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Abstract
In this paper, we investigate the unique solvability and stability of the time domain
electromagnetic scattering problem with a kind of unbounded scatterer, that is, a
locally perturbed perfectly electrical conducting plate. Specific analysis is provided for
the perfectly electrical conducting boundary condition and Maxwell’s equations to
accomplish the symmetric continuation, and a symmetric scattering problem with a
bounded scatterer is obtained. To analyze the unique solvability and stability of time
domain electromagnetic scattering problems, Fourier–Laplace transformation and a
“Laplace domain to time domain” analysis are involved. A rigorous analysis implies the
unique solvability and stability of the scattering problem with a locally perturbed
plate and implies that the problem is equivalent to the symmetric scattering problem
with a bounded scatterer.
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1 Introduction
Scattering problems of acoustic and electromagnetic waves have been intensively inves-
tigated in the past decades since they depend on rigorous mathematical analysis and are
closely associated with application areas such as medical imaging, nondestructive test-
ing, and geophysical exploration. The propagations of acoustic waves and electromag-
netic waves enable the construction of a wave equation and Maxwell’s equations, respec-
tively, which play important roles in the category of wave propagation problems [1]. The
corresponding scattering problems are referred to as time domain problems since both
the equations involve a time variable, which hinders analysis of the problems. Analysis of
time domain electromagnetic scattering problems is more difficult due to the vector form
of Maxwell’s equations. As a result, researchers devote more time and energy to a sim-
pler case, that is, time harmonic problems. In the time harmonic case, using tools such
as Fourier transformation and polarization, analyses of the wave equation and Maxwell’s
equations are simplified as analyses of the Helmholtz equation [2, 3] or the time harmonic
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Maxwell systems [4, 5], which are independent of the time variable and the corresponding
scattering problem is usually referred to as a frequency domain problem. A variety of fre-
quency domain scattering problems with unbounded scatterers, such as locally perturbed
half-planes [6–9] and open cavities [10–12], have been intensively explored. Newton type
methods and sampling methods are considered in [6] and [7], respectively, to solve time
harmonic electromagnetic scattering problems in locally perturbed half-planes. Mixed
reciprocity relation and factorization method are applied to deal with the Helmholtz equa-
tion in [8], and an analysis of time harmonic Maxwell systems is provided in [9]. Time
harmonic electromagnetic scattering problems with a cavity in a ground plane are consid-
ered in [10], in which a transparent boundary condition is proposed to solve the problem.
Stability of time harmonic electromagnetic scattering from two-dimensional large open
cavities is investigated in [11]. Integral formulation for electromagnetic scattering from
three-dimensional large cavities is provided in [12].

Although the scattering problem with a time variable can be directly analyzed [13, 14],
most time domain analyses are related to the frequency domain research on some level.
In recent years, with the development of frequency domain research and computer tech-
niques, the analysis and computation of time domain scattering problems have become
possible and increasingly attracted the attention of researchers. Generally speaking, most
time domain scattering problems can be classified as initial boundary value problems,
which are extensively studied in various fields of mathematical physics [15].

For the acoustic case, via a Fourier–Laplace transformation of a time domain problem,
a new problem that is sometimes referred to as the Laplace domain problem is obtained.
The well-posedness, that is, the unique solvability and stability of time domain scattering
problems, can be proven based on the Laplace domain analysis and a Fourier argument
[16, 17]. The analysis of [16] mainly depends on the layer potentials, which are important
tools to deal with partial differential equations [18]. A detailed description of the theo-
retical basis of time domain acoustic scattering is provided in [19]. Well-posedness and
time domain linear sampling methods to solve time domain scattering problems, such as
the scattering by locally perturbed half-planes [20], Robin and Neumann obstacles [21],
Dirichlet obstacles [22], and penetrable media [23], have been investigated. Kinds of time
domain scattering problems with unbounded scatterers, such as periodic structures [24],
rough surfaces [25], and locally perturbed half-planes [20], have also been analyzed.

For the time domain electromagnetic scattering problem, a similar “Laplace domain
to time domain” analysis as the time domain acoustic scattering problem is involved to
prove the well-posedness of the problem. Time domain electromagnetic scattering prob-
lems, such as the exterior scattering problem with a bounded scatterer [26], scattering by
periodic structures [27] and rough surfaces [28], the open cavity problems [29–32], and
scattering in chiral media [33], have been intensively analyzed. A brief survey of recent
developments on analysis of the open cavity scattering problems is investigated in [29] for
both the time harmonic case and the time domain case. The tools, such as the perfectly
matched layer method [30], the transparent boundary condition [31], and the artificial
boundary condition [32], have been investigated to truncate cavity scattering problems.

