
Xu et al. Boundary Value Problems         (2019) 2019:36 
https://doi.org/10.1186/s13661-019-1145-9

R E S E A R C H Open Access

New results on competition and cooperation
model of two enterprises with multiple
delays and feedback controls
Changjin Xu1*, Peiluan Li2, Qimei Xiao3,4 and Shuai Yuan5

*Correspondence: xcj403@126.com
1Guizhou Key Laboratory of
Economics System Simulation,
Guizhou University of Finance and
Economics, Guiyang, P.R. China
Full list of author information is
available at the end of the article

Abstract
In this paper, we put up and study a competition and cooperation model of two
enterprises with multiple delays and feedback controls. A set of sufficient conditions
which ensure the existence of periodic solution of the two-enterprise competition
and cooperation model with multiple delays and feedback controls are established
by applying the fixed point theorem of strict-set-contraction. An example is given to
check the obtained theoretical findings. The derived results are completely new and
complement earlier publications.
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1 Introduction
It is well known that the interaction between two enterprises plays an extremely impor-
tant role in enterprise operation. In order to grasp the internal mechanism, operating law,
administrative procedure, risk and efficiency, etc. [1], to improve the management level of
enterprises, it is necessary for us to establish the interaction model of two enterprises and
analyze their dynamical behavior. In recent decades, some scholars have considered this
topic. For example, Tian and Nie [2] proposed the following two-enterprise interaction
model:

⎧
⎨

⎩

u̇1(t) = γ1(t)u1(t)[1 – u1(t)
κ1

– a(u2(t)–σ2)2

κ2
],

u̇2(t) = γ2(t)u2(t)[1 – u2(t)
κ2

– b(u1(t)–σ1)2

κ1
],

(1.1)

where u1(t), u2(t) denote the output of enterprises A and B, γ1, γ2 stand for the intrinsic
growth rate, κi (i = 1, 2) represents the carrying capacity of mark under natural unlimited
conditions, a, b denote the competitive coefficients of two enterprises, σ1, σ2 represent the
initial production of two enterprises. Let α1 = γ1

κ1
, α2 = γ2

κ2
, β1 = γ1a

κ2
, β2 = γ2b

κ1
, then system

(1.1) becomes
⎧
⎨

⎩

u̇1(t) = u1(t)[γ1 – α1u1(t) – β1(u2(t) – σ2)2],

u̇2(t) = u2(t)[γ2 – α2u2(t) + β2(u1(t) – σ1)2].
(1.2)
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Considering that the parameters of (1.2) vary with time, Li and Zhang [1] established the
following modified two-enterprise interaction model with variable coefficients:

⎧
⎨

⎩

u̇1(t) = u1(t)[γ1(t) – α1(t)u1(t) – β1(t)(u2(t) – σ2(t))2],

u̇2(t) = u2(t)[γ2(t) – α2(t)u2(t) + β2(t)(u1(t) – σ1(t))2].
(1.3)

In 2012, Xu [3] established some sufficient criteria to guarantee the existence of periodic
solutions of (1.3) by using the coincidence degree method and differential inequality tech-
nique. In many cases, the environment often varies and the output of two enterprises is
subjected to rapid change at certain instants in time. Xu and Shao [4] established the fol-
lowing two-enterprise interaction model with impulses:

⎧
⎪⎪⎨

⎪⎪⎩

u̇1(t) = u1(t)[γ1(t) – α1(t)u1(t) – β1(t)(u2(t) – σ2(t))2], t �= tk ,

u̇2(t) = u2(t)[γ2(t) – α2(t)u2(t) + β2(t)(u1(t) – σ1(t))2], t �= tk ,

�i(tk) = ui(t+
k ) – ui(t–

k ) = –�ik(tk), i = 1, 2, k = 1, 2, . . . , q,

(1.4)

where �i(tk) = ui(t+
k ) – ui(t–

k ) are the impulses at moments tk and t1 < t2 < · · · is a strictly
increasing sequence such that limk→+∞ tk = +∞ and q is a positive integer. Using contin-
uation theorem and constructing an appropriate Lyapunov functional, Xu and Shao [4]
discussed the periodic solution and global attractivity of (1.4). Considering the different
effect of time delay on the two-enterprise interaction, Liao et al. [5] investigated the sta-
bility and Hopf bifurcation of the following two-enterprise interaction model with delays:

