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Abstract
We are interested in the optimization of the pipe shape allowing minimization of the
dissipated energy in time-dependent Navier–Stokes Darcy flow. The used technique
is based on the topological gradient method. In the theoretical part, we present an
analysis of the topological sensitivity for the dissipated energy function. Some
numerical tests are presented to illustrate the developed approach.
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1 Introduction
Let O be a bounded cavity of R2 occupied by a viscous and incompressible fluid modeled
by the time-dependent nonlinear Navier–Stokes equations. We assume that the cavity O
has some inlets Γ k

i , k = 1, . . . , n, and some outlets Γ i
o , i = 1, m (see Fig. 1).

The aim of this work is to obtain the optimal pipes form connecting the inputs and the
outputs of the cavity that minimizes the dissipated energy in the fluid under a volume
constraint.

Let Sad = {D ⊂ O with Γ k
i ⊂ ∂D ∩ ∂O and Γ i

o ⊂ ∂D ∩ ∂O with |D| ≤ Vd} the set of ad-
missible domains, where | · | is the measure of Lebesgue and Vd is the desired volume. For
each O ∈ Sad, we denote by v and p, respectively, the velocity and the pressure, solution to
the Navier–Stokes equations in O

⎧
⎪⎪⎨

⎪⎪⎩

∂v
∂t – ν�v + (v.∇)v + ∇p = f in O × (0, T),

div v = 0 in O × (0, T),

v = vd on ∂O × (0, T).

(1)

ν is the fluid kinematic viscosity, T is the flow time and vd is the boundary condition given
by

ud =

⎧
⎪⎪⎨

⎪⎪⎩

vk
i on Γ l

i , l = 1, . . . , n,

vi
o on Γ k

o , k = 1, . . . , m,

0 on ∂O \ Γ l
i ∪ Γ k

o .
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Figure 1 The domain O

A variety of publications were focused on the design of an optimal pipe shape domain
[1–3], but the majority of studies were focused on determining the optimal form of an
existing boundary. The topological gradient method has been lately introduced in optimal
shape problems [4–6]. This method allows for the introduction of new boundaries into the
design.

The idea of the method is to measure the effect of a small topology change in the do-
main with respect to a given cost function. This effect is described through an asymptotic
expansion of this function.

An approach using the analysis of the topological sensitivity [7–9] is presented in this
work. The optimal pipe shape domain is obtained by the inserted obstacles in the initial
domain. Taking into account the friction between the fluid and obstacles, which is mod-
eled by

f = –κ(x)v(x)

with κ(x) the inverse of the medium permeability [10, 11], we obtain the coupled Navier–
Stokes Darcy equations

⎧
⎪⎪⎨

⎪⎪⎩

∂v
∂t – ν�v + (v.∇)v + κv + ∇p = 0 in O × (0, T),

div v = 0 in O × (0, T),

v = vd on ∂O × (0, T).

(2)

The studied optimization problem is to find

min
O∈Sad

JT (v),

where

JT (v) =
∫ T

0
J(v) dt.

J(v) = ν
∫

O |∇v|2 dx + κ
∫

O |v|2 dx is the dissipation energy function and v is solution of (2).
To optimize the obstacles’ location, we developed in Sect. 2 a topological asymptotic

expansion of the dissipation energy function relative to the introduction of an obstacle of
small size within the domain O of the fluid flow. Section 3 is devoted to the numerical
tests.
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2 Topological asymptotic development
Let y ∈ O, η > 0 and ξ ⊂ R

2 a bounded given domain which contains the origin and
∂ξ ∈ C1. We denote ξy,η = y + ηξ ∈ O.

When an obstacle ξy,η is inserted in O, (vη, pη) is solution of

∂vη

∂t
– ν�vη + (vη.∇)vη + κηvη + ∇pη = 0 in O × (0, T),

div vη = 0 in O × (0, T),

vη = vd on ∂O × (0, T).

(3)

We define the dissipation energy function associated to the perturbed domain

Jη(vη) = ν

∫

Oη

|∇vη|2 dx + κη

∫

Oη

|vη|2 dx,

where κη = cηκ is the perturbed impermeability with

cη(x) =

⎧
⎨

⎩

c if x ∈ ξy,η,

1 if x ∈ O \ ξy,η,

and c is a contrast parameter which permits one to switch the impermeability value [12].
The variational formulation of (3) is: Find vη ∈ V solution of

aη(vη, w) = 0 ∀w ∈ V 0, (4)

where

V =
{

w ∈ H1(O)d, div w = 0 in O
}

, V 0 = V ∩ H1
0 (O)

and

aη(v, w) = ν

∫

O
∇v.∇w dx +

∫

O
(v.∇)v.w dx +

∫

O
κηv.w dx ∀v ∈ V .

