂xb‖2

L2 + 1
)‖∂xj3‖2

L2

+ ‖∂xu‖ 2
3
L2‖∂xω3‖

2
3
L2 + 1

)(‖∇̃ω1‖2
L2 + ‖∇̃ω2‖2

L2 + ‖∇̃j2‖2
L2

+ ‖∇̃j2‖2
L2

)
+ C

(‖ω1‖2
L2 + ‖ω2‖2

L2 + ‖j2‖2
L2 + ‖j2‖2

L2
)
,

where

L141 =
∫∫

R2
∂xyb3∂xu2∂xj2 dx dy, L142 =

∫∫

R2
∂yb3∂xxu2∂xj2 dx dy,

L143 = –
∫∫

R2
∂xxb3∂yu2∂xj2 dx dy, L144 = –

∫∫

R2
∂xb3∂xyu2∂xj2 dx dy,

L145 = –
∫∫

R2
∂xyu3∂xb2∂xj2 dx dy, L146 = –

∫∫

R2
∂yu3∂xxb2∂xj2 dx dy,

L147 =
∫∫

R2
∂xxu3∂yb2∂xj2 dx dy, L148 =

∫∫

R2
∂xu3∂xyb2∂xj2 dx dy,

L161 =
∫∫

R2
∂yyb3∂xu2∂yj2 dx dy, L162 =

∫∫

R2
∂yb3∂xyu2∂yj2 dx dy,

L163 =
∫∫

R2
∂xyb3∂xu1∂yj2 dx dy, L164 =

∫∫

R2
∂xb3∂xyu1∂yj2 dx dy,

L165 = –
∫∫

R2
∂yyu3∂xb2∂yj2 dx dy, L166 = –

∫∫

R2
∂yu3∂xyb2∂yj2 dx dy,

L167 = –
∫∫

R2
∂xyu3∂xb1∂yj2 dx dy, L168 = –

∫∫

R2
∂xu3∂xyb1∂yj2 dx dy,

L17 + L18 ≤ ‖∇̃ω1‖2
L2 + ‖∇̃ω2‖2

L2 + ‖�̃θ‖2
L2 ,

L19 ≤ C‖∇̃∂xω3‖2
L2 + C‖∇̃θ‖ 2

3
L2‖∇̃ω3‖

2
3
L2‖�̃θ‖2

L2 +
κ1

4
‖�̃∂xθ‖2L2

+ C‖ω3‖
2
3
L2‖∇̃ω3‖

2
3
L2‖�̃θ‖2

L2 ,

L20 ≤ κ1

4
‖�̃∂xθ‖2L2 + C‖ω2‖2

L2 + ‖∇̃ω1‖2
L2 + ‖�̃θ‖2

L2 .

After combining all inequalities, we have

1
2

d
dt

G2
2(t) + μ1

∥
∥(∇̃∂xω1, ∇̃∂xω2)

∥
∥2

L2 + ν1
∥
∥(∇̃∂xj1, ∇̃∂xj2)

∥
∥2

L2 + κ1‖�̃∂xθ‖2
L2

≤ μ1

2
∥
∥(∇̃∂xω1, ∇̃∂xω2)

∥
∥2

L2 +
ν1

2
∥
∥(∇̃∂xj1, ∇̃∂xj2)

∥
∥2

L2 + CA3(t)G2
2(t) + CA4(t), (2.13)
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where A3(t) = (‖∂xu‖2
L2 + (‖∂xu‖2

L2 + ‖∂yu1‖2
L2 + 1)‖∂xω3‖2

L2 + ‖∂xu‖ 2
3
L2‖∂xω3‖

2
3
L2 +

(∂yb1‖2
L2 + 1)‖∇̃ω3‖2

L2 + (‖∂yu1‖
2
3
L2 +‖ω3‖

2
3
L2 )‖∇̃ω3‖

2
3
L2 + (‖∂xb‖2

L2 +‖∂yb1‖2
L2 +‖j2‖2

L2 +‖j3‖2
L2 +

1)‖∂xj3‖2
L2 + (‖∂yb1‖2

L2 +1)‖∇̃j3‖2
L2 ) and A4(t) = (‖ω1‖2

L2 +‖ω2‖2
L2 +‖j1‖2

L2 +‖j2‖2
L2 +‖∂xj3‖2

L2 )
are integrable over (0, T).