This paper concerns the analysis of time domain electromagnetic waves scattering by
a locally perturbed perfectly conducting plate. Similar to the corresponding frequency
domain works [6, 9], we also make use of the symmetric continuation to solve the more
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complex time domain problem. The idea is inspired by the time domain acoustic scattering
in a half-plane [20] and the Maxwell analysis in the time domain [26, 31].

For the convenience of the analysis and future computation, the scattering problem with
a locally perturbed perfectly conducting plate is reformulated as a symmetric scattering
problem with a bounded scatterer in this paper. In contrast to the Dirichlet boundary
conditions of the frequency domain problem and the time domain acoustic scattering
problem, a specific analysis is needed for the perfectly electrical conducting boundary
condition and the Maxwell’s equations to accomplish the symmetric continuation. For
the reformulated problem, a Fourier–Laplace transform is employed to obtain a Laplace
domain problem. The well-posedness of the Laplace domain problem is proved using the
Lax–Milgram theorem. The well-posedness of the reformulated problem is determined
by the “Laplace domain to time domain” analysis. The time domain electromagnetic scat-
tering problem with a locally perturbed perfectly conducting plate is proved to be well
posed and equivalent to the reformulated problem.

2 Problem settings
2.1 Time domain electromagnetic scattering and a symmetric continuation
Consider the scattering of time domain electromagnetic waves by a locally perturbed
perfectly electrical conducting plate. Adopting Cartesian coordinates, denote by x =
(x1, x2, x3)T a point in R

3 and R
3
0 = {x ∈ R

3 : x3 = 0}. A sketch of the three-dimensional
scattering problem is shown in Fig. 1. The upper boundary Γ + of the local perturbation is
assumed to be a smooth surface with its edge on R

3
0. Denote Γ c = R

3
0 \ Γ0, where Γ0 ⊂R

3
0

is the lower surface of the local perturbation. The upper boundary of the locally perturbed
plate is given by Γ + ∪ Γ c, and the unbounded space upon the locally perturbed plate is
denoted as D+

e .
For x ∈ R

3 and t ∈ R, the electromagnetic wave satisfies the time-dependent Maxwell’s
equations and the perfectly electrical conducting boundary condition

μ
∂H
∂t

+ ∇ × E = 0 in D+
e ×R, (2.1)

ε
∂E
∂t

– ∇ × H = J in D+
e ×R, (2.2)

n × E = 0 on
{
Γ + ∪ Γ c} ×R, (2.3)

where ε > 0 is the electric permittivity, μ > 0 is the magnetic permeability, E and H are the
electric field intensity and the magnetic field intensity, respectively, and J is the current

Figure 1 Sketch of the three dimensional scattering
problem
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density with form

J(x, t) = ρ(x, t)v(x, t),

where ρ is the charge density and v is the particles’ average drift velocity. In this paper, the
charge density ρ is assumed to be compactly supported in D+

e , and the current density J is
assumed to be causal, which indicates that J(·, t) = 0 for t < 0. The causality implies

E(x, 0) = 0, H(x, 0) = 0.

Due to the causality and compact support of the current density and the limited transmis-
sion speed of electromagnetic waves, the electromagnetic fields are compactly supported
in space for any given t.

Denote

T1x =

⎛

⎜
⎝

1 0 0
0 1 0
0 0 –1

⎞

⎟
⎠ x = (x1, x2, –x3)T

as the symmetric point of x ∈R
3 about the plane R

3
0 and

T2x = –T1x = (–x1, –x2, x3)T.

Denote Γ – := {x : T1x ∈ Γ +} and D–
e := {x : T1x ∈ D+

e } as the reflection of Γ + and the
reflection of D+

e , respectively. The symmetric continuation yields the bounded domain D
with the boundary ∂D := Γ + ∪ Γ –. The complementary set is denoted by De = R

3 \ D.
Assume that

J(x, t) =
(
J1(x, t), J2(x, t), J3(x, t)

)T,

and denote

Jr(x, t) = T2J(T1x, t) =
(
–J1(T1x, t), –J2(T1x, t), J3(T1x, t)

)T

as the symmetric current density, which can be considered as a new current density with
an opposite charge density compactly supported in D–

e and a symmetric drift velocity, that
is,

Jr(x, t) = –ρ(T1x, t)T1v(T1x, t).

