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Abstract
In this paper, we study the initial boundary value problem for a Petrovsky type
equation with a memory term, nonlinear weak damping, and a superlinear source:

utt +�2u –
∫ t

0
g(t – τ )�2u(τ )dτ + |ut|m–2ut = |u|p–2u, in Ω × (0, T ).

When the source is stronger than dissipations, we obtain the existence of certain
weak solutions which blow up in finite time with initial energy E(0) = R for any given
R ≥ 0.
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1 Introduction
In this paper, we are concerned with the following initial boundary value problem for a
nonlinear Petrovsky type equation with a memory term and nonlinear damping:

⎧⎪⎪⎨
⎪⎪⎩

utt + �2u –
∫ t

0 g(t – τ )�2u(τ ) dτ + |ut|m–2ut = |u|p–2u, in Ω × (0, T),

u(x, t) = ∂νu(x, t) = 0, on ∂Ω × [0, +∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω ,

(1.1)

where m ≥ 2, p > 2, Ω is a bounded domain of Rn (n ≥ 1) with a smooth boundary ∂Ω ,
∂νu is the outer normal derivative of u, the relaxation function g : R+ →R

+ is nonincreas-
ing with

∫ ∞
0 g(s) ds < 1, the initial data (u0, u1) ∈ H2

0 (Ω) × L2(Ω). The Petrovsky type of
equation

utt + �2u = g(x, t, u, ut)

originated from the study of beams and plates, and it can also be used in many branches
of physics such as nuclear physics, optics, geophysics, and ocean acoustics. In the past
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decades, a great deal of mathematical effort has been devoted to the study of well-
posedness, regularity, asymptotic behavior for such kind of fourth order wave equations,
as reported in [1–9] and the references therein.

In [10], Messaoudi studied the following nonlinearly damped semilinear Petrovsky
equation:

⎧⎪⎪⎨
⎪⎪⎩

utt + �2u + a|ut|m–2ut = b|u|p–2u, in Ω × (0, T),

u(x, t) = ∂νu(x, t) = 0, on ∂Ω × [0, +∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω ,

(1.2)

where a, b > 0. It is showed that the solution blows up in finite time if p > m and the initial
energy is negative, and it globally exists if p < m. In [11], Messaoudi considered a nonlinear
wave equation under the influence of a linear memory term and a nonlinear damping

⎧⎪⎪⎨
⎪⎪⎩

utt – �u +
∫ t

0 g(t – τ )�u(τ ) dτ + |ut|m–1ut = |u|p–1u, in Ω × (0, T),

u(x, t) = 0, on ∂Ω × [0, +∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω .

(1.3)

By using the method in [12], the author proved that the solution is global if p ≤ m and
blows up in finite time with negative initial energy if p > m. In [13], Messaoudi improved
the blow-up result in [11] to solutions with positive bounded initial energy. In [14], Chen
and Zhou studied problem (1.2) and obtained the finite time blow-up results provided
that the initial energy is positive bounded or vanishing. If the solution u of problem (1.2)
blows up in finite time, Zhou [5] presented an estimate for the lower bound of blow-up
time. Following the strategy similar to that in [13], Li and Gao [15] studied problem (1.1).
Under the following assumptions:

(a1) p > m ≥ 2,
(a2)

∫ ∞
0 g(s) ds < 1 – 1

(p–1)2 ,
(a3) E(0) < E1 and ‖�u0‖L2 > C, where E1 and C are positive constants,

Li and Gao proved that the solution of problem (1.1) blows up in finite time.
In recent years, some researchers obtained the finite time blow-up results for different

kinds of evolution equations with initial data at arbitrary high energy level. In [16], Todor-
ova and Vitillaro studied the Cauchy problem for equation (1.3) without the memory term.
The authors proved that, for any given α > 0, λ ≥ 0, there exist infinitely many data u0, u1

in the energy space such that the initial energy E(0) = λ, the gradient norm ‖∇u0‖L2 = α,
and the solution of the Cauchy problem blows up in finite time. By establishing a special
second order differential inequality, Wang [4] studied the following initial boundary value
problem of the fourth order wave equation with the nonlinear strain and source terms:

⎧⎪⎪⎨
⎪⎪⎩

utt + ut + �2u – α�u –
∑n

i=1
∂

∂xi
(θi(x)) = f (u), in Ω × (0, T),

u(x, t) = ∂νu(x, t) = 0, on ∂Ω × [0, +∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω ,

and established the finite time blow-up results of solutions with arbitrary initial energy,
–∞ < E(0) < +∞. In [17], Ye considered the following initial boundary value problem of
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higher order nonlinear viscoelastic wave equation:

⎧⎪⎪⎨
⎪⎪⎩

utt + (–�)mu –
∫ t

0 g(t – s)(–�)mu(s) dτ = |u|p–2u, in Ω ×R
+,

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω ,
∂iu
∂νi

|∂Ω = 0, i = 0, 1, 2, . . . , m – 1,

where m ≥ 1, p > 2. By using a special differential inequality, the author obtained the ex-
istence of certain solutions with nonpositive, positive bounded, or arbitrary high initial
energy that blow up in finite time and also derived the life span estimates of these solu-
tions. In [18], Song and Xue studied an equation similar to (1.3) except for the nonlinear
weak damping term which is replaced by a linear strong damping term –�ut . By apply-
ing the technique similar to that in [18], Song [19] considered problem (1.3) and obtained
the finite time blow-up result for certain solutions whose initial data have arbitrary high
initial energy. By combining Song’s method and the concavity method, we studied some
parabolic type equations and hyperbolic equations with damping terms. We also obtained
the finite time blow-up result for certain solutions whose initial data have arbitrary high
initial energy, see [20–23]. For details of the study of other kinds of evolution equations,
we refer the reader to [24–35].