In the case where η = 0, vη = v0 is solution of problem (1) with κ0 = κ (see [13]).
The topological gradient method consists in finding the asymptotic expansion of the

cost function J with respect to a small perturbation of the initial domain. For this reason,
we interested in calculate the difference between the perturbed cost function Jη(uη) and
the unperturbed one J(u0). A similar study is presented in [14] for the three dimensional
non-stationary Navier–Stokes equations using a numerical approximation based on the
sensitivity analysis of the Stokes equation. In this work we interested in the non-stationary
Navier–Stokes Darcy equations.

The variation of the studied cost function is written

Jη(uη) – J(u0) = ν

∫

O

(|∇vη|2 – |∇v0|2
)

dx +
∫

O

(
κη|vη|2 – κ|v0|2

)
dx. (5)

In the following |v|2 will be denoted by v2 for simplification.
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By remarking that

|∇vη|2 – |∇v0|2 = 2∇v0.∇(vη – v) – 2∇v0.∇vη + (∇v0)2 + ∇(vη)2

= 2∇v0.∇(vη – v) + (∇vη – ∇v0)2 (6)

and

κη|vη|2 – κ|v0|2 = κη

(
v2
η – 2vηv0 + v2

0
)

+ 2κηvηv0 – κηv2
0 – κv2

0

= κη(vη – v0)2 + 2κcηv0(vη – v0) + (cη – 1)κv2
0. (7)

Following the definition of the parameter c,

∫

O
κcηv0(vη – v0) dx =

∫

O\ξy,η

κv0(vη – v0) dx +
∫

ξy,η

κv0(vη – v0) dx

=
∫

O
κv0(vη – v0) dx –

∫

ξy,η

(1 – c)κv0(vη – v0) dx. (8)

Using (6)–(8), we get

Jη(uη) – J(u0) = 2ν

∫

O
∇v0.∇(vη – v0) dx + ν

∫

O
(∇vη – ∇v0)2 dx

+
∫

O
κη|vη – v0|2 dx + 2

∫

O
κv(vη – v0) dx

– 2
∫

ξy,η

(1 – c)κv0(vη – u0) dx –
∫

ξy,η

(1 – c)κ|v0|2 dx. (9)

By using (4) and the integration by parts

ν

∫

O
∇(vη – v0).∇w dx +

∫

O

(
(vη.∇)vη – (v0.∇)v0

)
.w dx +

∫

O
(κηvη – κv0).w dx

= ν

∫

O
∇(vη – v0).∇w dx +

∫

O

(
(v0.∇)w + (∇w)v0

)
.(vη – v0) dx

+
∫

O

(∇(vη – v0)
)
(vη – v0).w dx +

∫

O
κ(vη – v0).w –

∫

ξy,η

(1 – c)κvη.w dx

= 0. (10)

By choosing w = vadj, the solution of the adjoint problem associated to (2), we obtain

ν

∫

O
∇(vη – v0).∇vadj dx +

∫

O

(
(v.∇)vadj + (∇vadj)v

)
.(vη – v) dx

+
∫

O
κ(vη – v).vadj dx

= (1 – c)
∫

ξy,η

κvη.vadj dx –
∫

O

(∇(vη – v0)
)
(vη – v0).vadj dx. (11)
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Using the variational formulation of the divergence free adjoint equation (see [15, 16]) and
choosing w = vη – v0, we obtain

ν

∫

O
∇vadj.∇(vη – v0) +

∫

O

(
(v.∇)vadj + (∇vadj)v

)
.(vη – v0) dx

+
∫

O
κvadj.(vη – v0) dx

= 2ν

∫

O
∇v.∇(vη – v0) dx + 2

∫

O
κv.(vη – v0) dx. (12)

By comparing this last equation with (11), we obtain

2ν

∫

O
∇v.∇(vη – v0) dx + 2

∫

O
κv.(vη – v0) dx

= (1 – c)
∫

ξy,η

κvη.vadj dx –
∫

O

(∇(vη – v0)
)
(vη – v0).vadj dx. (13)