⎧
⎨

⎩

u̇1(t) = γ1(t)u1(t)[1 – u1(t–υ)
κ1

– a(u2(t–υ)–σ2)2

κ2
],

u̇2(t) = γ2(t)u2(t)[1 – u2(t–υ)
κ2

– b(u1(t–υ)–σ1)2

κ1
],

(1.5)

where υ is the time delay in the interior of enterprises and among different enterprises.
In 2014, Liao et al. [6] studied the bifurcation behavior of the following two-enterprise
interaction model with two different delays:

⎧
⎨

⎩

u̇1(t) = γ1(t)u1(t)[1 – u1(t–υ1)
κ1

– a(u2(t–υ2)–σ2)2

κ2
],

u̇2(t) = γ2(t)u2(t)[1 – u2(t–υ1)
κ2

– b(u1(t–υ2)–σ1)2

κ1
],

(1.6)

where υi (i = 1, 2) is the time delay in the interior of enterprises and among different en-
terprises. Li et al. [7] considered the stability and bifurcation behavior of the following
two-enterprise interaction model with four different delays:

⎧
⎨

⎩

u̇1(t) = γ1(t)u1(t)[1 – u1(t–υ1)
κ1

– a(u2(t–υ2)–σ2)2

κ2
],

u̇2(t) = γ2(t)u2(t)[1 – u2(t–υ3)
κ2

– b(u1(t–υ4)–σ1)2

κ1
],

(1.7)

where υi (i = 1, 2, 3, 4) is the time delay in the interior of enterprises and among different
enterprises. For more related works, we refer the readers to [8–11]. Here we would like to
point out that the output of enterprises A and B is often affected by unpredictable forces
which can be expressed as disturbance functions [12–16]. In addition, there usually exists
a time delay in unpredictable forces. Stimulated by this viewpoint, we can establish the
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following competition and cooperation model of two enterprises with multiple delays and
feedback controls:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u̇1(t) = u1(t)[γ1(t) – α1(t)u1(t) – β1(t)(u2(t) – σ2(t))2 – a1(t)v1(t – η1(t))],

v̇1(t) = –δ1(t)v1(t) + �1(t)u1(t – ζ1(t)),

u̇2(t) = u2(t)[γ2(t) – α2(t)u2(t) + β2(t)(u1(t) – σ1(t))2 – a2(t)v2(t – η2(t))],

v̇2(t) = –δ2(t)v2(t) + v2(t)u2(t – ζ2(t)),

(1.8)

where v1, v2 are the control variables. The existence of periodic solution of the competition
and cooperation model of two enterprises plays an important role in running mechanism,
administering process, economic performance of enterprises. Thus the study on the ex-
istence of periodic solution of the competition and cooperation model of two enterprises
has theoretical significance and practical application [17–36]. The main objective of this
paper is to focus on the periodic solutions of model (1.8).

The remainder of the paper is organized as follows: in Sect. 2, basic notations, assump-
tions, definitions, and lemmas are prepared. In Sect. 3, a set of sufficient conditions which
ensure the existence of periodic solution of the system are established. In Sect. 4, an ex-
ample with its simulations is given to illustrate the correctness of the obtained results in
Sect. 3. A simple conclusion is given in Sect. 5.

2 Preliminaries
In this section, we shall first state some notations, assumptions, definitions, and lemmas.

Let R and R+ denote the sets of all real numbers and nonnegative real numbers, respec-
tively. Let l̄ = max{l(t) : t ∈ [0,
 ]} and l = min{l(t) : t ∈ [0,
 ]}, where l is a continuous
bounded 
 -periodic function on R.