To the best of our knowledge, there are no results about the finite time blow-up for
solutions of problem (1.1) with arbitrary high initial energy. In this paper, following the
strategy similar to that in [19] with minor modifications and under suitable conditions on
m, p and g :

(a1) p > m ≥ 2,
(a2)

∫ ∞
0 g(s) ds < 1 – 1

(p–1)2 ,
(a3′) 0 < E(0) < C

∫
Ω

u0u1 dx, where C is a positive constant,
we prove that there exist solutions of problem (1.1) that blow up in finite time. Moreover,
we prove that, for any given R > 0, there exists (u0, u1) ∈ H2

0 (Ω) × L2(Ω) such that E(0) = R
and (u0, u1) satisfies assumption (a3′). We finally obtain a set B1 ∪B2 in the space H2

0 (Ω)×
L2(Ω) such that the solution u of problem (1.1) blows up in finite time provided that the
initial data (u0, u1) ∈ B1 ∪B2. Hence, we have extended the result of [15].

The rest of the paper is organized as follows. In Sect. 2, we present some notations and
definitions and give the local existence theorem and some important lemmas. In Sect. 3,
we prove our main results.

2 Preliminaries
Throughout this paper, we denote R

+ = [0, +∞) and the standard Ls(Ω)-norm by |u|s =
‖u‖Ls(Ω). In view of the Sobolev–Poincaré inequality, the norm ‖w‖ := |�w|2 is equivalent
to the usual norm

‖w‖H2 =
(|�w|22 + |∇w|22 + |w|22

) 1
2

on the Sobolev space

H2
0 (Ω) =

{
w ∈ H2(Ω) : w = ∂νw = 0 on ∂Ω

}
.

We assume that p, m and the relaxation function g satisfy the following assumptions.
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(H1) 2 < p < ∞, if n ≤ 4; 2 < p ≤ 2(n–2)
n–4 , if n ≥ 5.

(H2) 2 ≤ m < ∞, if n ≤ 4; 2 ≤ m ≤ 2n
n–4 , if n ≥ 5.

(H3) g : [0, +∞) → [0, +∞) is a C1 non-increasing function satisfying

l := 1 –
∫ ∞

0
g(s) ds > 0.

Lemma 2.1 Suppose that (H1) holds. Then there exists a sequence of functions {vk} ∈
H2

0 (Ω) such that

1
2

∫
Ω

|�vk|2 dx +
1
2

∫
Ω

|vk|2 dx –
1
p

∫
Ω

|vk|p dx → +∞ as k → ∞.

Proof It is easy to verify that the C2 functional

J(v) :=
1
2

∫
Ω

∣∣�v(x)
∣∣2 dx +

1
2

∫
Ω

∣∣v(x)
∣∣2 dx –

1
p

∫
Ω

∣∣v(x)
∣∣p dx, v ∈ H2

0 (Ω)

is the Euler–Lagrange functional for the following boundary value problem:

⎧⎨
⎩

�2v + v = |v|p–2v, in Ω ,

v = ∂v
∂ν

= 0, on ∂Ω .
(2.1)

Similar to the proof of Theorem 3.7 in [36], by using the fountain theorem, we can prove
that problem (2.1) has a sequence of weak solutions {vk} ⊂ H2

0 (Ω) such that J(vk) → +∞
as k → ∞. �

Similar to Definition 1.2 in [37, 38], we define the weak solution of (1.1) as follows.

Definition 2.2 A function u = u(x, t) is said to be a weak solution of (1.1) defined on the
time interval [0, T] for some T > 0 provided that u ∈ C([0, T]; H2

0 (Ω)) is such that ut ∈
C([0, T]; L2(Ω)) ∩ Lm(Ω × (0, T)) and

(i) u(x, 0) = u0(x), ut(x, 0) = u1(x);
(ii) The following variational identity holds for all t ∈ [0, T] and all test functions φ ∈F :

∫
Ω

ut(t)φ(t) dx –
∫

Ω

ut(0)φ(0) dx –
∫ t

0

∫
Ω

ut(τ )φt(τ ) dx dτ

+
∫ t

0

∫
Ω

�u(τ )�φ(τ ) dx dτ –
∫ t

0

∫ s

0
g(s – τ )

∫
Ω

�u(τ )�φ(s) dx dτ ds

+
∫ t

0

∫
Ω

∣∣ut(τ )
∣∣m–2ut(τ )φ(τ ) dx dτ

=
∫ t

0

∫
Ω

∣∣u(τ )
∣∣p–2u(τ )φ(τ ) dx dτ , (2.2)

where

F =
{
φ : φ ∈ C

(
[0, T]; H2

0 (Ω)
)

with φt ∈ C
(
[0, T]; L2(Ω)

)}
.
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Suppose that u is a weak solution of (1.1), then we define the energy functional E(t) by

E(t) =
1
2
|ut|22 +

1
2
(
1 – G(t)

)|�u|22 +
1
2

(g ◦ �u)(t) –
1
p
|u|pp, (2.3)

where G(t) :=
∫ t

0 g(s) ds and

(g ◦ �u)(t) :=
∫ t

0
g(t – τ )

∣∣�u(t) – �u(τ )
∣∣2
2 dτ .