We consider a symmetric scattering problem with a bounded scatterer:

μ
∂H
∂t

+ ∇ × E = 0 in De ×R, (2.4)

ε
∂E
∂t

– ∇ × H = J + Jr in De ×R, (2.5)

n × E = 0 on ∂D ×R. (2.6)
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The scattering problem (2.4)–(2.6) can be proved to be equivalent to problem (2.1)–
(2.3) after a well-posedness analysis. Before the analysis, we recall some notations about
the spaces and the Fourier–Laplace transformation.

2.2 Sobolev spaces and the Fourier–Laplace transform
For the Lipschitz domain D, define the Hilbert spaces (refer to [16, 31, 34])

H(curl, D) =
{

U ∈ L2(D),∇ × U ∈ L2(D)
}

,

H0(curl, D) =
{

U ∈ H(curl, D), n × U = 0 on ∂D
}

with the same norm

‖U‖2
H(curl,D) := ‖U‖2

L2(D) + ‖∇ × U‖2
L2(D).

Set Cσ := {s ∈ C : Re(s) ≥ σ } for some σ > 0 and C+ := {s ∈ C : Re(s) > 0}. For s ∈ Cσ , we
recall the energy norm (refer to [16] Appendix A.3 for details)

|||U|||2|s|,Ω := ‖sU‖2
L2(Ω) + ‖∇ × U‖2

L2(Ω). (2.7)

We recall some notations about the time-dependent Sobolev spaces (refer to [16, 20]
for details). For a Hilbert space X , denote the spaces of the X-valued distributions and
tempered distributions on the real line by D′(X) and S ′(X), respectively.

The Fourier–Laplace transform and the corresponding inverse transform are defined as

Ǔ(s) = L[U](s) :=
∫ ∞

–∞
e–stU(t) dt, s ∈Cσ (2.8)

and

L–1[Ǔ](t) :=
1

2π i

∫ σ+i∞

σ–i∞
estǓ(s) ds,

respectively.
For σ > 0, denote

L′
σ (R, X) :=

{
U ∈D′(X) : e–σ tU ∈ S ′(X)

}

and

L′
σ (R+, X) :=

{
U ∈L′

σ (R, X) : U(t) = 0,∀t < 0
}

.

For σ > 0 and p ∈R, define the Sobolev space

Hp
σ (R, X) :=

{
U ∈L′

σ (R, X) :
∫ σ+i∞

σ–i∞
|s|2p∥∥L[U](s)

∥∥2
X ds < ∞

}

with the norm

‖U‖Hp
σ (R,X) :=

(∫ σ+i∞

σ–i∞
|s|2p∥∥L[U](s)

∥∥2
X ds

)1/2

. (2.9)
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3 Well-posedness
3.1 Well-posedness in the Laplace domain
To show the well-posedness of the time domain scattering problems, firstly, the Fourier–
Laplace transform is needed. The analysis is based on the analysis of the so-called Laplace
domain problem.

Set Ě = L{E}, Ȟ = L{H}, J̌ = L{J} and J̌r = L{Jr}. Recall that (refer to [16])

L
{

∂E
∂t

}
= sĚ, L

{
∂H
∂t

}
= sȞ.

A Fourier–Laplace transform of equations (2.4)–(2.6) implies

μsȞ + ∇ × Ě = 0 in De, (3.1)

εsĚ – ∇ × Ȟ = J̌ + J̌r in De, (3.2)

n × Ě = 0 on ∂D, (3.3)

where s ∈C+.
Equation (3.1) implies

Ȟ = –
1
μs

∇ × Ě in De. (3.4)

Submitting (3.4) into equation (3.2), consider the following auxiliary boundary value prob-
lem:

εsĚ +
(

∇ ×
(

1
μs

∇ × Ě
))

= J̌ + J̌r in De, (3.5)

n × Ě = 0 on ∂D. (3.6)

Proposition 3.1 Let J̌ be in the space L2(De) and s ∈ Cσ for some σ > 0. Then there exists
a unique solution Ě ∈ H0(curl, De) of problem (3.5)–(3.6). In addition,

|||Ě||||s|,De ≤ C|s|‖J̌‖L2(De),

where C is a constant that depends only on σ , μ, and ε.