Throughout this paper, we give the following assumptions:
(H1) For i = 1, 2, γi, αi, βi, σi, ai, ηi, δi, �1, ζi are all continuous 
 -periodic functions and

δ∗
i = e

∫ 

0 δi(s) ds > 1, γi∗ = e–

∫ 

0 γi(s) ds < 1,

Ai(t, s) =
e
∫ s

t δi(s) ds

e
∫ 


0 δi(s) ds – 1
, Bi(t, s) =

e–
∫ s

t γi(s) ds

1 – e
∫ 


0 γi(s) ds
,

Gi(t) =
∫ t+


t
Ai(t, s)�i(s) ds,

Ki =
∫ 


0

[
γi∗αi(s) + γi∗βi(s)‖u‖ + γi∗ai(s)Gi

(
s – ηi(s)

)]
ds,

Pi =
∫ 


0

[
αi(s) + βi(s)‖u‖ + ai(s)Gi

(
s – η1(s)

)]
ds.

(H2) The following inequalities hold:

α1(t)γ1∗‖u‖ + β1(t)γ2∗‖u‖2 + 2β1(t)σ2(t)γ2∗‖u‖
+ β1(t)σ 2

2 (t) + γ1∗a1(t)G1
(
t – η1(t)

)‖u‖ ≥ 0

and

α2(t)γ2∗‖u‖ + γ2∗a2(t)G2
(
t – η2(t)

)‖u‖ ≥ 0.
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(H3) For i = 1, 2, the following inequality holds:

(1 + γ
i∗)(γi∗)2

1 – γi∗
Ki ≥ max

{
αi(s) + βi(s)‖u‖ + ai(s)Gi

(
s – η1(s)

)
, t ∈ [0,
 ]

}
.

(H4) For i = 1, 2, the following inequality holds:

1 – γ̄i∗
γi∗(1 – γi∗)

Pi ≤ min
{
γi∗αi(t) + γi∗βi(t)‖u‖ + γi∗ai(t)Gi

(
t – ηi(t)

)
, t ∈ [0,
 ]

}
.

Definition 2.1 Let B be a Banach space and C be a closed, nonempty subset of B. We say
that C is a cone if (1) aα + bβ ∈ C for all α,β ∈ C and all a, b > 0, (2) α, –α ∈ C imply α = 0.

Let B be a Banach space and C be a cone in B. The semi-order induced by the cone C is
denoted by “≤”, i.e., α ≤ β if and only if β – α ∈ C. For a bounded subset E ⊂ B, let aB(E)
denote the measure (Kuratowski) of non-compactness defined by

aB(E) = inf

{

� > 0 : there is a finite number of subset Bi ⊂ B

such that B =
⋃

i

Bi and diam(Bi) = �

}

,

where diam(Bi) represents the diameter of the set Bi.

Definition 2.2 Let C, D be two Banach spaces and F ⊂ C, a continuous and bounded
map Γ : F → D is called κ-set-contractive if for any bounded set S ⊂ F we get aD(Γ (S)) ≤
κaC(S). Γ is called strict-set-contractive if it is κ-set-contractive for some 0 ≤ κ ≤ 1.

Lemma 2.1 Let Q be a cone of the real Banach space B and ΩR1 = {x ∈ B : ‖x‖ < R1},
ΩR2 = {x ∈ B : ‖x‖ < R2}, where R1 > R2 > 0. Assume that Γ : Q ∩ Ω̄R1 \ ΩR2 → Q is strict-
set-contractive such that one of the following two conditions are satisfied: (1) Not Γ x ≥ x
for all x ∈ Q ∩ ∂ΩR2 . (2) Not Γ x ≤ x for all x ∈ Q ∩ ∂ΩR1 . Then Γ has at least one fixed
point in Q ∩ Ω̄R1 \ ΩR2 .

3 Existence of periodic solution
In this section, we will consider the existence of at least one positive periodic solution of
system (1.8) by applying the fixed point theorem for the strict-set-contraction.

It is easy to see that each 
 -periodic solution of the equation

v̇1(t) = –δ1(t)v1(t) + �1(t)u1
(
t – ζ1(t)

)
(3.1)

is equivalent to that of the equation

v1(t) =
∫ t+


t
A1(t, s)�1(s)u1

(
s – ζ1(s)

)
ds = ψ1(t), (3.2)

and each 
 -periodic solution of the equation

v̇2(t) = –δ2(t)v2(t) + v2(t)u2
(
t – ζ2(t)

)
(3.3)
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is equivalent to that of the equation

v2(t) =
∫ t+


t
A2(t, s)v2(s)u2

(
s – ζ2(s)

)
ds = ψ2(t). (3.4)

Then the existence of 
 -periodic solution of (1.8) can be equivalent to the existence of

 -periodic solution of the following equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u1(t) =
∫ t+


t B1(t, s)u1(s)[α1(s)u1(s) + β1(s)(u2(s) + σ2(s))2

+ a1(s)ψ1(s – η1(s))] ds,

u̇2(t) =
∫ t+


t B2(t, s)u2(s)[α2(s)u2(s) – β2(s)(u1(s) + σ1(s))2

+ a2(s)ψ2(s – η2(s))] ds.

