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Abstract
The Cauchy problem of the modified Helmholtz-type equation is severely ill-posed,
i.e., the solution does not depend continuously on the given Cauchy data. Thus the
regularization methods are required to recover the numerical stability. In this paper,
we propose a quasi-reversibility regularization method to deal with this ill-posed
problem. Convergence estimates are obtained under a-priori bound assumptions for
the exact solution and the selection of regularization parameter. Some numerical
results are given to show that this method is stable and feasible.
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1 Introduction
In this study, a Cauchy problem of the Helmholtz-type equation is considered as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

wxx + wyy – k2w = 0, 0 < x < π , 0 < y < T ,

w(x, 0) = ϕ(x), 0 ≤ x ≤ π ,

wy(x, 0) = ψ(x), 0 ≤ x ≤ π ,

w(0, y) = w(π , y) = 0, 0 ≤ y ≤ T .

(1.1)

By solving equations (1.2) and (1.3) as follows, respectively, the solution to equation (1.1)
can be obtained.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

uxx + uyy – k2u = 0, 0 < x < π , 0 < y < T ,

u(x, 0) = ϕ(x), 0 ≤ x ≤ π ,

uy(x, 0) = 0, 0 ≤ x ≤ π ,

u(0, y) = u(π , y) = 0, 0 ≤ y ≤ T ,

(1.2)
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and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

vxx + vyy – k2v = 0, 0 < x < π , 0 < y < T ,

v(x, 0) = 0, 0 ≤ x ≤ π ,

vy(x, 0) = ψ(x), 0 ≤ x ≤ π ,

v(0, y) = v(π , y) = 0, 0 ≤ y ≤ T ,

(1.3)

where u(x, y) : [0,π ] × [0, T] → R, v(x, y) : [0,π ] × [0, T] → R and w(x, y) : [0,π ] × [0, T] →
R are all second-order continuous differentiable functions.

This problem appears in many applications [1] such as in Debye–Huckel theory, im-
plicit marching strategies of the heat equation, the linearization of the Poisson–Boltzmann
equation [2–4], and so on. The direct problems of the Helmholtz-type equation have been
studied widely in the past century [5, 6]. In recent years, some new methods have been
proposed for the Helmholtz problems, such as fast solution of three-dimensional modi-
fied Helmholtz equations by the method of fundamental solutions [7], a new radial basis
function for Helmholtz problems [8], a new investigation into regularization techniques
for the method of fundamental solutions [9], the blow-up of radial solutions to a cubic
non-linear system equation in dimension 2 [10], and a modified and simple algorithm for
fractional modelling arising in unidirectional propagation of long wave in dispersive me-
dia by using the fractional homotopy analysis transform method [11]. However, the noisy
data can be obtained only on a part of the boundary or at some interior points in some
practical problems giving rise to an inverse problem [12]. Problem (1.1) is well known
to be a highly ill-posed problem, which means the solution does not depend continu-
ously on the given Cauchy data, i.e., any small change in the given data may cause large
error to the solution [13, 14]. In recent years, the Cauchy problems associated with the
Helmholtz-type equation have been studied by using different numerical methods such
as the conjugate gradient method [15], the Landweber method with boundary element
method [16], Tikhonov-type regularization method [17], the method of fundamental so-
lutions [18–20], quasi-reversibility and truncation methods [21], and so on. In paper [22],
a non-local boundary value problem method is used to solve a Cauchy problem for el-
liptic equations in a cylindrical domain. Recently this method has been used to solve the
backward heat conduction problem [23–26] and the Cauchy problem for hyper-parabolic
partial differential equations [27].

In this study, a quasi-reversibility regularization method will be considered to construct
stable approximate solutions to problems (1.2) and (1.3). Our method has a little differ-
ence with the one in [21]. There are two ways to propose quasi-reversibility methods: by
modifying the disturbance equation or by modifying the initial-boundary value condition.
In [21], the main strategy is to modify the disturbance equation. In our paper, the initial-
boundary value condition is modified. Here the initial conditions u(x, 0) = ϕ(x) in (1.2) and
vy(x, 0) = ψ(x) in (1.3) are replaced with

u(x, 0) + α
∂pu(x, T)

∂yp = ϕ(x), (1.4)

vy(x, 0) + α
∂pv(x, T)

∂yp = ψ(x), (1.5)
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respectively, where p ≥ 1 is an integer and α > 0 is the regularization parameter. In order
to overcome the ill-posedness of problems (1.2) and (1.3), the perturbation conditions
(1.4) and (1.5) will be adopted. For compatibility of physical dimension, here we make the
regularization parameter α include some coefficients of thermodynamics.

The remainder of this paper is organized as follows. In Sect. 2, a quasi-reversibility reg-
ularization method and error estimates are given. In Sect. 3, numerical results are shown.
Some conclusions are given in Sect. 4.