By substituting (13) in (9), we obtain

Jη(vη) – J(v0) = (1 – c)
∫

ξy,η

κvη.vadj dx –
∫

ξy,η

(1 – c)κ|v0|2 dx

–
∫

O

(∇(vη – v0)
)
(vη – v0).vadj + ν

∫

O
(∇vη – ∇v0)2 dx

+
∫

O
κη|vη – v0|2 dx – 2

∫

ξy,η

(1 – c)κv(vη – v0) dx

= Σ(η) –
∫

ξy,η

(1 – c)κv0.(v0 – vadj) dx, (14)

where

Σ(η) =
∫

O
|∇vη – ∇v0|2 dx +

∫

O
κη|vη – v0|2 dx – 2

∫

ξy,η

(1 – c)κv0(vη – v0) dx

+
∫

ξy,η

(1 – c)κvadj.(vη – v0) dx –
∫

O

(∇(vη – v0)
)
(vη – v0).vadj dx.

We remark that it can be shown that Σ(η) = O(η2). Finally, using the Lebesgue differenti-
ation theorem [17], we obtain

Jη(vη) = J(v0) – |ξy,η|(1 – c)κ(y)v0(y)
(
v0(y) – vadj(y)

)
+ Σ(η), (15)

which gives the following result.

Theorem 2.1 The function J satisfies the asymptotic development

Jη(vη) – J(v) = f (η)DJ(y) + o
(
f (η)

)
, (16)

where f (η) = |ξy,η| and DJ is the topological gradient given by

DJ(y) = –(1 – c)κ(y)v(y)
(
v(y) – vadj(y)

)
, ∀y ∈ O. (17)
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Corollary 2.1 Summing over time, the topological gradient of JT (v) is given by

DJT (v) = –(1 – c)κ(y)
∫ T

0
v(y)

(
v(y) – vadj(y)

)
dt. (18)

3 Numerical results
3.1 Optimization algorithm
Using (16), we remark that Jη(vη) < J(v) if DJ(y) < 0. Then the minimum of J , which corre-
sponds to the best location y of the obstacle, is obtained where DJ(y) is the most negative.

Following this result, we propose the following numerical algorithm: We begin first by
choosing O0 = O. Then we construct the sequence of domains (Ok)k≥0 such that Ok+1 =
Ok \ ξk , where ξk is the obstacle defined by a level set curve of DkJT

ξk =
{

x ∈ Ωk , such that 0 ≥ dk ≥ DkJT (x)
}

.

Here, dk is a given constant and DkJT (y) = DJT (vk) is defined by

DJT
(
vk) = –(1 – c)κ(y)

∫ T

0
vk(y)

(
vk(y) – vk

adj(y)
)

dt. (19)

vk is the solution of the Navier–Stokes Darcy problem

⎧
⎪⎪⎨

⎪⎪⎩

∂vk

∂t – ν�vk + (vk .∇)vk + κvk + ∇pk = 0 in Ok × (0, T),

div vk = 0 in Ok × (0, T),

vk = vd on ∂O × (0, T).

(20)

vk
adj is the solution to the adjoint problem of (20), given by (see [15])

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–
∂vk

adj
∂t – ν�vk

adj – ∇vk
adj.v

k – (vk .∇)vk
adj

+ κvk
adj + ∇pk

adj = ∂J
∂vk in Ok × (0, T),

– div vk
adj = ∂J

∂pk in Ok × (0, T),

vk
adj(T) = 0 in Ok ,

(vk
adj)t = 0 on ∂O × (0, T),

(vk
adj)n = ∂J∂O

∂p on ∂O × (0, T),

(21)

where (vk
adj)t and (vk

adj)n are, respectively, the tangential and normal component of vk
adj and

J∂O is the boundary part of J .

3.2 Numerical discretization
The numerical resolution of the Navier–Stokes Darcy problem (20) and its adjoint prob-
lem is done on two steps. To overcome the problem of nonlinearity terms in the first equa-
tion, we use the characteristics method [18]. It consists of approximating the convection
term as

(
∂vk

∂t
+

(
vk .∇)

vk
)

(
x, tn+1) =

1
�t

(vk(x, tn+1) – vk(X
(
x, tn+1, tn), tn),
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where �t is the time step, tn = n�t and X(x, tn+1, tn) is the position at time tn of the fluid
particle which is located at x at time tn+1.