We state the local existence theorem as follows.

Theorem 2.3 Assume that m, p, and g satisfy (H1)–(H3). Then, for any given (u0, u1) ∈
H2

0 (Ω) × L2(Ω), problem (1.1) has a unique weak solution u such that

u ∈ C
(
[0, T]; H2

0 (Ω)
)
, ut ∈ C

(
[0, T]; L2(Ω)

) ∩ Lm(
Ω × (0, T)

)

for some T > 0. Moreover, we have the following energy identity:

E(t) –
1
2

∫ t

0

(
g ′ ◦ �u

)
(τ ) dτ +

1
2

∫ t

0
G(τ )

∣∣�u(τ )
∣∣2
2 dτ

+
∫ t

0

∣∣ut(τ )
∣∣m
m dτ = E(0) for all t ∈ [0, T∗), (2.4)

where T∗ is the maximal existence time for the weak solution u.

Proof Since p satisfies (H1), the embedding H2
0 (Ω) ↪→ L2(p–1)(Ω) is continuous and it

holds that |u|p–2u ∈ L2(Ω) provided u ∈ H2
0 (Ω). We claim that the Nemytskii operator

f : u �→ |u|p–2u is locally Lipschitz continuous from H2
0 (Ω) into L2(Ω). In fact, for any

u, v ∈ H2
0 (Ω), we have

∣∣f (u) – f (v)
∣∣
2

=
[∫

Ω

(|u|p–2u – |v|p–2v
)2 dx

] 1
2

≤ (p – 1)
[∫

Ω

|ξ |2(p–2)|u – v|2 dx
] 1

2

≤ (p – 1)
[∫

Ω

|u|2(p–2)|u – v|2 dx +
∫

Ω

|v|2(p–2)|u – v|2 dx
] 1

2

≤ (p – 1)
[(∫

Ω

|u|2(p–2)· p–1
p–2 dx

) p–2
p–1

(∫
Ω

|u – v|2(p–1) dx
) 1

p–1

+
(∫

Ω

|v|2(p–2)· p–1
p–2 dx

) p–2
p–1

(∫
Ω

|u – v|2(p–1) dx
) 1

p–1
] 1

2

= (p – 1)
[|u|2(p–2)

2(p–1)|u – v|22(p–1) + |v|2(p–2)
2(p–1)|u – v|22(p–1)

] 1
2

≤ C
(‖u‖2(p–2) + ‖v‖2(p–2)) 1

2 ‖u – v‖,
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where ξ (x) is between u(x) and v(x). So f is locally Lipschitz continuous from H2
0 (Ω) into

L2(Ω).
Then, following the framework in [37, Sect. 2], by employing the theory of monotone

operators and nonlinear semigroups, with energy methods, we can establish the existence
of a unique local weak solution for problem (1.1). �

Remark 2.4 Using the approximation technique and the contraction mapping principle,
the local existence result can also be established similar to those of [10, 39].

Lemma 2.5 Assume that (H1)–(H3) hold and u is the weak solution of problem (1.1). Then
E(t) is nonincreasing and

d
dt

E(t) =
1
2
(
g ′ ◦ �u

)
(t) –

1
2

G(t)|�u|22 – |ut|mm ≤ 0, a.e. t ∈ [0, T∗). (2.5)

Proof In view of the regularity of u and ut , we have
∫ t

0 |ut(τ )|mm dτ < ∞,

∫ t

0
G(τ )

∣∣�u(τ )
∣∣2
2 dτ ≤ max

τ∈[0,t]

∣∣�u(τ )
∣∣2
2

∫ t

0
G(τ ) dτ < ∞,

and
∫ t

0

(
g ′ ◦ �u

)
(τ ) dτ =

∫ t

0
g ′(t – τ )

∣∣�u(t) – �u(τ )
∣∣2
2 dτ

≤ 2 max
τ∈[0,t]

∣∣�u(τ )
∣∣2
2

∫ t

0
g ′(τ ) dτ < ∞.

Therefore, by (2.4), E(t) – E(0) is absolutely continuous on any closed subsegment of
[0, T∗). Then, by differentiating (2.4) with respect to t, we obtain (2.5) for a.e. t ∈ [0, T∗). �

By constructing proper Lyapunov’s functions, Li and Gao [15] obtained the following
blow-up result.

Theorem 2.6 ([15]) Assume that (H1)–(H3) hold,

p > m and l >
1

(p – 1)2 .

Then the weak solution of problem (1.1) blows up in finite time provided that the initial
data (u0, u1) ∈ H2

0 (Ω) × L2(Ω) satisfies E(0) < E1 and l 1
2 |�u0|2 > λ1, where

E1 =
(

1
2

–
1
p

)
λ2

1, λ1 = B
– p

p–2
1 , B1 = Bl– 1

2 , B–1 = inf
w∈H2

0 (Ω),w �=0

|�w|2
|w|p .

For the case of E(0) < 0, the following blow-up result is a natural conclusion of Theo-
rem 2.6.

Proposition 2.7 Assume that (H1)–(H3) hold,

p > m and l >
1

(p – 1)2 .
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Then the weak solution of problem (1.1) blows up in finite time provided that the initial
data (u0, u1) ∈ H2

0 (Ω) × L2(Ω) satisfies E(0) < 0.

