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solution for the very special power nonlinearity f (z) = |z|q–2z with 3 ≤ q < 5 and m0 > ω,
or 1 < p < 3 and m0

√
p – 1 > ω

√
5 – p. Georgiev and Visciglia [11] also introduced a system

like (1.1) with potentials; however, they considered a small external Coulomb potential in
the corresponding Lagrangian density. Chen and Tang [7] obtained the existence of two
solutions in the radically symmetric function space by using the mountain pass theorem
and Ekeland’s variational principle for the nonhomogeneous case. For the critical growth
case, that is, f (z) = μ|z|p–2z + |z|4z, Cassani [6] showed that the above system has at least a
radially symmetric solution when 4 < p < 6 or p = 4 provided that μ > 0 is sufficiently large.
Soon after that, Carrião et al. [5] also studied the existence of a radially symmetric solution
for 2 < p < 6, which extended and generalized the results in [1] and [6], respectively.

Recently, He [12] considered the following nonlinear Klein–Gordon–Maxwell system
with non-constant external potential:

⎧⎨
⎩–�z + V (x)z – (2ω + φ)φz = g(x, z) x ∈ R

3,

�φ = (ω + φ)z2 x ∈ R
3.

(1.2)

Moreover, the author proved the existence of infinitely many solutions by using variant
fountain theorem under the following assumptions:

(V ) V ∈ C(R3,R) and infx∈R3 V (x) > 0;
(V2) there exists a constant r > 0 such that

lim|y|→+∞ meas
({

x ∈ R
3 : |x – y| ≤ r, V (x) ≤ M

})
= 0, ∀M > 0;

(h0) g ∈ C(R3 ×R,R), g(x, t)t ≥ 0, and lim|t|→0
g(x,t)

t = 0 uniformly in x ∈R
3;

(h1) there exists c > 0 such that |g(x, t)| ≤ c(1 + |t|p–1) for 2 < p < 6;
(h2) there exists μ > 4 such that μG(x, t) ≤ g(x, t)t for all (x, t) ∈ R

3 ×R, where G(x, t) =∫ t
0 g(x, s) ds;

(h3) there exists 4 < α < 6 such that lim inf|t|→∞ G(x,t)
|t|α > 0 uniformly in x ∈R

3;
(h4) lim|t|→∞ g(x,t)

t3 = ∞ uniformly in x ∈R
3;

(h5) G̃(x, t) = 1
4 g(x, t)t – G(x, t) → ∞ as |t| → ∞ uniformly in x ∈ R

3.
Here condition (V ) was introduced in [2] to guarantee the compactness of Sobolev em-
bedding. As we know, conditions (h2) and (h5) are a very strong technical hypothesis, it is
convenient to achieve a mountain pass geometry structure of the energy functional and
show the boundedness of the Palais–Smale sequences. Subsequently, under condition (V ),
Li and Tang [13] studied the subject for superlinear and sublinear nonlinearities case, and
two multiplicity results were obtained by using symmetric mountain pass theorem and
fountain theorem. It should be noted that the above mentioned works [12, 13] always re-
quire the potential V to be positive in the sense that the quadratic form of the energy
functional is positive definite.

Very recently, Ding and Li [10] considered system (1.2) with sign-changing potential. In
addition to conditions (V2) and (h1), the authors assumed

(V1) V ∈ C(R3,R) and infx∈R3 V (x) > –∞;
(h6) lim|t|→∞ G(x,t)

t4 = ∞ uniformly in x ∈ R
3, and g(t)t ≥ 0;

(h7) there exists r > 0 such that

G(x, t) ≤ 1
4

g(x, t)t, ∀(x, t) ∈R
3 ×R, |t| ≥ r.
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Condition (V1) implies that the potential V may be sign-changing. Because V is sign-
changing, the function

z �→
(∫

R3
|∇z|2 + V (x)z2 dx

)1/2

does not have a norm on the working space in general. This will bring some problems for
verifying the boundedness of Palais–Smale sequences or Cerami sequences. To overcome
this difficulty, they chose a constant V ′