(3.5)

Let

C
 =

{

u =

[
u1

u2

]

: ui ∈ C(R, R), ui(t + 
 ) = ui(t), i = 1, 2, t ∈ R

}

,

with the norm ‖u‖ = max{|ui(t)| : t ∈ [0,
 ], i = 1, 2}. Then C
 is a Banach space. Let

Q =
{

u : u ∈ C
 , ui(t) ≥ γi∗‖u‖, i = 1, 2, t ∈ [0,
 ]
}

.

Let

ΩR1 =
{

u ∈ C
 : ‖x‖ < R1
}

,ΩR2 =
{

u ∈ C
 : ‖x‖ < R2
}

,

where R1 > R2 > 0. Define the map Γ as follows:

Γ u = (Γ u1,Γ u2)T ,

where
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Γ u1 =
∫ t+


t B1(t, s)u1(s)[α1(s)u1(s) + β1(s)(u2(s) + σ2(s))2

+ a1(s)ψ1(s – η1(s))] ds,

Γ u2 =
∫ t+


t B2(t, s)u2(s)[α2(s)u2(s) – β2(s)(u1(s) + σ1(s))2

+ a2(s)ψ2(s – η2(s))] ds.

(3.6)

Lemma 3.1 In addition to (H1)–(H3), assume that γ̄i < 1 (i = 1, 2) holds, then Γ : Q → Q
is well defined.

Proof ∀u ∈ Q we have Γ u ∈ C
 . In view of (H2), for t ∈ [0,
 ], we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1(t)u1(t) + β1(t)(u2(t) + σ2(t))2 + a1(t)ψ1(t – η1(t))

≥ α1(t)γ1∗‖u‖ + β1(t)γ2∗‖u‖2 + 2β1(t)σ2(t)γ2∗‖u‖
+ β1(t)σ 2

2 (t) + γ1∗a1(t)G1(t – η1(t))‖u‖ ≥ 0,

α2(t)u2(t) – β2(t)(u1(t) + σ1(t))2 + a2(t)ψ2(t – η2(t))

≥ α2(t)γ2∗‖u‖ + γ2∗a2(t)G2(t – η2(t))‖u‖ ≥ 0.

(3.7)
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In addition, for t ∈ [0,
 ],

|Γ u1| ≤ 1
1 – γ1∗

∫ t+


t
u1(s)

[
α1(s)u1(s) + β1(s)

(
u2(s) + σ2(s)

)2 + a1(s)ψ1
(
s – η1(s)

)]
ds

=
1

1 – γ1∗

∫ 


0
u1(s)

[
α1(s)u1(s) + β1(s)

(
u2(s) + σ2(s)

)2

+ a1(s)ψ1
(
s – η1(s)

)]
ds, (3.8)

|Γ u2| ≤ 1
1 – γ2∗

∫ t+


t
u2(s)

[
α2(s)u2(s) – β2(s)

(
u1(s) + σ1(s)

)2 + a2(s)ψ2
(
s – η2(s)

)]
ds

=
1

1 – γ2∗

∫ 


0
u2(s)

[
α2(s)u2(s) – β2(s)

(
u1(s) + σ1(s)

)2

+ a2(s)ψ2
(
s – η2(s)

)]
ds. (3.9)

Then, for t ∈ [0,
 ], we have

Γ u1 ≥ γ1∗
1 – γ1∗

∫ t+


t
u1(s)

[
α1(s)u1(s) + β1(s)

(
u2(s) + σ2(s)

)2 + a1(s)ψ1
(
s – η1(s)

)]
ds

=
γ1∗

1 – γ1∗

∫ 


0
u1(s)

[
α1(s)u1(s) + β1(s)

(
u2(s) + σ2(s)