Proof For any (u0, u1) ∈ H2
0 (Ω) × L2(Ω) such that

E(0) =
1
2
|u1|22 +

1
2
|�u0|22 –

1
p
|u0|pp < 0,

it holds that

0 <
1
2
|�u0|22 <

1
p
|u0|pp ≤ 1

p
(
B|�u0|2

)p.

Then

|�u0|2 >
(

p
2

) 1
p–2

B– p
p–2 > B– p

p–2 =
(
l

1
2 B1

)– p
p–2 = l– p

2(p–2) λ1.

Since 0 < l < 1, we finally obtain

l
1
2 |�u0|2 > l– 1

p–2 λ1 > λ1.

So, by Theorem 2.6, the solution u with initial data (u0, u1) blows up in finite time. �

3 Main results
Now, we state our main results as follows.

Theorem 3.1 Assume that (H1)–(H3) hold,

p > m and l >
1

(p – 1)2 .

Then, for any R ≥ 0, there exists a weak solution u of problem (1.1) blowing up in finite time
provided that the initial data (u0, u1) ∈ H2

0 (Ω) × L2(Ω) satisfies E(0) = R.

Proof In the following, we present the proof of Theorem 3.1 in three steps.
Step 1. Suppose that u is a weak solution of problem (1.1) and let ρ(t) =

∫
Ω

utu dx. We
claim that there exist positive constants A and B such that

d
dt

(
ρ(t) – BE(t)

) ≥ A
(
ρ(t) – BE(t)

)
(3.1)

for all t ∈ [0, T∗), where T∗ is the maximal existence time of u.
Because of the lack of the regularity of utt , the following formal calculation

d
dt

ρ(t) =
∫

Ω

u2
t dx +

∫
Ω

uttu dx

is not legitimate. Following the procedure in the proof of Theorem 1.7 in [38], we firstly
verify that we can differentiate ρ(t) with respect to t. From (H2) and Theorem 2.3, it fol-
lows that

u ∈ C
(
[0, T]; H2

0 (Ω)
) ⊂ Lm(

Ω × (0, T)
)
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for any T ∈ (0, T∗), thus u ∈F . Letting φ = u in (2.2), we obtain

ρ(t) =
∫

Ω

u0u1 dx +
∫ t

0

∣∣ut(τ )
∣∣2
2 dτ –

∫ t

0

∣∣�u(τ )
∣∣2
2 dτ +

∫ t

0

∣∣u(τ )
∣∣p
p dτ

–
∫ t

0

∫
Ω

∣∣ut(τ )
∣∣m–2ut(τ )u(τ ) dx dτ +

∫ t

0

∫ s

0
g(s – τ )

∫
Ω

�u(τ )�u(s) dx dτ ds

for any t ∈ [0, T]. In view of (H1)–(H3) and the regularity of u, for any t ∈ [0, T], we have∫ t
0 |�u(τ )|22 dτ < ∞,

∫ t

0

∣∣ut(τ )
∣∣2
2 dτ ≤

∫ T

0

∣∣ut(τ )
∣∣2
2 dτ ≤ T max

τ∈[0,T]

∣∣ut(τ )
∣∣2
2 < ∞,

∫ t

0

∣∣u(τ )
∣∣p
p dτ ≤ C

∫ T

0

∣∣�u(τ )
∣∣p
2 dτ ≤ CT max

τ∈[0,T]

∣∣�u(τ )
∣∣p
2 < ∞,

∫ t

0

∫
Ω

∣∣ut(τ )
∣∣m–2ut(τ )u(τ ) dx dτ

≤
∫ T

0

∣∣ut(τ )
∣∣m–1
m

∣∣u(τ )
∣∣
m dτ ≤ m – 1

m

∫ T

0

∣∣ut(τ )
∣∣m
m dτ +

1
m

∫ T

0

∣∣u(τ )
∣∣m
m dτ < ∞,

∫ t

0

∫ s

0
g(s – τ )

∫
Ω

�u(τ )�u(s) dx dτ ds

≤ 1
2

∫ T

0

∫ s

0
g(s – τ )

(∣∣�u(τ )
∣∣2
2 +

∣∣�u(s)
∣∣2
2

)
dτ ds

≤ max
τ∈[0,T]

∣∣�u(τ )
∣∣2
2

∫ T

0

∫ s

0
g(s – τ ) dτ ds < ∞.

Therefore, ρ(t) is absolutely continuous on any closed subsegment of [0, T∗). Thus, we
have

d
dt

ρ(t) = |ut|22 – |�u|22 + |u|pp +
∫ t

0
g(t – τ )

∫
Ω

�u(t)�u(τ ) dx dτ

–
∫

Ω

|ut|m–2utu dx (3.2)

for a.e. t ∈ [0, T∗). In the following, we estimate the last two terms on the right-hand side
of (3.2).