Thanks to Gronwall’s inequality and the estimate for ‖(u, b, θ )‖L2 in (2.2), the estimate for
‖(ω3, j3)‖L2 in (2.4), the bound for ‖(ω̃, j̃, ∇̃θ )‖L2 in (2.6), and the bound for ‖(∇̃ω3, ∇̃j3)‖L2

in (2.9), we reach

‖∇̃ω̃‖2
L2 + ‖∇̃ j̃‖2

L2 + ‖�̃θ̃‖2
L2 + μ1

∫ T

0

∥
∥(∇̃∂xω1, ∇̃∂xω2)

∥
∥2

L2 dt

+ ν1

∫ T

0

∥
∥(∇̃∂xj1, ∇̃∂xj2)

∥
∥2

L2 dt + κ1

∫ T

0
‖�̃∂xθ‖2

L2 dt ≤ C, (2.14)

where C depends on T and the initial H2-norm.
Thus taking the global H1-bound for ω1, ω2, ω3 together with the global H1-bound for

j1, j2, j3 and the global H2-bound for θ , we obtain the global H2-bound for (u, b, θ ) of 2 1
2 D

magnetic Bénard system with horizontal dissipation, horizontal magnetic diffusion, and
horizontal thermal diffusivity.

2.2 Case ii
Under conditions (1.8) and (1.9). For these two cases, the proof is much similar to the
previous case. Since the higher-order estimates can be obtained as in case (1.7), provided
that the uniform lower-order estimates have been done, it suffices to establish the lower-
order estimates of the solutions with the aid of regularity criterion.

2.2.1 Subcase ♣: suppose that
∫ T

0 ‖∂yu1‖2
L2 dt < ∞ for some T > 0

Proposition 2.6 Assume that (u0, b0, θ0) satisfies the condition stated in Theorem 1.1. Let
(u, b, θ ) be the corresponding solution of (1.6). Then (u, b, θ ) satisfies, for any T > 0 and
t ≤ T ,

∥
∥(u, b, θ )

∥
∥

H1(R2) ≤ C3eC4
∫ t

0 ‖∂yu1‖2
L2 dτ , (2.15)

where C3 is a constant depending on T and the initial data and C4 is a pure constant.

Proof Proposition 2.6 is an easy consequence of Lemmas 2.7 and 2.8. �

Lemma 2.7 Consider (1.5) with μ1 > 0, μ2 = 0, ν1 > 0, ν2 = 0, κ1 > 0, κ2 = 0. Assume that
(u0, b0, θ0) satisfies the condition stated in Theorem 1.1. Let (u, b, θ ) be the corresponding
solution of (1.6). Then ω3 and j3 satisfy

‖ω3‖2
L2 + ‖j3‖2

L2 + μ1

∫ T

0
‖∂xω3‖2

L2 dt + ν1

∫ T

0
‖∂xj3‖2

L2 dt ≤ C (2.16)

provided
∫ T

0 ‖∂yu1‖2
L2 dt < ∞ for some T > 0.
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Proof The lower-order estimates of u3 and b3 follow from (2.5):

1
2

d
dt

F2
1 (t) + μ1‖∂xω3‖2

L2 + ν1‖∂xj3‖2
L2

= O1 + O2 + O3 + O4 + O5

≤ ν1

2
‖∂xj3‖2

L2 + C
(‖∂xu‖2

L2 +
(‖u‖2

L2 + 1
)‖∂yu1‖2

L2
)‖j3‖2

L2 , (2.17)

where

O1 = 2
∫∫

R2
∂xb1∂yu1j3 dx dy, O2 = 2

∫∫

R2
∂xb1∂xu2j3 dx dy,

O3 = –2
∫∫

R2
∂xu1∂xb2j3 dx dy, O4 = 2

∫∫

R2
u1∂xyb1j3 dx dy,

O5 = 2
∫∫

R2
u1∂yb1∂xj3 dx dy.

Thanks to Gronwall’s inequality and the criterion
∫ T

0 ‖∂yu1‖2
L2 dt < ∞, we have

∥
∥(ω3, j3)

∥
∥

L∞(0,T ;L2(R2)) + μ1‖∂xω3‖L2(0,T ;L2(R2)) + ν1‖∂xj3‖L2(0,T ;L2(R2)) ≤ C. (2.18)

This completes the proof of Lemma 2.7. �

Lemma 2.8 Consider (1.5) with μ1 > 0, μ2 = 0, ν1 > 0, ν2 = 0, κ1 > 0, κ2 = 0. Assume that
(u0, b0, θ0) satisfies the condition stated in Theorem 1.1. Let (u, b, θ ) be the corresponding
solution of (1.6). Then ω̃, j̃, and ∇̃θ satisfy

‖ω̃‖2
L2 + ‖j̃‖2

L2 + ‖∇̃θ‖2
L2 + μ1

∫ T

0
‖∂xω̃‖2

L2 dt + ν1

∫ T

0
‖∂xj̃‖2

L2 dt

+ κ1

∫ T

0
‖∇̃∂xθ‖2

L2 dt ≤ C (2.19)

provided
∫ T

0 ‖∂yu1‖2
L2 dt < ∞ for some T > 0.

