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Klein–Gordon–Maxwell system was first introduced in [1]:
⎧⎨
⎩–�u + [m2

0 – (ω + eφ)2]u = |u|p–2u, x ∈R
3,

–�φ + e2u2φ = –ωeu2, x ∈R
3,

(KGM)

where m0 and e are the mass and the charge of the particle, respectively, while ω de-
notes the phase. The unknowns of the system are the field u associated with the particle
and the electric potential φ. The presence of the nonlinear term simulates the interac-
tion between many particles or external nonlinear perturbations. By variational methods,
infinitely many solitary wave solutions were got for the above system when |m0| > |ω|,
p ∈ (4, 6) in [1]. Furthermore, in [2], infinitely many finite energy radial solutions were got
if one of the following conditions holds:

(i) m0 > ω > 0 andp ∈ (4, 6);
(ii) m0

√
p–2

2 > ω > 0 andp ∈ (2, 4).
For p ∈ (2, 4), the existence range of (m0,ω) was improved and a limit case m0 = ω was also
dealt with by Azzollini, Pisani, and Pomponio in [3]. Mugnai in [4] studied the existence of
radially symmetric solitary waves for a system of a nonlinear Klein–Gordon equation cou-
pled with Maxwell’s equation in presence of a positive mass. Ground state solutions [5, 6],
semiclassical states [7], nonradial solutions [8], and the critical exponent case [9–12] have
also been considered. When p ≥ 6 and m0 ≥ ω > 0 or p ≤ 2, no-existence result of (KGM)
was proved by D’Aprile and Mugnai in [13]. In [14], via Ekeland’s variational principle and
mountain pass theorem, two nontrivial solutions for a nonhomogeneous Klein–Gordon–
Maxwell system were got by Chen and Tang. In [15], Jeong and Seok established an ab-
stract critical point theorem about a functional of the mountain-pass type with a small
perturbation for the nonlocal term and studied a type of Klein–Gordon–Maxwell system
with a very general nonlinear term. Klein–Gordon–Maxwell system with a coercive po-
tential was firstly considered by He [16]. In [16], infinitely many solutions were got via
a variant fountain theorem and symmetric mountain pass theorem. In [17], Li and Tang
improved and complemented the results in [16]. In [18], under a variant 4-superlinear
condition, infinitely many solutions for a nonlinear Klein–Gordon–Maxwell system with
sign-changing potential were got by Ding and Li via symmetric mountain pass theorem. In
[19], the authors studied the existence of cylindrically symmetric electro-magneto-static
solitary waves for a system of a nonlinear Klein–Gordon equation coupled with Maxwell’s
equations in presence of a positive mass and a nonnegative nonlinear potential. Nonexis-
tence results were got as well.

As to the concave–convex nonlinearities, there is a huge amount of results involving
different operators, for example, [20–34] and the references therein. Please forgive us for
not being able to list all the literature. The first paper is the seminal one by Ambrosetti,
Brezis, and Cerami [20], where they considered a concave–convex Dirichlet problem

⎧⎪⎪⎨
⎪⎪⎩

–�u = λuq–1 + up–1, x ∈ Ω ,

u > 0, x ∈ Ω ,

u = 0, x ∈ ∂Ω ,

(Pλ)

where 1 < q < 2 < 2N
N–2 , λ > 0, and Ω ⊂R

N is a smooth bounded domain. They proved that
there exists λ0 > 0 such that problem (Pλ) has at least two solutions for all λ ∈ (0,λ0), one
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solution for λ = λ0, and no solution for λ > λ0. In [30], a nonlocal version of problem (Pλ)
was considered

⎧⎪⎪⎨
⎪⎪⎩

(–�) α
2 u = λuq + up, x ∈ Ω ,

u > 0, x ∈ Ω ,

u = 0, x ∈ ∂Ω ,

with 0 < α < 2, 0 < q < 1 < p < N+α
N–α

, N > α, λ > 0, and Ω ⊂R
N is a smooth bounded domain.