2 Regularization method and error estimates
Firstly, as for equation (1.2), the solution to the following perturbation equation will be
adopted to approach the solution to equation (1.2):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(uδ
α)xx + (uδ

α)yy – k2(uδ
α) = 0, 0 < x < π , 0 < y < T , (2.1a)

uδ
α(x, 0) + α

∂puδ
α(x, T)
∂py

= ϕδ(x), 0 ≤ x ≤ π , (2.1b)

(uδ
α)y(x, 0) = 0, 0 ≤ x ≤ π , (2.1c)

uδ
α(0, y) = uδ

α(π , y) = 0, 0 ≤ y ≤ T . (2.1d)

where p ≥ 1 is an integer, α > 0 is a regularization parameter, and the measured data ϕδ ∈
L2(0,π ) satisfies

∥
∥ϕδ – ϕ

∥
∥ ≤ δ, (2.2)

in which ‖ · ‖ denotes the L2-norm and the constant δ > 0 is called an error level.
By the technique of separation of variables, we can obtain a solution to equation (1.2) as

follows:

u(x, y) =
∞∑

n=1

ϕn sin(nx) cosh
(√

k2 + n2y
)
, (2.3)

where

ϕn =
2
π

∫ π

0
ϕ(x) sin(nx) dx. (2.4)

Similarly, the solution to problem (2.1a)–(2.1d) is

uδ
α(x, y) =

⎧
⎨

⎩

∑∞
n=1

cosh(
√

k2+n2y)/ sinh(
√

k2+n2T)
α(

√
k2+n2)p+1/ sinh(

√
k2+n2T)

ϕδ
n sin(nx) p is odd,

∑∞
n=1

cosh(
√

k2+n2y)/ cosh(
√

k2+n2T)
α(

√
k2+n2)p+1/ cosh(

√
k2+n2T)

ϕδ
n sin(nx) p is even,

(2.5)

where

ϕδ
n =

2
π

∫ π

0
ϕδ(x) sin(nx) dx. (2.6)

Next, the deduction of (2.5) will be given. By the technique of separation of variables,
let uδ

α(x, y) = X(x)T(y), and plug that into equation (2.1a). We can obtain

X ′′(x)T(y) + X(x)T ′′(y) – k2(X(x)T(y)
)

= 0.
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By separation of variables, we have

X ′′(x)
X(x)

=
k2T(y) – T ′′(y)

T(y)
. (2.5a)

Since the left-hand side is independent of t and the right-hand side is independent of x in
equation (2.5a), we can let equation (2.5a) equal –λ(constant).

Hence, we can obtain two second-order linear ordinary differential equations as follows:

X ′′(x) + λX(x) = 0, (2.5b)

T ′′(y) –
(
k2 + λ

)
T(y) = 0. (2.5c)

Now, plug uδ
α(x, y) = X(x)T(y) into equation (2.1d), and we have

X(0)T(y) = X(π )T(y) = 0.

Apparently, T(y) 
≡ 0, we have

X(0) = X(π ) = 0. (2.5d)

So, the Sturm–Liouville eigenvalue problems of equations (2.5b) and (2.5c) can be ob-
tained, and we can obtain all eigenvalues λn = n2, n = 1, 2, 3, . . . , and eigenfunctions

Xn = sin(nx), n = 1, 2, 3, . . . . (2.5e)

For any λn = n2, n = 1, 2, 3, . . . , from equation (2.5b) we have

Tn(y) = Cne
√

k2+n2y + Dne–
√

k2+n2y. (2.5f)

From equations (2.5e) and (2.5f), we can obtain

uδ
α(x, y) =

∞∑

n=1

(
Cne

√
k2+n2y + Dne–

√
k2+n2y) sin(nx). (2.5g)

We plug equation (2.5g) into equation (2.1c), and we have

∞∑

n=1

(
Cn

√
k2 + n2 – Dn

√
k2 + n2

)
sin(nx) = 0,

(
Cn

√
k2 + n2 – Dn

√
k2 + n2

)
=

2
π

∫ π

0
0 · sin(nx) dx = 0.

Hence, we can obtain Cn = Dn, Tn(y) = 2Cn cosh(
√

k2 + n2y), and

uδ
α(x, y) =

(
2Cn cosh

(√
k2 + n2y

))
sin(nx). (2.5h)
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From equations (2.5f) and (2.1b), we can obtain

∞∑

n=1

[
2Cn + αCn

(
e
√

k2+n2T + (–1)pe–
√

k2+n2T)(√
k2 + n2

)p]
sin(nx) = ϕδ(x),

∞∑

n=1

2Cn

[

1 +
e
√

k2+n2T + (–1)pe–
√

k2+n2T

2
α
(√

k2 + n2
)p

]

sin(nx) = ϕδ(x), (2.5i)

2Cn

[

1 +
e
√

k2+n2T + (–1)pe–
√

k2+n2T

2
α
(√

k2 + n2
)p

]

=
2
π

∫ π

0
ϕ(x) · sin(nx) dx � ϕδ

n.