0 > 0 such that Ṽ (x) = V (x) + V ′
0 > 0 and considered

the equivalent system

⎧⎨
⎩–�z + Ṽ (x)z – (2ω + φ)φz = g̃(x, z) x ∈ R

3,

�φ = (ω + φ)z2 x ∈ R
3,

(1.3)

where g̃(x, z) = g(x, z) + V ′
0z. Unfortunately, after a careful calculus, we could not deduce

1
4

g̃(x, z)z – G̃(x, z) =
1
4

g(x, z)z – G(x, z) –
1
4

V ′
0z2 ≥ 0,

which implies that g̃(x, z) does not satisfy condition (h7), where G̃(x, z) is primitive of
g̃(x, z). Hence, their result can only be valid for the case that the potential V is positive.

Motivated by [10, 12, 13], in the present paper we will further study system (1.2) with
non-constant external potential and general superlinear growth conditions. More specif-
ically, we are interested in the case where the potential V and the primitive of g are both
sign-changing, which is called a double sign-changing case and prevents us from apply-
ing a standard variational argument directly. For the above reasons, few papers dealt with
such a double sign-changing case as regards system (1.2) until now. The main purpose
of this paper is to establish a new result about the existence of infinitely many high en-
ergy solutions under some weaker conditions. Before stating our main result, we make
the following assumptions for the nonlinearity g :

(g0) g ∈ C(R3 ×R,R), and there exist constants c1, c2 > 0 and p ∈ (2, 6) such that

∣∣g(x, t)
∣∣ ≤ c1|t| + c2|t|p–1, ∀(x, t) ∈R

3 ×R;

(g1) lim|t|→∞ G(x,t)
t4 = ∞ uniformly in x, and there exists r0 ≥ 0 such that G(x, t) ≥ 0,

∀(x, t) ∈R
3 ×R, |t| ≥ r0;

(g2) there exist constants β , r1 such that

G(x, t) ≤ 1
4

g(x, t)t + βt2, ∀(x, t) ∈R
3 ×R, |t| ≥ r1;

(g3) g(x, t) = –g(x, –t) for all (x, t) ∈R
3 ×R.

Now, we are ready to state the main result of this paper as follows.

Theorem 1.1 Assume that (V1)–(V2), (g0)–(g2), and (g3) are satisfied. Then system (1.2)
possesses infinitely many nontrivial solutions {(zn,φn)} such that

1
2

∫
R3

(|∇zn|2 + V (x)|zn|2 – ωφnz2
n
)

dx –
∫
R3

G(x, zn) dx → ∞ as n → ∞.
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Remark 1.2 Theorem 1.1 improves and generalizes the results in [10, 12, 13]. To show
this, on the one hand, condition (V1) implies that the potential V (x) is allowed to be sign-
changing, which is weaker than condition (V ). On the other hand, our conditions on the
nonlinearity seem more general than conditions of [10, 12], even weaker. Indeed, it follows
from (h0) and (h1) that, for each ε > 0, there exists Cε > 0 such that

∣∣g(x, t)
∣∣ ≤ ε|t| + Cε|t|p–1 ≤ (ε + Cε)

(|t| + |t|p–1) for all (x, t) ∈R
3 ×R,

which implies that (g0) holds. However, we do not need the usual “superlinear condition”
at the origin in (h0), which is very important in checking the geometry structure of the
corresponding energy functional. Furthermore, it is clear that (h2), (h3), (h5), (h6), and
(h7) imply that (g1) and (g2) hold. Additionally, from g(x, t)t ≥ 0 in (h0) and (h6), we can
deduce that G(x, t) ≥ 0, but it follows from (g1) that G(x, t) is allowed to be sign-changing.

The remainder of the paper is organized as follows. In Sect. 2, we formulate the varia-
tional setting for system (1.2) and introduce some useful preliminaries. We prove Theo-
rem 1.1 in Sect. 3.