The authors also characterized completely the range of parameters for which solutions of
the problem exist and proved a multiplicity result. In [22], Alama and Tarantello studied
the following Dirichlet problem:

⎧⎪⎪⎨
⎪⎪⎩

–�u = λu + k(x)uq – h(x)up, x ∈ Ω ,

u > 0, x ∈ Ω ,

u = 0, x ∈ ∂Ω ,

where 1 < q < p, λ ∈ R, N ≥ 3, Ω ⊂ R
N is a bounded open set with smooth boundary and

h, k ∈ L∞(Ω) are nonnegative functions. Existence, nonexistence, and multiplicity results
were obtained depending on λ and according to the integrability properties of the ratio
kp–1

hq–1 . In [25], Pucci and Rădulescu considered the following quasilinear problem:

⎧⎨
⎩– div(|∇u|m–2∇u) + a(x)|u|m–2u = λw(x)|u|q–2u – h(x)|u|p–2u, x ∈R

N ,

u ≥ 0, x ∈R
N ,

where h is a positive continuous function with
∫
RN h(x)

q
q–p dx < ∞, λ > 0, 2 ≤ m < q < m∗

with m∗ = Nm
N–m if N > m and m∗ = ∞ if N ≤ m. The nonexistence of nontrivial solutions

was got for λ small enough; the existence of at least two nontrivial solutions was obtained
for λ large enough. The above results were extended by Autuori and Pucci in [26]. They
studied the following quasilinear elliptic equation:

– div A(x,∇u) + a(x)|u|p–2u = λw(x)|u|q–2u – h(x)|u|r–2u, x ∈ R
N ,

which involves a general elliptic operator in divergence form A and two competing nonlin-
earities. max{2, p} < q < min{r, Np

N–p }, the coefficients w and h are related by the integrability
condition

∫
RN

(
wr(x)
hq(x)

) 1
r–q

dx ∈R
+. (1.1)

Moreover, they proposed two open questions: the relaxation of max{2, p} < q and the re-
placement of the above integrability condition by the assumption that

w
(

w
h

) q–p
r–q

∈ L
N
p
(
R

N)
. (1.2)
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The latter request is weaker than (1.1) which already appeared in [22]. In [28], Autuori and
Pucci studied the following elliptic equation involving fractional Laplacian:

(–�)su + a(x)u = λw(x)|u|p–2u – h(x)|u|r–2u, x ∈R
N ,

where λ ∈ R, 0 < s < 1, 2s < N , 2 < q < min{r, 2∗
s } with 2∗

s = 2N
N–2s . Positive weights w and h

are related by condition (1.1) and

w ∈ L
2∗s

2∗s –q
(
R

N) ∩ Lσ
loc

(
R

N)
, σ >

2∗
s

2∗
s – q

, h ∈ L1
loc

(
R

N)
. (1.3)

In [28], the existence and multiplicity of entire solutions were obtained via variational
methods. Recently, in [31] Pucci and Zhang solved the above open problems mentioned
in [26] for a class of quasilinear elliptic equations in the setting of variable exponents.
More recently, Pucci, Xiang, and Zhang in [32] also gave a positive answer to these open
problems in the context of Kirchhoff problems involving the fractional p-Laplacian. In
[33], Xiang, Zhang, and Rădulescu studied a perturbed nonlinear elliptic equation driven
by the fractional p-Laplacian operator

(–�)s
pu + V (x)|u|p–2u = λa(x)|u|r–2u – b(x)|u|q–2u, x ∈R

N ,

where λ is a real parameter, (–�)s
p is the fractional p-Laplacian operator with 0 < s < 1 <

p < ∞, p < r < min{q, p∗
s }, p∗

s = pN
N–ps , and V is a positive weight with positive infimum, a is

a positive weight satisfying

a ∈ L
p∗s

p∗s –q
(
R

N) ∩ L1
loc

(
R

N)
, (1.4)

b ∈ L1
loc(RN ) is also a positive weight, a and b are related by

a
(

a
b

) r–p
q–r

∈ L
N
ps

(
R

N)
. (1.5)

Nonexistence and multiplicity results for the above-mentioned equation were obtained
by variational methods depending on λ and according to the integrability properties of
the ratio aq–p

br–p . Those results extended the previous work of Autuori and Pucci [28] to the
fractional p-Laplacian setting and also solved the above open problems mentioned in [26].