From equation (2.5i), we have

2Cn =
ϕδ

n

1 + e
√

k2+n2T +(–1)pe–
√

k2+n2T

2 α(
√

k2 + n2)p
. (2.5j)

Therefore, from equations (2.5g) and (2.5j), we can obtain equation (2.5).
In the following Theorem 2.1, we will prove that solution (2.5) depends continuously on

the Cauchy data ϕδ .

Theorem 2.1 Suppose that uδ
α1 is the solutions to equation (2.1a)–(2.1d) corresponding to

the data ϕδ
1 , and uδ

α2 is the solutions to equation (2.1a)–(2.1d) corresponding to the data
ϕδ

2 , then, for α < T , we obtain

∥
∥uδ

α1(·, y) – uδ
α2(·, y)

∥
∥ ≤

(
2

1 – e–2T

)(
T

α(1 + ln(T/α))

)
∥
∥ϕδ

1 – ϕδ
2
∥
∥. (2.7)

Proof The case that p is even will be considered first. From (2.5), we can obtain

uδ
α1 =

∞∑

n=1

cosh(
√

k2 + n2y)/ cosh(
√

k2 + n2T)
α(

√
k2 + n2)p + 1/ cosh(

√
k2 + n2T)

ϕδ
1,n sin(nx), (2.8)

uδ
α2 =

∞∑

n=1

cosh(
√

k2 + n2y)/ cosh(
√

k2 + n2T)
α(

√
k2 + n2)p + 1/ cosh(

√
k2 + n2T)

ϕδ
2,n sin(nx), (2.9)

where ϕδ
i,n = 2

π

∫ π

0 ϕδ
i (x) sin(nx) dx for i = 1, 2.

For x > 0, we define the function

h(x) =
1

αx + e–xT . (2.10)

It is easy to prove that h(x) has a unique maximizer x0 as α < T such that

h(x) ≤ h(x0) = h
(

ln(T/α)
T

)

=
T

α(1 + ln(T/α))
. (2.11)

Then, from Parseval equality, equation (2.11), and Bessel inequality, we have

∥
∥uδ

α1(·, y) – uδ
α2(·, y)

∥
∥2
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=

∥
∥
∥
∥
∥

∞∑

n=1

cosh(
√

k2 + n2y)/ cosh(
√

k2 + n2T)
α(

√
k2 + n2)p + 1/ cosh(

√
k2 + n2T)

(
ϕδ

1,n – ϕδ
2,n

)
sin(nx)

∥
∥
∥
∥
∥

2

=
π

2

∞∑

n=1

(
cosh(

√
k2 + n2y)/ cosh(

√
k2 + n2T)

α(
√

k2 + n2)p + 1/ cosh(
√

k2 + n2T)

)2(
ϕδ

1,n – ϕδ
2,n

)2

≤ π

2

∞∑

n=1

(
cosh(

√
k2 + n2T)/ cosh(

√
k2 + n2T)

α(
√

k2 + n2) + 1/ cosh(
√

k2 + n2T)

)2(
ϕδ

1,n – ϕδ
2,n

)2

=
π

2

∞∑

n=1

(
1

α(
√

k2 + n2) + 1/ cosh(
√

k2 + n2T)

)2(
ϕδ

1,n – ϕδ
2,n

)2

≤ π

2

∞∑

n=1

(
1

α(
√

k2 + n2) + e–
√

k2+n2T

)2(
ϕδ

1,n – ϕδ
2,n

)2

≤
(

T
α(1 + ln(T/α))

)2
π

2

∞∑

n=1

(
ϕδ

1,n – ϕδ
2,n

)2

=
(

T
α(1 + ln(T/α))

)2
π

2

∞∑

n=1

(
2
π

∫ π

0

(
ϕδ

1 – ϕδ
2
)

sin(nx) dx
)2

≤
(

T
α(1 + ln(T/α))

)2
π

2
· 2
π

∞∑

n=1

(∫ π

0

(
ϕδ

1 – ϕδ
2
)
(

2
π

sin(nx)
)

dx
)2

≤
(

T
α(1 + ln(T/α))

)2∥
∥ϕδ

1 – ϕδ
2
∥
∥2. (2.12)

Next, the case that p is odd will be discussed. From (2.5), using the inequality
cosh(

√
k2+n2T)

sinh(
√

k2+n2T)
≤ 2

1–e–2(
√

k2+n2T)
≤ 2

1–e–2T , we can obtain

∥
∥uδ

α1(·, y) – uδ
α2(·, y)

∥
∥2

=
π

2

∞∑

n=1

(
cosh(

√
k2 + n2y)/ sinh(

√
k2 + n2T)

α(
√

k2 + n2)p + 1/ sinh(
√

k2 + n2T)