2 Variational setting and preliminary results
Below by ‖ · ‖q we denote the usual Lq-norm for 1 ≤ p < +∞, ci, C, Ci stand for differ-
ent positive constants. First, we observe that, in view of (V1), the potential V (x) is sign-
changing in R

3. In this case, the corresponding energy functional to system (1.2) is rather
complicated, because the quadratic form

B(z, z) :=
∫
R3

|∇z|2 + V (x)z2 dx

appearing in the energy functional is indefinite. In order to overcome the indefiniteness
of the quadratic form, we do not handle system (1.2) directly, but instead we handle an
equivalent system to (1.2). In indeed, it follows from (V1) that there exists a constant V0 > 0
such that Ṽ (x) := V (x) + V0 > 0 for all x ∈R

3, and the quadratic form

B̃(z, z) :=
∫
R3

|∇z|2 + Ṽ (x)z2 dx

is positive definite. Therefore, let g̃(x, z) := g(x, z) + V0g , we consider the following new
system:

⎧⎨
⎩–�z + Ṽ (x)z – (2ω + φ)φz = g̃(x, z) x ∈ R

3,

�φ = (ω + φ)z2 x ∈ R
3.

(2.1)

Clearly, system (1.2) is equivalent to system (2.1). Moreover, conditions (V ), (V2) and (g0)–
(g3) still hold for Ṽ and g̃ provided that those hold for V and g . Therefore, in what follows,
we just need to study system (2.1). Throughout this section, we make the following as-
sumption instead of (V1):

(Ṽ1) V ∈ C(R3,R) and infx∈R3 V (x) > 0.
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Let D1,2(R3) = {z ∈ L6(R3) : ∇z ∈ L2(R3)} with the norm

‖z‖D1,2 =
(∫

R3
|∇z|2 dx

) 1
2

.

Under assumption (Ṽ1), we define the working space

E :=
{

z ∈ H1(
R

3) :
∫
R3

V (x)z2 dx < ∞
}

with the inner product and norm

(z, w) =
∫
R3

(∇z · ∇w + V (x)zw
)

dx and ‖z‖ = (z, z)
1
2 .

Evidently, E is a Hilbert space. According to [2], under assumptions (Ṽ1) and (V2), the
embedding E ↪→ Lp(R3) is continuous for 2 ≤ p ≤ 6, E ↪→ Lp(R3) is compact for 2 ≤ p < 6.
Moreover, the embedding inequality

‖z‖p ≤ τp‖z‖, ∀z ∈ E, p ∈ [2, 6],

holds for some cp > 0.
Due to the variational characteristic of system (2.1), its weak solutions (z,φ) ∈ E ×

D1,2(R3) are critical points of the functional given by

J (z,φ) =
1
2

∫
R3

(|∇z|2 + V (x)z2 – |∇φ|2 – (2ω + φ)φz2)dx –
∫
R3

G(x, z) dx. (2.2)

It is clear that the functional J is strongly indefinite, i.e., unbounded from below and from
above on infinite dimensional spaces. In this sense the functional J possesses complicated
geometry structure. To avoid this difficulty, we reduce the study of (2.2) to the study of a
functional in the only variable z, as it has been done by the aforementioned authors.

In order to reduce functional (2.2), we need the following technical result (see [12]).

Lemma 2.1 For any fixed z ∈ H1(R3), there exists unique φ = φz ∈ D1,2(R3), which solves
the equation

–�φ + z2φ = –ωz2.

Moreover, the map Φ : z ∈ H1(R3) → Φ[z] := φz ∈ D1,2(R3) is continuously differentiable,
and

(i) –ω ≤ φz ≤ 0 on the set {x|z(x) �= 0};
(ii) ‖φz‖D1,2 ≤ C0‖z‖2, and

∫
R3 |φz|z2 dx ≤ C0‖z‖4

12/5 ≤ C0‖z‖4.