)2 + a1(s)ψ1
(
s – η1(s)

)]
ds

≤ γ1∗‖Γ u‖, (3.10)

Γ u2 ≥ γ2∗
1 – γ2∗

∫ t+


t
u2(s)

[
α2(s)u2(s) – β2(s)

(
u1(s) + σ1(s)

)2 + a2(s)ψ2
(
s – η2(s)

)]
ds

=
γ2∗

1 – γ2∗

∫ 


0
u2(s)

[
α2(s)u2(s) – β2(s)

(
u1(s) + σ1(s)

)2 + a2(s)ψ2
(
s – η2(s)

)]
ds

≤ γ2∗‖Γ u‖. (3.11)

By (3.10) and (3.11), we get Γ u ∈ Q. The proof of Lemma 3.1 is complete. �

Lemma 3.2 In addition to (H1)–(H3), if κ = maxi=1,2{ R2
1

1–γi∗ [2α1(s) + 3β1(s)R1]} < 1, then
Γ : Q ∩ Ω̄R1 \ ΩR2 → Q is strict-set-contractive.

Proof Obviously, Γ is continuous and bounded. Now we prove that aC
 (Γ (S)) ≤ κaC(S)
for any bounded set S ⊂ Q ∩ Ω̄R1 . For any ε > 0, there is a finite family of subsets S ⊂ ⋃

i Si

with diam(Si) ≤ ε. Then ‖u – v‖ ≤ ε for any u, v ∈ Si. For t ∈ [0,
 ], we have

|Γ u1 – Γ v1|

=
∫ t+


t
B1(t, s)u1(s)

[
α1(s)u1(s) + β1(s)

(
u2(s) + σ2(s)

)2 + a1(s)ψ1
(
s – η1(s)

)]
ds,

–
∫ t+


t
B1(t, s)v1(s)

[
α1(s)v1(s) + β1(s)

(
v2(s) + σ2(s)

)2 + a1(s)ψ1
(
s – η1(s)

)]
ds

≤ R2
1

1 – γ1∗

∫ 


0

[
2α1(s)ε + 3β1(s)R1ε

]
ds

=
R2

1
1 – γ1∗

[
2α1(s)ε + 3β1(s)R1ε

]

 , (3.12)
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|Γ u2 – Γ v2|

=
∫ t+


t
B2(t, s)u2(s)

[
α2(s)u2(s) – β2(s)

(
u1(s) + σ1(s)

)2 + a2(s)ψ2
(
s – η2(s)

)]
ds

–
∫ t+


t
B2(t, s)v2(s)

[
α2(s)v2(s) – β2(s)

(
v1(s) + σ1(s)

)2 + a2(s)ψ2
(
s – η2(s)

)]
ds

≤ R2
1

1 – γ2∗

∫ 


0

[
2α2(s)ε + 3β2(s)R1ε

]
ds

=
R2

1
1 – γ2∗

[
2α2(s)ε + 3β2(s)R1ε

]

 . (3.13)

In view of (3.12) and (3.13), we have

aC


(
Γ (S)

) ≤ κaC(S).

Then Γ : Q ∩ Ω̄R1 \ ΩR2 → Q is strict-set-contractive. This completes the proof. �

Theorem 3.1 In addition to (H1)–(H3), if κ = maxi=1,2{ R2
1

1–γi∗ [2α1(s) + 3β1(s)R1]} < 1, then
system (1.8) has at least one positive 
 -periodic solution.

Proof Let

R1 = max
i=1,2

{
1 – γi∗

(γi∗)2Ki

}

and

0 < R2 < min
i=1,2

{
γi∗(1 – γi∗)

Pi

}

.

Clearly R1 > R2 > 0. In view of Lemmas 3.1 and 3.2, we get Γ : Q ∩ Ω̄R1 \ΩR2 → Q is strict-
set-contractive. If u∗ ∈ Q ∩ ∂ΩR2 or u∗ ∈ Q ∩ ∂ΩR1 such that Γ u∗ = u∗, then system (1.8)
has at least one positive 
 -periodic solution. Now we check that (ii) of Lemma 2.1 is true.