Since
∫ t

0
g(t – τ )

∫
Ω

�u(τ )�u(t) dx dτ

=
∫ t

0
g(t – τ )

∫
Ω

(
�u(τ ) – �u(t)

)
�u(t) dx dτ +

∫ t

0
g(t – τ )

∫
Ω

∣∣�u(t)
∣∣2 dx dτ

=
∫ t

0
g(t – τ )

∫
Ω

(
�u(τ ) – �u(t)

)
�u(t) dx dτ + G(t)

∣∣�u(t)
∣∣2
2

and
∣∣∣∣
∫ t

0
g(t – τ )

∫
Ω

(
�u(τ ) – �u(t)

)
�u(t) dx dτ

∣∣∣∣
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≤
∫ t

0
g(t – τ )

(
1
2
α
∣∣�u(t) – �u(τ )

∣∣2
2 +

1
2α

∣∣�u(t)
∣∣2
2

)
dτ

=
1
2
α(g ◦ �u)(t) +

1
2α

G(t)|�u|22

for any α > 0, we have

∫ t

0
g(t – τ )

∫
Ω

�u(τ )�u(t) dx dτ ≥ –
1
2
α(g ◦ �u)(t) +

(
1 –

1
2α

)
G(t)|�u|22 (3.3)

for any α > 0.
(i) For the case of 2 < m < p, by using Hölder’s inequality and Young’s inequality, we

obtain
∣∣∣∣
∫

Ω

|ut|m–2utu dx
∣∣∣∣

≤
∫

Ω

|ut|m–1|u|dx ≤ |ut|m–1
m |u|m

≤ m – 1
m

(
ε|ut|m–1

m
) m

m–1 +
1
m

(
1
ε
|u|m

)m

=
m – 1

m
ε

m
m–1 |ut|mm +

1
m

1
εm

∫
Ω

(
δ|u| p(m–2)

p–2
)(1

δ
|u| 2(p–m)

p–2

)
dx

≤ m – 1
m

ε
m

m–1 |ut|mm

+
1
m

1
εm

∫
Ω

[
m – 2
p – 2

(
δ|u| p(m–2)

p–2
) p–2

m–2 +
p – m
p – 2

(
1
δ
|u| 2(p–m)

p–2

) p–2
p–m

]
dx

=
m – 1

m
ε

m
m–1 |ut|mm +

1
m

m – 2
p – 2

1
εm δ

p–2
m–2 |u|pp +

1
m

p – m
p – 2

1
εm

(
1
δ

) p–2
p–m

|u|22 (3.4)

for any ε, δ > 0. For any β > 0, there exists unique ε > 0 such that β = 1
εm . For any λ > 0, the

equation

(m – 2)δ
p–2
m–2 λ = (p – m)

(
1
δ

) p–2
p–m

admits a unique positive root

δ = δλ :=
(

p – m
m – 2

1
λ

) (m–2)(p–m)
(p–2)2

.

So, from (3.4), it follows that

∣∣∣∣
∫

Ω

|ut|m–2utu dx
∣∣∣∣ ≤ m – 1

m

(
1
β

) 1
m–1 |ut|mm

+
1
m

(
m – 2
p – 2

) m–2
p–2

(
1
λ

) p–m
p–2

β
(|u|pp + λ|u|22

)
(3.5)

for any β ,λ > 0.
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By (H3) and (2.5), we have

d
dt

E(t) ≤ –|ut|mm. (3.6)

Choosing arbitrary θ > 0, in view of (2.3) and (3.2)–(3.6), we have

d
dt

(
ρ(t) – θE(t)

)

≥ θ |ut|mm + |ut|22 – |�u|22 + |u|pp +
[

–
1
2
α(g ◦ �u)(t) +

(
1 –

1
2α

)
G(t)|�u|22

]

+
[

–
m – 1

m

(
1
β

) 1
m–1 |ut|mm –

1
m

(
m – 2
p – 2

) m–2
p–2

(
1
λ

) p–m
p–2

β
(|u|pp + λ|u|22

)]

=
[(

1 –
1

2α

)
G(t) – 1

]
|�u|22 –

1
m

(
m – 2
p – 2

) m–2
p–2

(
1
λ

) p–m
p–2

βλ|u|22

+
[

1 –
1
m

(
m – 2
p – 2

) m–2
p–2

(
1
λ

) p–m
p–2

β

]
|u|pp

+ |ut|22 –
1
2
α(g ◦ �u)(t) +

[
θ –

m – 1
m

(
1
β

) 1
m–1

]
|ut|mm

=
[(

1 –
1

2α

)
G(t) – 1

]
|�u|22 –

1
m

(
m – 2
p – 2

) m–2
p–2

(
1
λ

) p–m
p–2

βλ|u|22

+
[

1 –
1
m

(
m – 2
p – 2

) m–2
p–2

(
1
λ

) p–m
p–2

β

]
|u|pp

+ |ut|22 – α

[
E(t) –

1
2
|ut|22 –

1
2
(
1 – G(t)

)|�u|22 +
1
p
|u|pp

]

+
[
θ –

m – 1
m

(
1
β

) 1
m–1

]
|ut|mm

=
1

2α

[
(α – 1)2(1 – G(t)

)
– 1

]|�u|22 –
1
m

(
m – 2
p – 2

) m–2
p–2

(
1
λ

) p–m
p–2

βλ|u|22

+
[

1 –
1
m

(
m – 2
p – 2

) m–2
p–2

(
1
λ

) p–m
p–2

β –
α

p

]
|u|pp

+
(

1 +
1
2
α

)
|ut|22 – αE(t) +

[
θ –

m – 1
m

(
1
β

) 1
m–1

]
|ut|mm (3.7)

for any α,β ,λ > 0.
For any λ > 0 and 0 < α < p, we have

β = β(α,λ) :=
(

1 –
α

p

)(
p – 2
m – 2

) m–2
p–2

λ
p–m
p–2 m > 0.