As far as we know, there are few results about Klein–Gordon–Maxwell systems with
similar competing nonlinearities to our system (P). Generally, system (P) can be trans-
formed into a single equation with a nonlocal term by dual methods (see Sect. 2). But
in contrast to the problems with a purely single equation (similar to [25, 26, 33]), the
nonlocal term brings about some difficulties to us. Firstly, the functional associated with
system (P) is no longer weakly lower semicontinuous, which is very important to get
the global minimizer in [26, 28, 33]. Secondly, since we lack the compact embedding
H1(R3) ↪→↪→ Lp(R3), p ∈ (2, 6), it increases difficulty in verifying that the functional asso-
ciated with system (P) satisfies the Palais–Smale condition.

The main result of our paper reads as follows.
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Theorem 1.1 Let (a)–(c) hold, then there exist λ0 and λ∗ with 0 < λ0 ≤ λ∗ such that
(i) system (P) has only the trivial solution for λ < λ0;

(ii) system (P) has at least two weak nontrivial solutions for λ > λ∗.

Remark 1.1 Our assumption (b) is the same condition as in [28, 33]. Our assumption (c) is
(1.5) for N = 3, P = 2, s = 1. Different from (1.3) or (1.4), the local integrability hypothesis
of a is not necessary in our paper.

Remark 1.2 If r < 2, for every λ > 0, q > 1, it is easy to prove that the functional associ-
ated with system (P) is coercive. Similar to our Lemma 3.2, the functional associated with
system (P) also satisfies the Palais–Smale condition. Then the functional has a global min-
imizer via Ekeland’s variational principle and a sequence of solutions with negative energy
decreasing to zero via Clark’s theorem.

Throughout the paper, we denote by C various positive constants, whose value may be
different from line to line and is not essential to the problem.

2 Preliminary
In this section, we give some preliminary results which will be used to prove our main
results.

First of all, we establish the variational framework for system (P).
H1(R3) = {u ∈ L2(R3)||∇u| ∈ L2(R3)} is the normal Sobolev space with the norm

‖u‖H1(R3) =
(∫

R3

(|∇u|2 + u2)dx
) 1

2
,

Lp(
R

3) :=
{

u : R3 �→R

∣∣∣u is Lebesgue measurabe,
∫
R3

|u|p dx < ∞
}

equipped with the norm

|u|p =
(∫

R3
|u|p dx

) 1
p

.

Define

Lr(
R

3, a
)

:=
{

u : R3 �→R

∣∣∣u is Lebesgue measurabe,
∫
R3

a(x)|u|r dx < ∞
}

equipped with the norm

|u|Lr (R3,a) =
(∫

R3
a(x)|u|r dx

) 1
r
.

Similarly,

Lq(
R

3, b
)

:=
{

u : R3 �→R

∣∣∣u is Lebesgue measurabe,
∫
R3

b(x)|u|q dx < ∞
}
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equipped with the norm

|u|Lr (R3,b) =
(∫

R3
b(x)|u|q dx

) 1
q

.

The spaces Lr(R3, a) and Lq(R3, b) are uniformly convex Banach spaces by Proposition A.6
of [26].

The working space of our paper E is the completion of C∞
0 (R3) with respect to the norm

‖u‖E = ‖u‖H1(R3) + |u|Lr (R3,b).

E is a reflexive Banach space (see Lemma 2.2 in [33]). Furthermore, E ↪→ H1(R3) ↪→
Lp(R3), p ∈ [2, 6].

Since 2 < 12
5 < 6, thus for u ∈ E fixed, the linear operator Tu : D1,2(R3) →R defined by

Tu(v) :=
∫
R3

u2v dx

is continuous in D1,2(R3). By Lax–Milgram theorem, there exists φu ∈ D1,2(R3) such that,
for any v ∈ D1,2(R3),

∫
R3

(∇φu∇v + u2φuv
)
dx =

∫
R3

u2v dx.