In virtue of Lemma 2.1, we can rewrite J as the C1-reduced functional Φ : E → R given
by

Φ(z) =
1
2

∫
R3

(|∇z|2 + V (x)z2 – ωφzz2)dx –
∫
R3

G(x, z) dx, (2.3)
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while for any ϕ ∈ E, we have

〈
Φ ′(z),ϕ

〉
=

∫
R3

(∇z · ∇ϕ + V (x)zϕ – (2ω + φz)φzzϕ
)

dx –
∫
R3

g(x, z)ϕ dx. (2.4)

Now the functional Φ obtained is not strongly indefinite anymore, and we will look for
its critical points since if the pair (z,φ) ∈ E × D1,2(R3) is a critical point for J , then z is
a critical point for Φ with φ = φz . Recall that a sequence {zn} ⊂ E is said to be a Cerami
sequence ((C)c-sequence in short) if Φ(zn) → c and (1 + ‖zn)‖Φ ′(zn) → 0, Φ is said to sat-
isfy the Cerami condition ((C)c-condition in short) if any (C)c-sequence has a convergent
subsequence.

In order to obtain the existence of high energy solutions, we will use the symmetric
mountain pass theorem of Rabinowitz [14]. It should be noted that the symmetric moun-
tain pass theorem is established under the Palais–Smale condition. Since the deformation
lemma is still valid under the (C)c-condition, we see that the symmetric mountain pass
theorem also holds under the (C)c-condition.

Proposition 2.2 ([14]) Let X be an infinite dimensional Banach space, X = Y ⊕ Z, where
Y is finite dimensional. If ϕ ∈ C1(X,R) satisfies the Cerami condition, and

(I1) ϕ(0) = 0, ϕ(–u) = ϕ(u) for all u ∈ X ;
(I2) there exist constants ρ,α > 0 such that ϕ|∂Bρ∩Z ≥ α;
(I3) for any finite dimensional subspace X̃ ⊂ X , there is R = R(X̃) > 0 such that ϕ(u) ≤ 0

on X̃ \ BR;
then ϕ possesses an unbounded sequence of critical values cj → +∞.

Next we check if the energy functional Φ satisfies the mountain pass geometry structure
of Proposition 2.2. First, we give a direct sum decomposition of the working space E. Let
{φj} be a total orthonormal basis of E, we define Xj = Rφj,

Yk =
k⊕

j=1

Xj, Zk =
∞⊕

j=k+1

Xj, k ∈ Z.

It is clear that Yk is a finite dimensional space, and E = Zk ⊕ Yk for all k ∈ Z. In addition,
based on the fact that E ↪→ Lp(R3) is compact for 2 ≤ p < 6, we have the following result
by the argument of Lemma 3.8 in [15] (see also [16, 17]).

Lemma 2.3 Assume that (Ṽ1) and (V2) hold, for 2 ≤ p < 6,

βk(p) := sup
z∈Zk ,‖z‖=1

‖z‖p → 0, k → ∞.

It follows from Lemma 2.3 that we may take an integer m ≥ 1 such that

‖z‖2
2 ≤ 1

2c1
‖z‖2, ‖z‖p

p ≤ p
4c2

‖z‖p, ∀ z ∈ Zm. (2.5)

Lemma 2.4 Assume that (Ṽ1), (V2), and (g0) hold, there exists a positive constant ρ such
that Φ|∂Bρ∩Zm > 0.
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Proof Observe that, for any z ∈ Zm, by Lemma 2.1, (2.5), and (g0) we have

Φ(z) =
1
2
‖z‖2 –

1
2

∫
R3

ωφzz2 dx –
∫
R3

G(x, z) dx

≥ 1
2
‖z‖2 –

c1

2
‖z‖2

2 –
c2

p
‖z‖p

p

≥ 1
4
(‖z‖2 – ‖z‖p).

Since p > 2, choosing suitable ρ > 0, we see that the desired conclusion holds. �

Lemma 2.5 Assume that (Ṽ1), (V2), (g0), and (g1) hold; for any finite dimensional subspace
Ẽ ⊂ E, there is R = R(Ẽ) > 0 such that Φ(z) ≤ 0 for any z ∈ Ẽ\BR.