)2(
ϕδ

1,n – ϕδ
2,n

)2

≤ π

2

∞∑

n=1

(
cosh(

√
k2 + n2T)/ sinh(

√
k2 + n2T)

α(
√

k2 + n2) + e–(
√

k2+n2)T

)2(
ϕδ

1,n – ϕδ
2,n

)2

≤
(

2
1 – e–2T

)2( T
α(1 + ln(T/α))

)2∥
∥ϕδ

1 – ϕδ
2
∥
∥2. (2.13)

By (2.12), (2.13), we have (2.7). �

In Theorem 2.2 below, we will verify that a stable approximation to the exact solution u
given by (2.3) is the regularized solution uδ

α given by (2.5).

Theorem 2.2 Let u be the solution to equation (1.2) and uδ
α be the solution to equation

(2.1a)–(2.1d). Suppose that the measured data ϕδ satisfies ‖ϕδ – ϕ‖ ≤ δ and the exact so-
lution u satisfies ‖ ∂pu

∂yp (·, T)‖ ≤ E with p ≥ 1. We choose the regularization parameter

α = δ. (2.14)
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Then, for fixed 0 < y ≤ T and δ < T , we can obtain the following error estimate:

∥
∥uδ

α(·, y) – u(·, y)
∥
∥ ≤ C

(

1 + ln

(
T
δ

))–1

, (2.15)

where C = 2
1–e–2T T(1 + E).

Proof Denote by uα the solution of equation (2.1a)–(2.1d) corresponding to the exact
data ϕ. We have

∥
∥uδ

α – u
∥
∥ ≤ ∥

∥uδ
α – uα

∥
∥ + ‖uα – u‖. (2.16)

When p is even, from Theorem 2.1, we get

∥
∥uδ

α(·, y) – uα(·, y)
∥
∥2 ≤

(
T

α(1 + ln(T/α))

)2∥
∥ϕδ – ϕ

∥
∥2.

From (2.2), (2.3), (2.5), (2.11), we can obtain

∥
∥uα(·, y) – u(·, y)

∥
∥2

=

∥
∥
∥
∥
∥

∞∑

n=1

(
cosh(

√
k2 + n2y)/ cosh(

√
k2 + n2T)

α(
√

k2 + n2)p + 1/ cosh(
√

k2 + n2T)
– cosh

(√
k2 + n2y

)
)

ϕn sin(nx)

∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥

∞∑

n=1

α(
√

k2 + n2)p cosh(
√

k2 + n2y)
α(

√
k2 + n2)p + 1/ cosh(

√
k2 + n2T)

ϕn sin(nx)

∥
∥
∥
∥
∥

2

=
π

2

∞∑

n=1

(
α(

√
k2 + n2)p cosh(

√
k2 + n2y)

α(
√

k2 + n2)p + 1/ cosh(
√

k2 + n2T)

)2

ϕ2
n

≤ π

2

∞∑

n=1

(
α

α(
√

k2 + n2) + e–(
√

k2+n2)T

)2(√
k2 + n2

)2p
cosh2(

√
k2 + n2T

)
ϕ2

n

≤
(

T
1 + ln(T/α)

)2∥∥
∥
∥
∂pu
∂yp (·, T)

∥
∥
∥
∥

2

.

From (2.16) and the above two estimates, we have

∥
∥uδ

α(·, y) – u(·, y)
∥
∥ ≤

(

1 + ln

(
T
δ

))–1

T(1 + E). (2.17)

In the following equation, the case that p is odd is considered. From Theorem 2.1 and
the inequality cosh(

√
k2+n2T)

sinh(
√

k2+n2T)
≤ 2

1–e–2(
√

k2+n2T)
≤ 2

1–e–2T , we have

∥
∥uδ

α(·, y) – uα(·, y)
∥
∥2 ≤

(
2

1 – e–2T

)2( T
α(1 + ln(T/α))

)2∥
∥ϕδ – ϕ

∥
∥2, (2.18)

∥
∥uα(·, y) – u(·, y)

∥
∥2

=

∥
∥
∥
∥
∥

∞∑

n=1

(
cosh(

√
k2 + n2y)/ sinh(

√
k2 + n2T)

α(
√

k2 + n2)p + 1/ sinh(
√

k2 + n2T)
– cosh

(√
k2 + n2y

)
)

ϕn sin(nx)

∥
∥
∥
∥
∥

2



Yang and Yang Boundary Value Problems         (2019) 2019:29 Page 8 of 19

=

∥
∥
∥
∥
∥

∞∑

n=1

α(
√

k2 + n2)p cosh(
√

k2 + n2y)
α(

√
k2 + n2)p + 1/ sinh(

√
k2 + n2T)

ϕn sin(nx)

∥
∥
∥
∥
∥

2

≤ π

2

∞∑

n=1

(
α(

√
k2 + n2)p cosh(

√
k2 + n2y)