Therefore, problem (P) can be transformed into a nonlinear Schrödinger equation with a
nonlocal term

–�u + u – (2ω + φu)φuu = λa(x)|u|r–2u – b(x)|u|q–2u, x ∈R
3. (P′)

The functional associated with (P′) is given by

I(u) =
1
2

∫
R3

(|∇u|2 + u2)dx –
ω

2

∫
R3

φuu2 dx +
1
q

∫
R3

b(x)|u|q dx –
λ

r

∫
R3

a(x)|u|r dx.

Under our assumptions, it is easy to get that I ∈ C1(E,R) and

〈
I ′(u), v

〉
=

∫
R3

(∇u∇v + uv) dx –
∫
R3

(2ω + φu)φuuv dx

+
∫
R3

b(x)|u|q–2uv dx – λ

∫
R3

a(x)|u|r–2uv dx

for v ∈ E.
Moreover, the function φu has the following properties.

Lemma 2.1 (see [1, 2])
(i) –ω ≤ φu ≤ 0 on the set {x|u(x) �= 0};
(ii) There exist positive constants C1, C2 such that

‖φu‖D1,2 ≤ C1‖u‖2 and
∫
R3

|φu|u2 dx ≤ C2‖u‖4.



Wei and Li Boundary Value Problems         (2019) 2019:31 Page 7 of 13

Definition 2.1 Let X be a Banach space, we say that functional I ∈ C1(X,R) satisfies the
Palais–Smale condition at the level c ∈ R ((PS)c in short) if any sequence {un} ⊂ X satis-
fying I(un) → c, I ′(un) → 0 as n → ∞, has a convergent subsequence. I satisfies the (PS)
condition if I satisfies the (PS)c condition at any c ∈R.

In order to get the global minimizer, we need the famous Ekeland variational principle.

Lemma 2.2 (Ekeland’s variational principle, [35]) Let (X, d) be a complete space, and let
F : X → R ∪ {+∞} be a lower semicontinuous functional on X that is bounded below and
not identically equal to +∞. Fix ε > 0 and a point u ∈ X such that

F(u) ≤ ε + inf
x∈X

F(x).

Then there exists a point v ∈ X such that

F(v) ≤ F(u), d(u, v) ≤ 1, and F(w) > F(v) – εd(v, w) for all w �= v.

In order to get the second nontrivial solution, we need a modification of mountain pass
theorem.

Lemma 2.3 (Theorem A.3 in [26]) Let (X,‖ · ‖) and (Y ,‖ · ‖) be two Banach spaces such
that X can be continuously embedded into Y . Let Φ : X → R be a C1 functional with
Φ(0) = 0. Suppose that there exist ρ,α > 0 and e ∈ X such that ‖e‖Y > ρ , Φ(e) < α and
Φ(u) ≥ α for all u ∈ X with ‖u‖Y = ρ . Then there exists a sequence {un} ⊂ X such that, for
all n,

c ≤ Φ(un) ≤ c +
1
n

, and
∥∥Φ ′(un)

∥∥
X′ ≤ 2

n
,

where c = infγ∈Γ maxt∈[0,1] Φ(γ (t)) and Γ = {γ ∈ C([0, 1]; X)|γ (0) = 0,γ (1) = e}.

3 Proof of the main results
In this section we will prove our main results. Firstly, in the same spirit of the proof of
Lemma 3.1 in [33], we can also get the functional I is coercive. And since a ∈ L

6
6–r (R3)

implies a
6

6–r ∈ L1
loc(R3), the assumption a ∈ L1

loc(R3) is not necessary in this proof.

Lemma 3.1 (Lemma 3.1 in [33]) Assume that (a)–(c) hold, the functional I is coercive and
bounded from below in E.

In contrast to [33], problem (P′) contains a nonlocal term φu. It brings about some dif-
ficulties to us. Since we lack the compact embedding H1(R3) ↪→↪→ Lp(R3), p ∈ (2, 6), it
increases difficulty in verifying that the functional satisfies the Palais–Smale condition.
Here we prove that the functional satisfies the Palais–Smale condition under the integra-
bility assumptions on a and b.

Lemma 3.2 Assume that (a)–(c) hold, the functional I satisfies the Palais–Smale condi-
tion.
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Proof Let {un} be a (PS) sequence of I , that is, for some M > 0,

∣∣I(un)
∣∣ ≤ M, I ′(un) → 0, in E.