Proof Let Ẽ be a finite dimensional subspace of E, then there is a positive integral number
l such that Ẽ ⊂ El . Since all norms are equivalent in a finite dimensional space, there is a
constant c3 > 0 such that

‖z‖4 ≥ c3‖z‖, ∀El. (2.6)

By (g0) and (g1), for any M > ωC0
2c4

3
, there is a constant CM > 0 such that

G(x, z) ≥ M|z|4 – CM|z|2, ∀(x, z) ∈ R
3 ×R. (2.7)

It follows from Lemma 2.1, (2.7), and (2.6) that

Φ(z) ≤ 1
2
‖z‖2 +

ωC0

2
‖z‖4 – M‖z‖4

4 + CM‖z‖2
2

≤ 1
2
‖z‖2 –

(
Mc4

3 –
ωC0

2

)
‖z‖4 + CMC2

2‖z‖2

for all z ∈ El . Consequently, there exists large R = R(Ẽ) > 0 such that Φ(z) ≤ 0 on Ẽ\BR.
The proof is completed. �

Now we discuss the property of the (C)c-sequence, we have the following lemma.

Lemma 2.6 Assume that (Ṽ1), (V2), (g0)–(g2) hold. Then any (C)c-sequence of Φ is
bounded.

Proof Let {zn} ⊂ E be a (C)c-sequence of Φ , then

Φ(zn) → c and
(
1 + ‖zn‖

)
Φ ′(zn) → 0, (2.8)

and there exists a constant C > 0 such that

Φ(zn) –
1
4
Φ ′(zn)zn ≤ C. (2.9)
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Suppose to the contrary that ‖zn‖ → ∞. Setting wn := zn/‖zn‖, then ‖wn‖ = 1. After pass-
ing to a subsequence, we may assume that wn ⇀ w in E, wn → w in Lp(R3) for 2 ≤ p < 6
and wn(x) → w(x) a.e. x ∈R

3. Then there are two possibilities: w = 0 or w �= 0.
If w = 0. Observe that it follows from (g0) that there exist constants r1, c such that

∣∣∣∣1
4

g
(|x|, z

)
z – G

(|x|, z
)∣∣∣∣ ≤ c|z|2 for all |z| < r1.

Therefore, by (g2), (2.3), (2.4), and (2.9), we have

C
‖zn‖2 ≥ 1

‖zn‖2

(
Φ(zn) –

1
4
〈
Φ ′(zn), zn

〉)

=
1
4

+
1

‖zn‖2

∫
R3

(
1
4
φ2

zn z2
n +

(
1
4

g(x, zn)zn – G(x, zn)
))

dx

≥ 1
4

– c
∫

|zn|<r1

w2
n dx – β

∫
|zn|≥r1

w2
n dx

≥ 1
4

– (c + β)
∫
R3

w2
n dx.

Taking limit on both sides, we obtain 1
4 ≤ 0. Clearly, this is a contradiction.

If w �= 0. For 0 ≤ a < b, let Ωn(a, b) = {x ∈ R
3 : a ≤ |zn(x)| < b}. Setting Σ := {x ∈

R
3 : w(x) �= 0}. Obviously, meas(Σ) > 0. For x ∈ Σ , |zn(x)| → ∞ as n → ∞. Hence x ∈

Ωn(r0,∞) for large n ∈N, which implies that χΩn(r0,∞)(x) = 1 for large n, where χΩ denotes
the characteristic function on Ω , r0 is given in (g1). Since wn(x) → w(x) a.e. in R

3, we have
χΩn(r0,∞)(x)wn(x) → w(x) a.e. in Σ . It follows from (g1) and (2.5) and Fatou’s lemma that

0 = lim
n→∞

c + o(1)
‖zn‖4 = lim

n→∞
Φ(zn)
‖zn‖4

= lim
n→∞

1
‖zn‖4

(
1
2
‖zn‖2 –

1
2

∫
R3

ωφzn z2
n –

∫
R3

G(x, zn) dx
)

= lim
n→∞

1
‖zn‖4

(
1
2
‖zn‖2 –

1
2

∫
R3

ωφzn z2
n –

∫
Ωn(0,r0)