Since l > 1
(p–1)2 , it holds that 1 + 1√

l
< p. Letting β = β(α,λ) and θ = m–1

m ( 1
β(α,λ) ) 1

m–1 in (3.7)
and denoting

Λ1 := inf
w∈H2

0 (Ω)
w �=0

|�w|22
|w|22

> 0,
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we have

d
dt

(
ρ(t) –

m – 1
m

(
1

β(α,λ)

) 1
m–1

E(t)
)

≥ 1
2α

[
(α – 1)2(1 – G(t)

)
– 1

]|�u|22 –
(

1 –
α

p

)
λ|u|22 +

(
1 +

1
2
α

)
|ut|22 – αE(t)

≥ 1
2α

[
(α – 1)2l – 1

]|�u|22 –
(

1 –
α

p

)
λ|u|22 +

(
1 +

1
2
α

)
|ut|22 – αE(t)

≥
[

1
2α

(
(α – 1)2l – 1

)
Λ1 –

(
1 –

α

p

)
λ

]
|u|22 +

(
1 +

1
2
α

)
|ut|22 – αE(t) (3.8)

for any α ∈ (1 + 1√
l
, p) and λ > 0. Since the mapping α �→ 1

2α
[(α – 1)2l – 1]Λ1 is strictly

increasing on (1 + 1√
l
, p) with

1
2α

[
(α – 1)2l – 1

]
Λ1 → 0+ as α →

(
1 +

1√
l

)+

,

and the mapping α → (1 – α
p )λ is strictly decreasing on (1 + 1√

l
, p) with

(
1 –

α

p

)
λ → 0+ as α → p–,

it is easy to verify that, for any fixing λ > 0, the equation

1
2α

[
(α – 1)2l – 1

]
Λ1 =

(
1 –

α

p

)
λ

admits a unique root α(λ) ∈ (1 + 1√
l
, p). Moreover, we have

C(α,λ) :=
1

2α

[
(α – 1)2l – 1

]
Λ1 –

(
1 –

α

p

)
λ > 0 for all α ∈ (

α(λ), p
)
.

So, from (3.8), it follows that

d
dt

(
ρ(t) –

m – 1
m

(
1

β(α,λ)

) 1
m–1

E(t)
)

≥ C(α,λ)|u|22 +
(

1 +
1
2
α

)
|ut|22 – αE(t)

≥ 2

√(
1 +

1
2
α

)
C(α,λ)

∫
Ω

utu dx – αE(t)

≥ A(α,λ)
(
ρ(t) – B(α,λ)E(t)

)
(3.9)

for any λ > 0 and α ∈ (α(λ), p), where

A(α,λ) := 2

√(
1 +

1
2
α

)
C(α,λ) > 0, B(α,λ) :=

α

A(α,λ)
> 0.
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For any fixed λ > 0, it is easy to verify that the mapping

α �→ m – 1
m

(
1

β(α,λ)

) 1
m–1

is strictly increasing on (α(λ), p) with

m – 1
m

(
1

β(α,λ)

) 1
m–1 → +∞ as α → p–.

Since p > 2, 0 < l < 1 and

B(α,λ) =
α

A(α,λ)

=
α

2
√

(1 + 1
2α)C(α,λ)

=
α

2
√

(1 + 1
2α)[ 1

2α
((α – 1)2l – 1)Λ1 – (1 – α

p )λ]

=
α

2
√

1
2 ( lΛ1

2 + λ
p )α2 – ( λ

2 – λ
p )α – (λ + 1

4 (1 + 3l)Λ1) – Λ1(1–l)
2

1
α

=
1

2
√

1
2 ( lΛ1

2 + λ
p ) – ( λ

2 – λ
p ) 1

α
– (λ + 1

4 (1 + 3l)Λ1) 1
α2 – Λ1(1–l)

2
1
α2

, (3.10)

it is easy to verify that the mapping α �→ B(α,λ) is strictly decreasing on (α(λ), p) with
B(α,λ) → +∞ as α → (α(λ))+. So, for fixed λ > 0, the equation

B(α,λ) =
m – 1

m

(
1

β(α,λ)

) 1
m–1

for α on (α(λ), p) admits a unique root α0(λ). From (3.9), it follows that

d
dt

(
ρ(t) – B

(
α0(λ),λ

)
E(t)

) ≥ A
(
α0(λ),λ

)(
ρ(t) – B

(
α0(λ),λ

)
E(t)

)

for any λ > 0 and t ∈ [0, T∗). Choosing a fixed λ > 0 and letting A = A(α0(λ),λ) and B =
B(α0(λ),λ), we get (3.1).

(ii) For the case of m = 2, by (3.2), (3.3), and (3.6), we have

d
dt

(
ρ(t) – θE(t)

)

≥ |ut|22 – |�u|22 + |u|pp +
[(

1 –
1

2α

)
G(t)|�u|22 –

1
2
α(g ◦ �u)(t)

]
– ρ(t) + θ |ut|22

= (1 + θ )|ut|22 +
[(

1 –
1

2α

)
G(t) – 1

]
|�u|22 + |u|pp – ρ(t)

– α

[
E(t) –

1
2
|ut|22 –

1
2
(
1 – G(t)

)|�u|22 +
1
p
|u|pp

]
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=
(

1 + θ +
1
2
α

)
|ut|22 +

1
2α

[
(α – 1)2(1 – G(t)

)
– 1

]|�u|22

+
(

1 –
α

p

)
|u|pp – ρ(t) – αE(t) (3.11)

for any α, θ > 0. Since l > 1
(p–1)2 , by letting α = p in (3.11), we have

1
2p

[
(p – 1)2(1 – G(t)

)
– 1

] ≥ 1
2p

[
(p – 1)2l – 1

]
> 0.