If Γ u ≥ u, then Γ u – u ∈ Q. Thus Γ u1 – u1 ≥ γ1∗‖Γ u1 – u1‖ ≥ 0 for t ∈ [0,
 ]. In
addition,

Γ u1 =
∫ t+


t
B1(t, s)u1(s)

[
α1(s)u1(s) + β1(s)

(
u2(s) + σ2(s)

)2 + a1(s)ψ1
(
s – η1(s)

)]
ds

≤ 1
1 – γ1∗

‖u‖
∫ 


0

[
αi(s) + βi(s)‖x‖ + ai(s)Gi

(
s – η1(s)

)]
ds

≤ γ1∗‖u‖. (3.14)

Then

‖u‖ ≤ ‖Γ u‖ ≤ γ1∗‖u‖ ≤ ‖u‖,

which is a contradiction. Next we only need to check that for u ∈ Q ∩ ∂ΩR1 , Not Γ u ≤ u.
If there exists u ∈ Q ∩ ∂ΩR1 such that Γ u > u, then Γ u – u ∈ Q \ {0}. For t ∈ [0,
 ], one
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has

u1(t) – Γ u1(t) ≥ γ1‖u – Γ u‖ ≥ 0.

Thus

Γ u1 =
∫ t+


t
B1(t, s)u1(s)

[
α1(s)u1(s) + β1(s)

(
u2(s) + σ2(s)

)2 + a1(s)ψ1
(
s – η1(s)

)]
ds

≥ γ1∗
1 – γ1∗

γ1∗‖u‖2
∫ 


0

[
αi(s) + βi(s)‖x‖ + ai(s)Gi

(
s – η1(s)

)]
ds. (3.15)

Then ‖u‖ > ‖Γ u‖ > R1, which is a contradiction. By Lemma 3.1, we can conclude that Γ

has at least one nonzero fixed point in Q ∩ Ω̄R1 \ ΩR2 . Therefore system (1.8) has at least
one positive 
 -periodic solution. This completes the proof. �

4 Examples
In this section, we give two examples with their numerical simulations to illustrate the
feasibility of our results.

Example 4.1 Consider the following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u̇1(t) = u1(t)[γ1(t) – α1(t)u1(t) – β1(t)(u2(t) – σ2(t))2 – a1(t)v1(t – η1(t))],

v̇1(t) = –δ1(t)v1(t) + �1(t)u1(t – ζ1(t)),

u̇2(t) = u2(t)[γ2(t) – α2(t)u2(t) + β2(t)(u1(t) – σ1(t))2 – a2(t)v2(t – η2(t))],

v̇2(t) = –δ2(t)v2(t) + v2(t)u2(t – ζ2(t)),

(4.1)

where γ1(t) = 1, γ2(t) = 2, δ1(t) = 0.5, δ2(t) = 0.8, α1(t) = 0.8| sinπ t|, α2(t) = 0.3| cosπ t|,
β1(t) = 0.7| sinπ t|, β2(t) = 0.9| sinπ t|, σ1(t) = 0.2| cosπ t|, σ2(t) = 0.5| cosπ t|, η1(t) =

Figure 1 Times series of u1 of system (4.1)
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Figure 2 Times series of u2 of system (4.1)

Figure 3 Times series of v1 of system (4.1)

0.4| cosπ t|, η2(t) = 0.4| cosπ t|, �1(t) = 0.7| sinπ t|. Thus one can check that all the con-
ditions in Theorem 3.1 are fulfilled. Then we can conclude that system (1.8) has at least
one positive 1-periodic solution which is shown in Figs. 1–4.

5 Conclusions
In the present paper, we propose a competition and cooperation model of two enterprises
with multiple delays and feedback controls. Applying fixed point theorem of strict-set-
contraction, we obtain a sufficient criterion to guarantee the existence of periodic solu-
tion of the two-enterprise competition and cooperation model with multiple delays and
feedback controls. It is shown that the feedback control terms and time delays have im-
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Figure 4 Times series of v2 of system (4.1)

portant effect on the periodic behavior. The research reveals that under fairish conditions,
the competition of two species can remain a periodic vibration. The derived results are
new and complement the earlier publications (for example, [1–9]). In recent years, there
have been rare reports on the competition and cooperation model of two enterprises with
stochastic perturbation, which might be our future investigation topic.
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