G(x, zn) dx –
∫

Ωn(r0,∞)
G(x, zn) dx

)

≤ C0

2
+ lim sup

n→∞

[(
c4

2
+

c5

p
rp–2

0

)
1

‖zn‖2

∫
R3

|wn|2 dx
]

– lim inf
n→∞

∫
Ωn(r0,∞)

G(x, zn)
z4

n
w4

n dx

≤ c6 +
C0

2
– lim inf

n→∞

∫
R3

G(x, zn)
z4

n

[
χΩn(r0,∞)(x)

]
w4

n dx

≤ c6 +
C0

2
–

∫
Σ

lim inf
n→∞

G(x, zn)
z4

n

[
χΩn(r0,∞)(x)

]
w4

n dx = +∞,

which implies a contradiction. Thus {zn} is bounded in E. �

Lemma 2.7 Assume that (Ṽ1), (V2), and (g0)–(g2) hold. Then Φ satisfies the (C)c-condition.

Proof Let {zn} ⊂ E be a (C)c-sequence of Φ . It follows from Lemma 2.6 that {zn} is
bounded in E. Passing to a subsequence, we can assume that zn ⇀ z in E, then zn → z
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in Lp(R3) for 2 ≤ p < 6, hence it is easy to check that

∫
R3

∣∣g(x, zn) – g(x, z)
∣∣|zn – z|dx → 0, as n → ∞. (2.10)

By view of (2.3) and (2.4), we get

‖zn – z‖2 =
〈
Φ ′(zn) – Φ ′(z), zn – z

〉
+

∫
R3

(
g(x, zn) – g(x, z)

)
(zn – z) dx

+
∫
R3

(
(2ω + φzn )φzn zn – (2ω + φz)φzz

)
(zn – z) dx.

On the one hand, by Hölder’s inequality and Sobolev’s embedding inequality, we get

∣∣∣∣
∫
R3

(2ω + φzn )φzn zn(zn – z) dx
∣∣∣∣ ≤

∣∣∣∣
∫
R3

2ωφzn zn(zn – z) dx
∣∣∣∣ +

∣∣∣∣
∫
R3

φ2
zn zn(zn – u) dx

∣∣∣∣
≤ 2ω‖φzn zn‖2‖zn – z‖2 +

∥∥φ2
zn zn

∥∥
2‖zn – z‖2

≤ 2ω‖φzn‖6‖zn‖3‖zn – z‖2 + ‖φzn‖2
6‖zn‖6‖zn – z‖2

≤ c4
(‖φzn‖D1,2‖zn‖3 + ‖φzn‖2

D1,2‖zn‖6
)‖zn – z‖2

≤ c5
(‖zn‖2

12/5‖zn‖3 + ‖zn‖4
12/5‖zn‖6

)‖zn – z‖2

→ 0, as n → ∞.

Moreover, using some similar arguments, we can show that

∣∣∣∣
∫
R3

(2ω + φz)φzz(zn – z) dx
∣∣∣∣ → 0, as n → ∞. (2.11)

On the other hand, by view of the definition of weak convergence, we have

〈
Φ ′(zn) – Φ ′(z), zn – z

〉 → 0, as n → ∞. (2.12)

It follows from (2.10)–(2.12) that ‖zn – z‖ → 0 as n → ∞. The proof is completed. �

3 Proof of the theorem
In this section, we give the proof of Theorem 1.1.

Proof of Theorem 1.1 Obviously, (g3) implies that Φ(0) = 0 and Φ is even. Lemmas 2.4 and
2.5 imply that Φ satisfies the geometry structure of Proposition 2.2. Lemmas 2.6 and 2.7
show that Φ satisfies the (C)c-condition. Thus, by Proposition 2.2, system (2.1) possesses
a sequence of infinitely many nontrivial solutions {zn} such that Φ(zn) → ∞ as n → ∞.
Moreover, system (1.2) also possesses a sequence of infinitely many nontrivial solutions
{zn} such that Φ(zn) → ∞ as n → ∞. �
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