Then, from (3.11), it follows that

d
dt

(
ρ(t) – θE(t)

)

=
(

1 + θ +
p
2

)
|ut|22 +

1
2p

[
(p – 1)2(1 – G(t)

)
– 1

]|�u|22 – ρ(t) – pE(t)

≥
(

1 + θ +
p
2

)
|ut|22 +

1
2p

(
(p – 1)2l – 1

)
Λ1|u|22 – ρ(t) – pE(t)

≥
(

2

√
Λ1

2p
(
(p – 1)2l – 1

)(
1 +

p
2

+ θ

)
– 1

)
ρ(t) – pE(t)

= A(θ )
(
ρ(t) – B(θ )E(t)

)
(3.12)

for any θ > θ1, where

θ1 := max

{
0,

p
2Λ1[(p – 1)2 – 1]

–
p
2

– 1
}

,

A(θ ) := 2

√
Λ1

2p
(
(p – 1)2l – 1

)(
1 +

p
2

+ θ

)
– 1, B(θ ) :=

p
A(θ )

.

It is easy to verify that the equation

θ = B(θ ) =
p

2
√

Λ1
2p ((p – 1)2l – 1)(1 + p

2 + θ ) – 1
(3.13)

for θ on (θ1, +∞) admits a unique positive root θ0. By (3.12), we obtain

d
dt

(
ρ(t) – θ0E(t)

) ≥ A(θ0)
(
ρ(t) – θ0E(t)

)
(3.14)

for all t ∈ [0, T∗). Letting A = A(θ0) and B = θ0, we get (3.1).
Step 2. We claim that the solution u of problem (1.1) blows up in finite time provided

that the initial data (u0, u1) ∈ H2
0 (Ω) × L2(Ω) satisfies

0 ≤ E(0) <
1
B

ρ(0). (3.15)

Suppose, on the contrary, that u is global.
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On the one hand, since m ≥ 2 and Ω is bounded, there exists a positive constant S
depending on m and |Ω| such that |w|2 ≤ S|w|m for all w ∈ Lm(Ω). Then, by Theorem 2.3,
(2.4) and using Hölder’s inequality, we obtain

∣∣u(t)
∣∣
2 =

∣∣∣∣u(0) +
∫ t

0
ut(τ ) dτ

∣∣∣∣
2

≤ |u0|2 +
∫ t

0

∣∣ut(τ )
∣∣
2 dτ

≤ |u0|2 + S
∫ t

0

∣∣ut(τ )
∣∣
m dτ

≤ |u0|2 + S
(∫ t

0
1

m
m–1 dτ

) m–1
m

(∫ t

0

∣∣ut(τ )
∣∣m
m dτ

) 1
m

≤ |u0|2 + St
m–1

m
(
E(0) – E(t)

) 1
m for all t ∈ [0, +∞). (3.16)

Since u = u(t) is a global solution of problem (1.1), we have E(t) ≥ 0 for all t ∈ [0,∞).
Otherwise, there exists t0 ∈ (0,∞) such that E(t0) < 0. By Proposition 2.7, u blows up in
finite time, which is a contradiction. Thus, due to (2.4), we have 0 ≤ E(t) ≤ E(0). Finally,
in view of (3.16) we obtain

∣∣u(t)
∣∣
2 ≤ |u0|2 + St

m–1
m

(
E(0)

) 1
m for all t ∈ [0, +∞). (3.17)

On the other hand, (3.1) implies that

d
dt

H(t) ≥ AH(t) for all t ∈ [0, +∞),

where H(t) := ρ(t) – BE(t). By using Gronwall’s inequality, we obtain H(t) ≥ eAtH(0), i.e.,

∫
Ω

utu dx = ρ(t) ≥ eAtH(0) + BE(t) for all t ∈ [0, +∞).

In view of (2.4) and Theorem 2.6, and since u(t) is global, we have 0 ≤ E(t) ≤ E(0), which
yields that

ρ(t) ≥ eAtH(0) for all t ∈ [0, +∞).

Inequality (3.15) implies that H(0) = ρ(0) – BE(0) > 0, so we obtain

∣∣u(t)
∣∣2
2 =

∣∣u(0)
∣∣2
2 + 2

∫ t

0
ρ(τ ) dτ

≥ |u0|22 + 2
∫ t

0
eAτ H(0) dτ

= |u0|22 +
2
A

(
eAt – 1

)
H(0)

for all t ∈ [0, +∞), which contradicts (3.17) for t sufficiently large. So T∗ < +∞.
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Step 3. For any R ≥ 0, we can find (u0, u1) ∈ H2
0 (Ω) × L2(Ω) such that

E(0) = R <
1
B

ρ(0).

In fact, let Ω1 and Ω2 be two disjoint open subdomains of Ω such that dist(Ω1, ∂Ω) >
0 and dist(Ω2, ∂Ω) > 0, and choose an arbitrary nonzero function w ∈ C∞

0 (Ω) such that
supp w ⊂ Ω1. Then there exists r1 > 0 such that

∫
Ω1

|rw|2 dx = r2
∫

Ω1

|w|2 dx > BR for all r ≥ r1. (3.18)

On the other hand, by Lemma 2.1, there exists a sequence of functions {vk} ⊂ H2
0 (Ω2)

such that

1
2

∫
Ω2

|�vk|2 dx +
1
2

∫
Ω2

|vk|2 dx –
1
p

∫
Ω2

|vk|p dx → +∞ as k → ∞.