Proof The proof of Lemma 2.8 is similar to [5]. So we omit the details. �

2.2.2 Subcase ♠: suppose that
∫ T

0 ‖∂yb1‖2
L2 dt < ∞ for some T > 0

Proposition 2.9 Assume that (u0, b0, θ0) satisfies the condition stated in Theorem 1.1. Let
(u, b, θ ) be the corresponding solution of (1.6). Then (u, b, θ ) satisfies, for any T > 0 and
t ≤ T ,

∥
∥(u, b, θ )

∥
∥

H1(R2) ≤ C5eC6
∫ t

0 ‖∂yb1‖2
L2 dτ , (2.20)

where C5 is a constant depending on T and the initial data and C6 is a pure constant.

Proof Proposition 2.9 is an easy consequence of Lemmas 2.10 and 2.11. �
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Lemma 2.10 Consider (1.5) with μ1 > 0, μ2 = 0, ν1 > 0, ν2 = 0, κ1 > 0, κ2 = 0. Assume that
(u0, b0, θ0) satisfies the condition stated in Theorem 1.1. Let (u, b, θ ) be the corresponding
solution of (1.6). Then ω3 and j3 satisfy

‖ω3‖2
L2 + ‖j3‖2

L2 + μ1

∫ T

0
‖∂xω3‖2

L2 dt + ν1

∫ T

0
‖∂xj3‖2

L2 dt ≤ C (2.21)

provided
∫ T

0 ‖∂yb1‖2
L2 dt < ∞ for some T > 0.

Proof Similar to the previous arguments, the lower-order estimates of u3 and b3 follow
from (2.5):

1
2

d
dt

F2
1 (t) + μ1‖∂xω3‖2

L2 + ν1‖∂xj3‖2
L2

= Q1 + Q2 + Q3 + Q4 + Q5

≤ μ1

2
‖∂xω3‖2

L2 +
ν1

2
‖∂xj3‖2

L2

+ C
(‖∂xu‖2

L2 +
(‖b‖2

L2 + 1
)‖∂yb1‖2

L2
)(‖ω3‖2

L2 + ‖j3‖2
L2

)
, (2.22)

where

Q1 = –2
∫∫

R2
b1∂xyu1j3 dx dy, Q2 = –2

∫∫

R2
b1∂yu1∂xj3 dx dy,

Q3 = 2
∫∫

R2
∂xb1∂xu2j3 dx dy, Q4 = –2

∫∫

R2
∂xu1∂xb2j3 dx dy,

Q5 = –2
∫∫

R2
∂xu1∂yb1j3 dx dy.

Taking advantage of Gronwall’s inequality and the criterion
∫ T

0 ‖∂yb1‖2
L2 dt < ∞ gives

∥
∥(ω3, j3)

∥
∥

L∞(0,T ;L2(R2)) + μ1‖∂xω3‖L2(0,T ;L2(R2)) + ν1‖∂xj3‖L2(0,T ;L2(R2)) ≤ C. (2.23)

Thus we complete the proof of Lemma 2.10. �

Lemma 2.11 Consider (1.5) with μ1 > 0, μ2 = 0, ν1 > 0, ν2 = 0, κ1 > 0, κ2 = 0. Assume that
(u0, b0, θ0) satisfies the condition stated in Theorem 1.1. Let (u, b, θ ) be the corresponding
solution of (1.6). Then ω̃, j̃, and ∇̃θ satisfy

‖ω̃‖2
L2 + ‖j̃‖2

L2 + ‖∇̃θ‖2
L2 + μ1

∫ T

0
‖∂xω̃‖2

L2 dt + ν1

∫ T

0
‖∂xj̃‖2

L2 dt

+ κ1

∫ T

0
‖∇̃∂xθ‖2

L2 dt ≤ C (2.24)

provided
∫ T

0 ‖∂yb1‖2
L2 dt < ∞ for some T > 0.

Proof Using the similar arguments as in [5], we can easily obtain this lemma. �

In view of the above arguments, we have completed the proof of Theorem 1.1. The proof
of Theorem 1.2 is similar, so we leave it to the interested readers.
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