α(
√

k2 + n2) + e–(
√

k2+n2T)

)2

ϕ2
n

≤ π

2

∞∑

n=1

(
α

α(
√

k2 + n2) + e–(
√

k2+n2T)

)2

×
(

cosh(
√

k2 + n2y)
sinh(

√
k2 + n2T)

)2(√
k2 + n2

)2p
sinh2(

√
k2 + n2T

)
ϕ2

n

≤
(

T
1 + ln(T/α)

)2( 2
1 – e–2T

)2∥∥
∥
∥
∂pu
∂yp (·, T)

∥
∥
∥
∥

2

. (2.19)

From (2.14), (2.18), (2.19), we get

∥
∥uδ

α(·, y) – u(·, y)
∥
∥ ≤

(

1 + ln

(
T
δ

))–1 2T
1 – e–2T

(

1 +
∥
∥
∥
∥
∂pu
∂yp (·, T)

∥
∥
∥
∥

)

≤ C
(

1 + ln

(
T
δ

))–1

. (2.20)

By (2.17), (2.20), the estimate form of (2.15) can be obtained. �

Secondly, as for equation (1.3), the following perturbation equation is considered:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(vδ
α)xx + (vδ

α)yy – k2(vδ
α) = 0, 0 < x < π , 0 < y < T ,

vδ
α(x, 0) = 0, 0 ≤ x ≤ π ,

(vδ
α)y(x, 0) + α

∂pvδ
α (x,T)
∂yp = ψδ(x), 0 ≤ x ≤ π ,

vδ
α(0, y) = vδ

α(π , y) = 0, 0 ≤ y ≤ T ,

(2.21)

where p ≥ 1 is an integer, α is a regularization parameter, and the measured data ψδ ∈
L2(0,π ) satisfies

∥
∥ψδ – ψ

∥
∥ ≤ δ, (2.22)

the ‖ · ‖ denotes L2-norm and the constant δ > 0 is an error level.
By the technique of separation of variables, we get a solution to equation (1.3) as follows:

v(x, y) =
∞∑

n=1

ψn√
k2 + n2

sin(nx) sinh
(√

k2 + n2y
)
, (2.23)

where

ψn =
2
π

∫ π

0
ψ(x) sin(nx) dx. (2.24)
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In a similar way, we get that the solution to equation (2.21) is

vδ
α(x, y) =

⎧
⎨

⎩

∑∞
n=1

sinh(
√

k2+n2)y)/ cosh(
√

k2+n2T)
α(

√
k2+n2)p–1+1/ cosh(

√
k2+n2T)

ψδ
n√

k2+n2 sin(nx) p is odd,
∑∞

n=1
sinh(

√
k2+n2y)/ sinh(

√
k2+n2T)

α(
√

k2+n2)p–1+1/ sinh(
√

k2+n2T)
ψδ

n√
k2+n2 sin(nx) p is even,

(2.25)

where

ψδ
n =

2
π

∫ π

0
ψδ(x) sin(nx) dx. (2.26)

Lemma 2.3 Suppose 0 < y < T , then for α < 1 we get

sup
n>0

eny

n(1 + αenT )
≤ T

ln(1/α)
α– y

T . (2.27)

Lemma 2.3 is required in the following proof, and its proof can be found in [28].

Theorem 2.4 Let v be the solution to equation (1.3) and vδ
α be the solution to equation

(2.21). Suppose that the measured data ψδ satisfies ‖ψδ – ψ‖ ≤ δ and the exact solution v
satisfies ‖ ∂pv

∂yp (·, T)‖ ≤ E with p ≥ 1. We choose the regularization parameter

α = δ. (2.28)

Then, for fixed 0 < y ≤ T and δ < 2, we get the following error estimate:

∥
∥vδ

α(·, y) – v(·, y)
∥
∥ ≤ 2

y
T
(
1 – e–2T)– y

T δ1– y
T

T
ln(2/δ(1 – e–2T ))

(1 + E). (2.29)

Proof Firstly, the case that p is odd will be proved. From the condition ‖ψδ – ψ‖ ≤ δ we
derive

π

2

∞∑

n=1

(
ψδ

n – ψn
)2 ≤ δ2. (2.30)

Then, from (2.23), (2.25), (2.30), note that n ≥ 1, we get

∥
∥vδ

α(·, y) – vα(·, y)
∥
∥2

=

∥
∥
∥
∥
∥

∞∑

n=1

sinh(
√

k2 + n2y)/ cosh(
√

k2 + n2T)√
k2 + n2(α(

√
k2 + n2)p–1 + 1/ cosh(

√
k2 + n2T))

(
ψδ

n – ψn
)

sin(nx)

∥
∥
∥
∥
∥

2

=
π

2

∞∑

n=1

(
sinh(

√
k2 + n2y)/ cosh(

√
k2 + n2T)√

k2 + n2(α(
√

k2 + n2)p–1 + 1/ cosh(
√

k2 + n2T))