Since p > 2, there exists r2 > r1 such that the function

f (r) :=
1
2

∫
Ω

|rw|2 dx +
1
2

∫
Ω

∣∣�(rw)
∣∣2 dx –

1
p

∫
Ω

|rw|p dx

=
(

1
2

∫
Ω

|w|2 dx +
1
2

∫
Ω

|�w|2 dx
)

r2 –
(

1
p

∫
Ω

|w|p dx
)

rp

is continuous and strictly increasing on [r2, +∞), and

f (r) → –∞ as r → +∞.

So there exist k0 ∈N and r0 ≥ r2 both sufficiently large such that

f (r2) ≤ 1
2

∫
Ω2

|�vk0 |2 dx +
1
2

∫
Ω2

|vk0 |2 dx –
1
p

∫
Ω2

|vk0 |p dx = f (r0)

= R –
(

1
2

∫
Ω

|r0w|2 dx +
1
2

∫
Ω

∣∣�(r0w)
∣∣2 dx –

1
p

∫
Ω

|r0w|p dx
)

. (3.19)

Let u1 = u0 = r0w + ṽ, where

ṽ =

⎧⎨
⎩

0, x ∈ Ω \ Ω2,

vk0 , x ∈ Ω2.

Then u0 ∈ H2
0 (Ω), u1 ∈ L2(Ω). By Theorem 2.3, problem (1.1) has a unique weak solution

u with initial data (u0, u1) such that

u ∈ C
(
[0, T]; H2

0 (Ω)
)
, ut ∈ C

(
[0, T]; L2(Ω)

) ∩ Lm(
Ω × (0, T)

)

for some T > 0. In view of (2.3), (3.18), and (3.19), we have

ρ(0) =
∫

Ω

u0u1 dx =
∫

Ω

|r0w + ṽ|2 dx ≥
∫

Ω1

|r0w + ṽ|2 dx =
∫

Ω1

|r0w|2 dx > BR
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and

E(0) =
1
2
∣∣ut(0)

∣∣2
2 +

1
2
(
1 – G(0)

)∣∣�u(0)
∣∣2
2 +

1
2

(g ◦ �u)(0) –
1
p
∣∣u(0)

∣∣p
p

=
1
2
|u1|22 +

1
2
|�u0|22 –

1
p
|u0|pp

=
1
2

(∫
Ω1

|r0w|2 dx +
∫

Ω2

|ṽ|2 dx
)

+
1
2

(∫
Ω1

∣∣�(r0w)
∣∣2 dx +

∫
Ω2

|�ṽ|2 dx
)

–
1
p

(∫
Ω1

|r0w|p dx +
∫

Ω2

|ṽ|p dx
)

= R <
1
B

ρ(0).

Hence, according to the conclusion in Step 2, the weak solution u blows up in finite time.
This completes the proof. �

In view of (3.10), B(α,λ) is strictly decreasing for α on (α(λ), p), then we have

B0 := inf
λ>0

B
(
α0(λ),λ

) ≥ B(p,λ) =
p√

(1 + 2
p )((p – 1)2l – 1)Λ1

> 0. (3.20)

For the case of m = 2, we denote B0 = θ0, where θ0 is the unique root of equation (3.13).
Then, in view of the proof of Theorem 3.1, we obtain the following result.

Corollary 3.2 Assume that (H1)–(H3) hold,

p > m and l >
1

(p – 1)2 .

Then the weak solution of problem (1.1) blows up in finite time provided that the initial
data (u0, u1) ∈ H2

0 (Ω) × L2(Ω) satisfies

0 ≤ E(0) <
1

B0

∫
Ω

u0u1 dx. (3.21)

Proof We only need to consider the case of 2 < m < p. Noticing that the mapping λ �→
B(α0(λ),λ) is continuous on (0, +∞), by (3.20) and (3.21), there exists λ0 > 0 such that

0 ≤ E(0) <
1

B(α0(λ0),λ0)

∫
Ω

u0u1 dx ≤ 1
B0

∫
Ω

u0u1 dx.

Following the proof of Theorem 3.1, the weak solution u blows up in finite time. �

Remark 3.3 If we follow the strategy in [19] directly without the modifications, we will
obtain the coefficient B(α0(λ),λ) only for the specified parameter λ = p–m

p–2 .

Remark 3.4 Denote

B1 :=
{

(u0, u1) ∈ H2
0 (Ω) × L2(Ω) : E(0) < E1, l

1
2 |�u0| > λ1

}
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and

B2 :=
{

(u0, u1) ∈ H2
0 (Ω) × L2(Ω) : 0 ≤ E(0) <

1
B0

∫
Ω

u0u1 dx
}

.

In view of Theorem 2.6 and Corollary 3.2, the solution u for problem (1.1) with initial
data (u0, u1) ∈ B1 ∪B2 blows up in finite time. On the one hand, for any (u0, u1) ∈ H2

0 (Ω)×
L2(Ω) satisfying E(0) < 0, Proposition 2.7 implies that (u0, u1) ∈ B1 \B2. On the other hand,
Theorem 3.1 implies that B2 \B1 �= ∅.
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