Proof Multiplying (3.5) by a test function V ∈ H0(curl, De) and integrating in De, we obtain
the variational formulation of problem (3.5)–(3.6): Find Ě ∈ H0(curl, De) such that

a(Ě, V) = F(V), ∀V ∈ H0(curl, De),

where

a(Ě, V) =
1
μs

(∇ × (∇ × Ě), V
)

L2(De) + εs(Ě, V)L2(De)

and

F(V) =
(
J̌ + J̌r , V

)
L2(De).
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For Ě ∈ H0(curl, De), we obtain

a(Ě, V) =
1
μs

(∇ × Ě,∇ × V)L2(De) + εs(Ě, V)L2(De)

and

∣∣a(Ě, V)
∣∣ =

∣∣∣∣
1
μs

[
(∇ × Ě,∇ × V)L2(De) + μεs2(Ě, V)L2(De)

]
∣∣∣∣

≤ 2
μ|s| max{1,με}|||Ě||||s|,De |||V||||s|,De .

Set V = Ě. Then we obtain

Re
{

a(Ě, Ě)
}

= Re

{
s

μ|s|2 ‖∇ × Ě‖2
L2(De) +

εs
|s|2 |s|2‖Ě‖2

L2(De)

}

=
Re{s}
|s|2

(
1
μ

‖∇ × Ě‖2
L2(De) + ε|s|2‖Ě‖2

L2(De)

)

≥ σ min

{
1
μ

, ε
}
|s|–2|||Ě|||2|s|,De .

With the continuity of F(V), according to the Lax–Milgram theorem, there exists a unique
solution Ě ∈ H0(curl, D) of problem (3.5)–(3.6).

Note that the symmetric property implies ‖J̌‖L2(De) = ‖J̌r‖L2(De). The variational form and
definition (2.7) imply that

∣∣a(Ě, Ě)
∣∣ =

∣∣F(Ě)
∣∣ =

(
J̌ + J̌r , Ě

)
L2(De)

≤ 2‖J̌‖L2(De)‖Ě‖L2(De)

≤ 2|s|–1‖J̌‖L2(De)|||Ě||||s|,De .

Thus

σ min

{
1
μ

, ε
}
|s|–2|||Ě|||2|s|,De ≤ 2|s|–1‖J̌‖L2(De)|||Ě||||s|,De .

Then

|||Ě||||s|,De ≤ C|s|‖J̌‖L2(De),

where C is a constant that depends only on σ , μ, and ε. �

Proposition 3.2 Let J̌ be in the space L2(De) and s ∈ Cσ for some σ > 0. There exists a
unique solution (Ě, Ȟ) ∈ H0(curl, De) × H(curl, De) of problem (3.1)–(3.3). In addition,

|||Ě||||s|,De ≤ C|s|‖J̌‖L2(De), |||Ȟ||||s|,De ≤ C2|s|‖J̌‖L2(De),

where C and C2 are constants that depend only on σ , μ, and ε.
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Proof Equation (3.2) implies

∇ × Ȟ = εsĚ – J̌ – J̌r . (3.7)

Equations (3.4), (3.7) and Proposition 3.1 imply that there exists a unique solution (Ě, Ȟ) ∈
H0(curl, D) × H(curl, D) of problem (3.1)–(3.3) and

|||Ě||||s|,De ≤ C|s|‖J̌‖L2(De),

where C is a constant that depends only on σ , μ, and ε.
Definition (2.7) and equations (3.4) and (3.7) imply that

|||Ȟ|||2|s|,De = |s|2
∥∥∥∥–

1
μs

∇ × Ě
∥∥∥∥

2

L2(De)
+

∥∥εsĚ – J̌ – J̌r∥∥2
L2(De)

≤ 1
μ2 ‖∇ × Ě‖2

L2(De) + ε2|s|2‖Ě‖2
L2(De) + 4‖J̌‖2

L2(De)

+ 4ε|s|‖Ě‖L2(De)‖J̌‖L2(De)

≤ |s|2
(

max

{
1
μ2 , ε2

}
C2 +

4
σ 2 +

4εC
σ

)
‖J̌‖2

L2(De).