Since I is coercive in E, all the (PS) sequences of I are bounded. Then there exists u ∈ E,
and up to a subsequence if necessary, we still denote it by {un} satisfying

un ⇀ u in H1(R3), un ⇀ u in E;

un → u in Ls
loc(R3), wheres ∈ [2, 6); un(x) → u(x) a.e. inR3;

and |un|r ⇀ |u|r, |un|r–2unu ⇀ |u|r, |u|r–2uun ⇀ |u|r in L 6
r (R3).

For every fixed R ≥ 1, let ξR ∈ C∞(R3, [0, 1]) such that

ξR(x) =

⎧⎨
⎩0, for |x| ≤ R

2 ,

1, for |x| ≥ R,

and |∇ξR| ≤ 1
R . Then there exists a positive constant C independent of R such that

‖ξRu‖E ≤ C‖u‖E . Therefore, limn→∞〈I ′(un), ξRun〉 = 0, uniformly for R ≥ 1, that is,

on(1) =
∫
R3

(|∇un|2 + u2
n – (2ω + φun )φunu2

n
)
ξR dx +

∫
R3

un∇un∇ξR dx

+
∫
R3

b(x)|un|qξR dx – λ

∫
R3

a(x)|un|rξR dx.

Since

∣∣∣∣
∫
R3

un∇un∇ξR dx
∣∣∣∣ ≤

∫
R3

|un||∇un||∇ξR|dx ≤ 1
R

‖un‖2
E ≤ C

R

and

∫
R3

a(x)|un|rξR dx ≤
∫

Bc
R
2

(0)
a(x)|un|rξR dx ≤ C|a|

L
6

6–r (Bc
R
2

(0))
‖un‖r

E ≤ C|a|
L

6
6–r (Bc

R
2

(0))
,

by (i) of Lemma 2.1, we can get that

∫
Bc

R(0)

(|∇un|2 + u2
n + b(x)|un|q

)
dx ≤ C

R
+ C|a|

L
6

6–r (Bc
R
2

(0))
+ on(1).

Then, for every ε > 0, there exist N > 0 and R > 0 such that, for every n ≥ N ,

∫
Bc

R(0)

(|∇un|2 + u2
n + b(x)|un|q

)
dx ≤ ε

2
. (3.1)

Since {un} is bounded in E, by (3.1) and the compact embedding E ↪→ Lp
loc(R3) for p ∈ [2, 6),

we can get that un → u in L2(R3). Furthermore, by the interpolation inequality, we have

un → u, in Lp(
R

3) for p ∈ [2, 6).
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The rest of proof is standard. In fact,

‖un – u‖2
H1(R3) +

∫
R3

b(x)
(|un|q–2un – |u|q–2u

)
(un – u) dx

=
〈
I ′(un), un – u

〉
–

〈
I ′(u), un – u

〉
+ 2ω

∫
R3

(φunun – φuu)(un – u) dx +
∫
R3

(
φ2

unun – φ2
uu

)
(un – u) dx

+ λ

∫
R3

a(x)
(|un|r–2un – |u|r–2u

)
(un – u) dx. (3.2)

It follows from I ′(un) → 0 and un ⇀ u in E that the first two parts on the right-hand side
of (3.2) converge to zero as n → ∞. By Hölder’s inequality, we have

∣∣∣∣
∫
R3

(φunun – φuu)(un – u) dx
∣∣∣∣

=
∣∣∣∣
∫
R3

φun (un – u)2 dx +
∫
R3

(φun – φu)u(un – u) dx
∣∣∣∣

≤ |φun |6|un – u|212
5

+ |φun – φu|6|u| 12
5
|un – u| 12

5

≤ C
(|un – u|212

5
+ |u| 12

5
|un – u| 12

5

)
→ 0, n → ∞. (3.3)

Since the sequence {φ2
unun} is bounded in L 3

2 (R3),

∣∣∣∣
∫
R3

(
φ2

unun – φ2
uu

)
(un – u) dx

∣∣∣∣
≤ ∣∣φ2

unun – φ2
uu

∣∣ 3
2
|un – u|3

≤ (∣∣φ2
unun

∣∣ 3
2

+
∣∣φ2

uu
∣∣ 3

2

)|un – u|3
→ 0, n → ∞. (3.4)

Then (3.3) and (3.4) imply that the third part and the fourth part on the right-hand side
of (3.2) also converge to zero as n → ∞. For the last part, since |un|r ⇀ |u|r , |un|r–2unu ⇀

|u|r , |u|r–2uun ⇀ |u|r in L 6
r (R3) and a ∈ L

6
6–r (R3), we have

∫
R3

a(x)
(|un|r–2un – |u|r–2u

)
(un – u) dx → 0, n → ∞.