)2(
ψδ

n – ψn
)2

≤ π

2

∞∑

n=1

(
sinh(

√
k2 + n2y)√

k2 + n2(1 + α cosh(
√

k2 + n2T))

)2(
ψδ

n – ψn
)2

≤ π

2

∞∑

n=1

(
e
√

k2+n2y
√

k2 + n2(1 + α
2 e

√
k2+n2T )

)2(
ψδ

n – ψn
)2.
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From (2.27) in Lemma 2.3, for δ < 2, we have

∥
∥vδ

α(·, y) – vα(·, y)
∥
∥ ≤ 2

y
T δ1– y

T
T

ln(2/δ)
. (2.31)

And

∥
∥vα(·, y) – v(·, y)

∥
∥2

=

∥
∥
∥
∥
∥

∞∑

n=1

(
sinh(

√
k2 + n2y)/ cosh(

√
k2 + n2T)

α(
√

k2 + n2)p–1 + 1/ cosh(
√

k2 + n2T)
– sinh

(√
k2 + n2y

)
)

× ψn√
k2 + n2

sin(nx)

∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥

∞∑

n=1

α(
√

k2 + n2)p–1 sinh(
√

k2 + n2y)
α(

√
k2 + n2)p–1 + 1/ cosh(

√
k2 + n2T)

ψn√
k2 + n2

sin(nx)

∥
∥
∥
∥
∥

2

=
π

2

∞∑

n=1

(
α(

√
k2 + n2)p–1 sinh(

√
k2 + n2y) cosh(

√
k2 + n2T)√

k2 + n2(1 + α(
√

k2 + n2)p–1 cosh(
√

k2 + n2T))

)2

ψ2
n

≤ π

2

∞∑

n=1

(
α(

√
k2 + n2)p–1 sinh(

√
k2 + n2y) cosh(

√
k2 + n2T)√

k2 + n2(1 + α cosh(
√

k2 + n2T))

)2

ψ2
n

≤ π

2

∞∑

n=1

(
αe

√
k2+n2y

√
k2 + n2(1 + α

2 e
√

k2+n2T )

)2(√
k2 + n2

)2(p–1)
cosh2(

√
k2 + n2T

)
ψ2

n ,

thus

∥
∥vα(·, y) – v(·, y)

∥
∥ ≤ 2

y
T δ1– y

T
T

ln(2/δ)

∥
∥
∥
∥
∂pv
∂yp (·, T)

∥
∥
∥
∥. (2.32)

From (2.31), (2.32), we get

∥
∥vδ

α(·, y) – v(·, y)
∥
∥ ≤ 2

y
T δ1– y

T
T

ln(2/δ)
(1 + E). (2.33)

To even p, note that n ≥ 1, sinh(
√

k2 + n2T) ≥ 1/2e
√

k2+n2T (1 – e–2T ), we have

∥
∥vδ

α(·, y) – vα(·, y)
∥
∥2

=

∥
∥
∥
∥
∥

∞∑

n=1

sinh(
√

k2 + n2y)/ sinh(
√

k2 + n2T)√
k2 + n2(α(

√
k2 + n2)p–1 + 1/ sinh(

√
k2 + n2T))

(
ψδ

n – ψn
)

sin(nx)

∥
∥
∥
∥
∥

2

=
π

2

∞∑

n=1

(
sinh(

√
k2 + n2y)/ sinh(

√
k2 + n2T)√

k2 + n2(α(
√

k2 + n2)p–1 + 1/ sinh(
√

k2 + n2T))

)2(
ψδ

n – ψn
)2

≤ π

2

∞∑

n=1

(
sinh(

√
k2 + n2y)√

k2 + n2(1 + α sinh(
√

k2 + n2T))

)2(
ψδ

n – ψn
)2

≤ π

2

∞∑

n=1

(
e
√

k2+n2y
√

k2 + n2(1 + α(1–e–2T )
2 e

√
k2+n2T )

)2(
ψδ

n – ψn
)2.
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From (2.27) in Lemma 2.3, for δ < 2(1 – e–2T )–1, we can obtain

∥
∥vδ

α(·, y) – vα(·, y)
∥
∥ ≤ 2

y
T
(
1 – e–2T)– y

T δ1– y
T

T
ln(2/(δ(1 – e–2T )))

. (2.34)

And

∥
∥vα(·, y) – v(·, y)

∥
∥2

=

∥
∥
∥
∥
∥

∞∑

n=1

(
sinh(

√
k2 + n2y)/ sinh(

√
k2 + n2T)

α(
√

k2 + n2)p–1 + 1/ sinh(
√

k2 + n2T)
– sinh

(√
k2 + n2y

)
)

× ψn√
k2 + n2

sin(nx)

∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥

∞∑

n=1

α(
√

k2 + n2)p–1 sinh(
√

k2 + n2y)
α(

√
k2 + n2)p–1 + 1/ sinh(

√
k2 + n2T)

ψn√
k2 + n2

sin(nx)

∥
∥
∥
∥
∥

2

=
π

2

∞∑

n=1

(
α(

√
k2 + n2)p–1 sinh(

√
k2 + n2y) sinh(

√
k2 + n2T)√

k2 + n2(1 + α(
√

k2 + n2)p–1 sinh(
√

k2 + n2T))

)2

ψ2
n

≤ π

2

∞∑

n=1

(
α(

√
k2 + n2)p–1 sinh(

√
k2 + n2y) sinh(

√
k2 + n2T)√

k2 + n2(1 + α sinh(
√

k2 + n2T))

)2

ψ2
n

≤ π

2

∞∑

n=1

(
αe

√
k2+n2y

√
k2 + n2(1 + α(1–e–2T )

2 e
√

k2+n2T )

)2(√
k2 + n2

)2(p–1)
sinh2(

√
k2 + n2T

)
ψ2

n .

Then, from (2.27) in Lemma 2.3, we have

∥
∥vα(·, y) – v(·, y)

∥
∥ ≤ 2

y
T
(
1 – e–2T)– y

T δ1– y
T

T
ln(2/(δ(1 – e–2T )))

∥
∥
∥
∥
∂pv
∂yp (·, T)

∥
∥
∥
∥. (2.35)

Using (2.34), (2.35), we can obtain the error estimate (2.29). �

3 Numerical experiments
In order to verify the accuracy and efficiency of the proposed regularization method, two
numerical examples are performed.

Example 1 The following direct problem for the modified Helmholtz equation is consid-
ered:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

uxx + uyy – k2u = 0, 0 < x < π , 0 < y < 1,

uy(x, 0) = 0, 0 ≤ x ≤ π ,

u(x, 1) = x(π – x)(1 + x), 0 ≤ x ≤ π ,

u(0, y) = u(π , y) = 0, 0 ≤ y ≤ 1,

(3.1)

where we take T = 1.
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Figure 1 ε = 1× 10–3, k = 0.5

By the technique of separation of variables, we can obtain the solution to the direct
problem (3.1) as follows:

u(x, y) =
∞∑

n=1

ϕn sin(nx) cosh
(√

k2 + n2y
)
, (3.2)

where ϕn = 2
π cosh(k2+n2) dn, dn =

∫ π

0 x(π – x)(1 + x) sin(nx) dx, which can be computed by
employing the Simpson formulation.

Next, the initial data ϕ(x) is chosen as follows:

ϕ(x) = u(x, 0) ≈
25∑

n=1

ϕn sin(nx). (3.3)

We give the measured data ϕδ(xi) = ϕ(xi) + ε rand(i), where ε is an error level and

δ := ‖ϕδ – ϕ‖l2 =

(
1

N1

N1∑

i=1

∣
∣ϕδ(xi) – ϕ(xi)

∣
∣2

)1/2

. (3.4)

The function rand(·) denotes a random number uniformly distributed in the interval [0, 1].
The relative root mean square error between the exact and regularization solution is given
by

ε(u) =

√
1

N1×N2

∑N1
i=1

∑N2
j=1(u(xi, yj) – uδ

α(xi, yj))2

√
1

N1×N2

∑N1
i=1

∑N2
j=1(u(xi, yj))2

, (3.5)
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Figure 2 ε = 1× 10–2, k = 0.5

Figure 3 ε = 1× 10–3, k = 1.2

where

xi =
(i – 1)
N1 – 1

π , yj =
(j – 1)
N2 – 1

, i = 1, 2, . . . , N1, j = 1, 2, . . . , N2. (3.6)
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Figure 4 ε = 1× 10–2, k = 1.2

Table 1 k = 0.5, the relative root mean square errors ε(u) for various noise levels

ε 0.0001 0.001 0.005 0.01 0.05

p = 1 0.0014 0.0037 0.0117 0.0270 0.0814
p = 2 0.0025 0.0073 0.0205 0.0344 0.1184
p = 3 0.0046 0.0129 0.0311 0.0492 0.1323

Table 2 k = 1.2, the relative root mean square errors ε(u) for various noise levels

ε 0.0001 0.001 0.005 0.01 0.05

p = 1 0.0018 0.0056 0.0212 0.0394 0.1581
p = 2 0.0032 0.0113 0.0394 0.9705 0.2479
p = 3 0.0060 0.0203 0.0637 0.1075 0.3240

In the numerical computations, we only consider the cases when p = 1, 2, 3, and always
take N1 = N2 = 31. We choose the regularization parameter α by (2.14).