The time discretization of problem (20) can then be written

⎧
⎪⎪⎨

⎪⎪⎩

λvk
n+1 – ν�vk

n+1 + ∇pk
n+1 = gn in Ok ,

div vk
n+1 = 0 in Ok ,

vk
n+1 = vd on ∂O,

(22)

where λ = 1
�t + κ , gn = 1

�t vk(X(x, tn+1, tn), tn), vk
n+1 = vk(·, tn+1).

It is shown that the weak formulation of obtained discrete problem (22) has a unique
solution [19].

In the same way, we can express the objective function by

DJT
(
vk) = –(1 – c)κ

N∑

n=0

vk
n
(
vk

n –
(
vk

adj
)

n

)
,

where vk
n and (vk

adj)n are, respectively, the numerical solution of the Navier–Stokes Darcy
problem and its adjoint at time tn.

For the spatial discretization of problems (22) and the time discrete adjoint problem
(21), We use the finite element method.

3.3 Example 1
In this test, the domain O is taken as the square with side equal to 1 containing one input
Γi and one output Γo. A Dirichlet parabolic profile is, respectively, prescribed at Γi and Γo

with maximum inflow and outflow equal to 1. On the other part of the boundary ∂Ok \
(Γi ∪ Γo) a homogeneous Dirichlet condition is imposed.

dk is selected in practice such that JT (Ok+1) – JT (Ok) is negative. It determines the obsta-
cle volume. In numerical tests, we choose dk such that ξk ⊂ Ok , DJT ≤ 0 and |ξk| ≤ 0.1|Ok|.

As the optimal design of the pipe depends on the position of the input and the output,
we consider two different cases (a) (see Fig. 2) and (b) (see Fig. 3) with different input and
output positions.

We use the presented algorithm in order to find the pipe optimal domain connecting
the inlet of the cavity and its outlet with minimum dissipated energy.

We present, in Figs. 4 and 5 (respectively, Figs. 6 and 7) two intermediate geometries
obtained throughout the optimization process for the case (a) (respectively, the case (b)).

Figure 2 Pipe bend initial domain: Case (a)
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Figure 3 Pipe bend initial domain: Case (b)

Figure 4 Case (a): Intermediate domain

Figure 5 Case (a): Intermediate domain

Figure 6 Case (b): Intermediate domain

The obtained optimal domain is presented for the case (a) (respectively, the case (b)) in
Fig. 8 (respectively, Fig. 9). It corresponds to Vd = 0.1π |Ω| (respectively, Vd = 0.08π |Ω|).
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Figure 7 Case (b): Intermediate domain

Figure 8 Case (a): Optimal pipe domain

Figure 9 Case (b): Optimal pipe domain

3.4 Example 2
In this example, Ω = ]0, 3/2[× ]0, 1[ is a rectangular domain with two inlets and outlets,
The considered boundary condition is similar to that considered for the pipe example. As
in the previous example, we consider here two cases describing various relative positions
of inlets and outlets. The domains of the considered cases, showing inlets and outlets
positions, are depicted in Figs. 10 (Case (c)) and 11 (Case (d)).

The geometries obtained during the optimization process are presented respectively in
Figs. 12–13 for the case (c) and Figs. 14–15 for the case (d). The optimal geometries plotted
in Figs. 16 and 17 are respectively computed with Vd = 1

5 |Ω| for the case (c) and Vd = 1
6 |Ω|

for the case (d).

4 Conclusion
We developed in this work an efficient topological optimization algorithm for determining
the optimal shape design of unsteady flow described by the coupled Navier–Stokes and
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Figure 10 Double pipe initial domain: Case (c)

Figure 11 Double pipe initial domain: Case (d)

Figure 12 Case (c): Intermediate domain

Figure 13 Case (c): Intermediate domain

Darcy equations. Using the asymptotic expansion of the energy function, the obtained
optimal domain is generated by inserting obstacles at each iteration until reaching the
desired volume. The location of these obstacles is determined by the developed topological
gradient. This problem can be generalized to the three dimensional case and used for
realistic applications such the bypass problem in biomedical fluid.
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Figure 14 Case (d): Intermediate domain

Figure 15 Case (d): Intermediate domain

Figure 16 Case (c): Optimal double pipe domain

Figure 17 Case (d): Optimal double pipe domain
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