Denote

C2 =
(

max

{
1
μ2 , ε2

}
C2 +

4
σ 2 +

4εC
σ

)1/2

.

The proposition is proved. �

3.2 Back to time domain
Regarding the time domain, we obtain the following proposition about the scattering prob-
lem (2.4)–(2.6).

Proposition 3.3 Let σ > 0, p ∈ R, and J ∈ Hp
σ (R+, L2(De)). There exists a unique solution

(E, H) ∈ Hp–1
σ (R+, H0(curl, De)) × Hp–1

σ (R+, H(curl, De)) of problem (2.4)–(2.6). In addition,

‖E‖Hp–1
σ (R+,H0(curl,De)) ≤ C′‖J‖Hp

σ (R+,H(curl,De)),

‖H‖Hp–1
σ (R+,H(curl,De)) ≤ C′

2‖J‖Hp
σ (R+,H(curl,De)),

where C′ and C′
2 are constants that depend only on σ , μ, and ε.

Proof According to Proposition 3.2, an application of Lemma 2 in [22] and a Fourier ar-
gument complete the proof. �

For (x, t) ∈ De ×R, denote

E(x, t) =
(
E1(x, t), E2(x, t), E3(x, t)

)T, H(x, t) =
(
H1(x, t), H2(x, t), H3(x, t)

)T.

Notice that the scattering problem (2.4)–(2.6) has a symmetric structure, which is given
by the following lemma.
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Lemma 3.4 Let σ > 0, p ∈ R, and J ∈ Hp
σ (R+, L2(De)). Assume that (E, H) ∈ Hp–1

σ (R+,
H0(curl, De)) × Hp–1

σ (R+, H(curl, De)) is the unique solution of the scattering problem (2.4)–
(2.6). Then

E(x, t) = T2E(T1x, t), H(x, t) = T1H(T1x, t).

In addition,

n × E = 0 on Γ c ×R.

Proof Firstly, we provide the analysis in the Laplace domain. Since (E, H) is the unique
solution of the scattering problem (2.4)–(2.6), Proposition 3.1 implies that

Ě(x; s) =
(
L{E1}(x; s),L{E2}(x; s),L{E3}(x; s)

)T

=
(
Ě1(x; s), Ě2(x; s), Ě3(x; s)

)T ∈ H0(curl, De)

is the unique solution of problem (3.5)–(3.6).
For the linear system (3.5)–(3.6), the solution can be divided into Ě = Ě1 + Ě2, where Ě1

and Ě2 are the solutions of

εsĚ +
(

∇ ×
(

1
μs

∇ × Ě
))

= J̌ in De, (3.8)

n × Ě = 0 on ∂D (3.9)

and

εsĚ +
(

∇ ×
(

1
μs

∇ × Ě
))

= J̌r in De, (3.10)

n × Ě = 0 on ∂D, (3.11)

respectively. The Fourier–Laplace transformation implies

J̌(x; s) =
(
J̌1(x; s), J̌2(x; s), J̌3(x; s)

)T,

J̌r(x; s) = T2J̌(T1x; s).

For Ě1(x; s) = (Ě11(x; s), Ě12(x; s), Ě13(x; s))T, denote

Ěr
1(x; s) = T2Ě1(T1x; s).

Substituting Ě1 and J̌ into (3.8) implies

εs

⎛

⎜
⎝

Ě11(x; s)
Ě12(x; s)
Ě13(x; s)

⎞

⎟
⎠ +

1
μs

⎛

⎜⎜⎜
⎝

[ ∂2Ě12
∂x1∂x2

– ∂2Ě11
∂x2

2
– ∂2Ě11

∂x2
3

+ ∂2Ě13
∂x1∂x3

](x; s)

[– ∂2Ě12
∂x2

1
+ ∂2Ě11

∂x1∂x2
+ ∂2Ě13

∂x2∂x3
– ∂2Ě12

∂x2
3

](x; s)

[ ∂2Ě11
∂x1∂x3

– ∂2Ě13
∂x2

1
– ∂2Ě13

∂x2
2

+ ∂2Ě12
∂x2∂x3

](x; s)

⎞

⎟⎟⎟
⎠

=

⎛

⎜
⎝

J̌1(x; s)
J̌2(x; s)
J̌3(x; s)

⎞

⎟
⎠ .
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A direct computation implies that Ěr
1(x; s) is also a solution of problem (3.10)–(3.11). For

x ∈ De, the unique solution Ě(x; s) can be represented as

Ě(x; s) = Ě1(x; s) + T2Ě1(T1x; s)

=
(
Ě11(x; s) – Ě11(T1x; s), Ě12(x; s) – Ě12(T1x; s), Ě13(x; s) + Ě13(T1x; s)

)T,

which implies

Ě(x; s) = T2Ě(T1x; s).