We have shown the numerical results in Figs. 1–4 and Tables 1–2. The numerical re-
sults for u(·, y) and uδ

α(·, y) with k = 0.5 and ε = 0.001, 0.01 are respectively shown in Fig. 1
and Fig. 2. The numerical results for u(·, y) and uδ

α(·, y) with k = 1.2 and ε = 0.001, 0.01
are respectively shown in Fig. 3 and Fig. 4. The relative root mean square errors for the
computed solution versus the error levels ε are respectively shown in Table 1 (k = 0.5) and
Table 2 (k = 1.2).
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Example 2 The following direct problem for the modified Helmholtz equation is consid-
ered:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

vxx + vyy – k2v = 0, 0 < x < π , 0 < y < 1,

v(x, 0) = 0, 0 ≤ x ≤ π ,

vy(x, 1) = x(π – x), 0 ≤ x ≤ π ,

v(0, y) = v(π , y) = 0, 0 ≤ y ≤ 1,

(3.7)

where T = 1.
By the technique of separation of variables, we get the solution to the direct problem

(3.7) as follows:

v(x, y) =
∞∑

n=1

2
π sinh(

√
k2 + n2)

∫ π

0
x(π – x) sin(nx) dx sin(nx) sinh

(√
k2 + n2y

)
. (3.8)

Then

vy(x, y) =
∞∑

n=1

ψn sin(nx) cosh
(√

k2 + n2y
)
, (3.9)

where ψn = 2n
π sinh(k2+n2) en, en =

∫ π

0 x(π – x) sin(nx) dx.
We give the initial data

ψ(x) = vy(x, 0) ≈
20∑

n=1

ψn sin(nx) (3.10)

and the measured data ψδ(xi) = ψ(xi) + ε rand(i), where ε is an error level.

We have shown the numerical results in Figs. 5–8 and Tables 3–4. The numerical re-
sults for v(·, y) and vδ

α(·, y) with k = 0.5 and ε = 0.001, 0.01 are respectively shown in Fig. 5
and Fig. 6. The numerical results for v(·, y) and vδ

α(·, y) with k = 1.2 and ε = 0.001, 0.01 are
respectively shown in Fig. 7 and Fig. 8. The relative root mean square errors for the com-
puted solution versus the error levels ε are respectively shown in Table 3 (k = 0.5) and
Table 4 (k = 1.2).

By Figs. 1–8 and Tables 1–4, we observe that our proposed method is effective and
stable. From Tables 1–2 and 3–4, we note that the smaller ε is, the better the calcula-
tion effect is, which means that our proposed regularization method is convergent with
respect to decreasing the noise level ε. In addition, from Tables 1 to 4, we can see the
relative root mean square errors ε(u) = 0.0014 and ε(v) = 0.0313 for various noise levels
when k = 0.5, ε = 0.0001, p = 1, and the relative root mean square errors ε(u) = 0.0018 and
ε(v) = 0.0204 for various noise levels when k = 1.2, ε = 0.0001, p = 1. Since ε(u) = 0.0014 is
less than ε(v) = 0.0313 and ε(u) = 0.0018 is less than ε(v) = 0.0204, our proposed method
is more effective to problem (1.2) than to (1.3) when p = 1. These results show that our
proposed method is applicable in dealing with Cauchy problem (1.2) and (1.3).
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Figure 5 ε = 1× 10–3, k = 0.5

Figure 6 ε = 1× 10–2, k = 0.5

4 Conclusions
In this study, we propose a quasi-reversibility regularization method to solve a Cauchy
problem for the modified Helmholtz-type equation. The error and stability estimates for
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Figure 7 ε = 1× 10–3, k = 1.2

Figure 8 ε = 1× 10–2, k = 1.2

0 < y ≤ T have been obtained under a-priori bound assumptions for the exact solution.
Some numerical results show that our proposed regularization method is effective and
stable. In addition, our proposed method is easy to be extended to the three-dimensional
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Table 3 k = 0.5, the relative root mean square errors ε(v) for various noise levels

ε 0.0001 0.001 0.005 0.01 0.05

p = 1 0.0313 0.0040 0.0096 0.0183 0.0815
p = 2 0.0019 0.0043 0.0129 0.0223 0.0850
p = 3 0.0029 0.0084 0.0226 0.0367 0.1206

Table 4 k = 1.2, the relative root mean square errors ε(v) for various noise levels

ε 0.0001 0.001 0.005 0.01 0.05

p = 1 0.0204 0.0034 0.0129 0.0251 0.1127
p = 2 0.0014 0.0048 0.0199 0.0378 0.1573
p = 3 0.0223 0.0093 0.0355 0.0651 0.2426

case and the proofs are similar. It should be mentioned that the method of separation of
variables is used to give the expression of solution, so the proposed method in this paper
can be extended to solve the Cauchy problems of Helmholtz-type equation in a cylindrical
domain. But it cannot be applied in more general geometries, which is a limit of the non-
local boundary value problem method.
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