A Fourier argument implies that

E(x, t) = T2E(T1x, t).

A direct computation based on equation (3.4) and a Fourier argument yield

H(x, t) = T1H(T1x, t).

Note that x3 = 0 on Γc, which implies x = T1x. Thus

n × E = 0 on Γ c ×R.

This completes the proof. �

We present the following theorem to show the well-posedness of the scattering problem
(2.1)–(2.3) and the equivalence of the scattering problems (2.1)–(2.3) and (2.4)–(2.6).

Theorem 3.5 Let σ > 0, p ∈ R, and J ∈ Hp
σ (R+, L2(D+

e )). Then there exists a unique solu-
tion (E+, H+) ∈ Hp–1

σ (R+, H0(curl, D+
e ))×Hp–1

σ (R+, H(curl, D+
e )) of problem (2.1)–(2.3) which

satisfies

‖E+‖Hp–1
σ (R+,H0(curl,D+

e )) ≤ C′′‖J‖Hp
σ (R+,H(curl,D+

e )),

‖H+‖Hp–1
σ (R+,H(curl,D+

e )) ≤ C′′
2‖J‖Hp

σ (R+,H(curl,D+
e )),

where C′′ and C′′
2 are constants that depend only on σ , μ, and ε. Moreover, if (E, H) ∈

Hp–1
σ (R+, H0(curl, De))×Hp–1

σ (R+, H(curl, De)) is the unique solution of problem (2.4)–(2.6),
we obtain

E+ = E|D+
e ×R, H+ = H|D+

e ×R.

Proof Assume that (E, H) is the solution of problem (2.4)–(2.6). Denote

E+ = E|D+
e ×R, H+ = H|D+

e ×R.

According to Lemma 3.4,

(E+, H+) ∈ Hp–1
σ

(
R+, H0

(
curl, D+

e
)) × Hp–1

σ

(
R+, H

(
curl, D+

e
))
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is a solution of problem (2.1)–(2.3), which satisfies

‖E+‖Hp–1
σ (R+,H0(curl,D+

e )) ≤ C′′‖J‖Hp
σ (R+,H(curl,D+

e )),

‖H+‖Hp–1
σ (R+,H(curl,D+

e )) ≤ C′′
2‖J‖Hp

σ (R+,H(curl,D+
e )),

where C′′ and C′′
2 are constants that depend only on σ , μ, and ε.

We prove that (E+, H+) is a unique solution using reduction to absurdity. Assume that
another solution

(
E′

+, H′
+
) ∈ Hp–1

σ

(
R+, H0

(
curl, D+

e
)) × Hp–1

σ

(
R+, H

(
curl, D+

e
))

of problem (2.1)–(2.3) exists. Denote

E′(x, t) =

⎧
⎨

⎩
E′

+(x, t), (x, t) ∈ D+
e ×R,

T2E′
+(T1x, t), (x, t) ∈ D–

e ×R

and

H′(x, t) =

⎧
⎨

⎩
H′

+(x, t), (x, t) ∈ D+
e ×R,

T1H′
+(T1x, t), (x, t) ∈ D–

e ×R.

Apparently (E′, H′) ∈ Hp–1
σ (R+, H0(curl, De)) × Hp–1

σ (R+, H(curl, De)) satisfies equations
(2.4)–(2.5). For

n(x, t) =
(
n1(x, t), n2(x, t), n2(x, t)

)T,

the symmetric property of the boundary ∂D implies

n(x, t) = T1n(T1x, t).

Thus, the fact that E′
+ is the solution of (2.1)–(2.3) implies

n × E′ = 0 on ∂D ×R.

Then (E′, H′) is also a solution of problem (2.4)–(2.6). Proposition 2.4 implies (E, H) =
(E′, H′). Thus

(
E′

+, H′
+
)

= (E+, H+).

Then (E+, H+) is the unique solution of problem (2.1)–(2.3). �
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