Thus all the parts of on the right-hand side of (3.2) converge to zero as n → ∞. By the
well-known inequality (|s|p–2s – |t|p–2t)(s – t) ≥ Cp|s – t|p, for s, t ∈R and p ≥ 2, we can get
that

‖un – u‖E → 0, n → ∞.

Therefore, I satisfies the Palais–Smale condition. �
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Though the functional I is no longer weakly lower semicontinuous, which is very im-
portant to get the global minimizer in [26, 28, 33], we can still prove that I still has a global
minimizer in E via Ekeland’s variational principle.

Lemma 3.3 There exists λ∗ > 0 such that I enjoys a global minimizer u1
λ ∈ E with I(u1

λ) < 0
for every λ > λ∗.

Proof From Lemma 3.1, I is coercive and bounded from below. Set

mλ := inf
u∈E

I(u) < +∞

for every {un} ⊂ E such that I(un) → mλ as n → ∞, we can get I has a (PS)mλ
sequence for

every fixed λ > 0 by Lemma 2.2 (Ekeland’s variational principle). Thus, Lemma 3.2 implies
that I has a global minimizer in E. That is to say, there exists u1

λ ∈ E such that

I
(
u1

λ

)
= inf

u∈E
I(u).

Next, we will prove that there exists λ∗ > 0 such that u1
λ �= 0 for λ > λ∗. Set

λ∗ = inf
u∈M

(
r
2

∫
R3

(|∇u|2 +
(
1 + ω2)u2)dx +

r
q

∫
R3

b(x)|u|q dx
)

= inf
u∈M

rJ(u),

where M = {u ∈ E| ∫
R3 a(x)|u(x)|r dx = 1}. Since J is weakly lower semicontinuous, by

Lemma 3.4 in [33], we can get that there exists u0 ∈M such that λ∗ = rJ(u0) > 0. Then, for
every λ > λ∗, we have

λ‖u0‖r
Lr (R3,a) = λ > λ∗ = rJ(u0) =

r
2

∫
R3

(|∇u0|2 +
(
1 + ω2)u2

0
)
dx +

r
q

∫
R3

b(x)|u0|q dx.

Furthermore,

I(u0) =
1
2

∫
R3

(|∇u0|2 + u2
0
)
dx –

ω

2

∫
R3

φu0u2
0 dx

+
1
q

∫
R3

b(x)|u0|q dx –
λ

r

∫
R3

a(x)|u0|r dx

≤ J(u0) –
λ

r

∫
R3

a(x)|u0|r dx

< 0.

Therefore, I(u1
λ) = infu∈E I(u) ≤ I(u0) < 0. �

At last, similar to [33], we will prove that, for every λ > λ∗, system (P) has a second
weak solution u2

λ via a modification of the mountain pass theorem of Ambrosetti and Ra-
binowitz. By choosing X = E, Y = H1(R3), we have the following.

Lemma 3.4 Assume that (a)–(c) are satisfied. Then, for every fixed e ∈ E \ {0} and λ ∈
(0, +∞), there exist ρλ ∈ (0,‖e‖H1(R3)) and αλ > 0 such that

inf
u∈E,‖u‖H1(R3)=ρλ

I(u) ≥ αλ > 0.
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Proof Since a ∈ L
6

6–r (R3), by Hölder’s inequality,

I(u) =
1
2

∫
R3

(|∇u|2 + u2)dx –
ω

2

∫
R3

φuu2 dx +
1
q

∫
R3

b(x)|u|q dx –
λ

r

∫
R3

a(x)|u|r dx

≥ 1
2

∫
R3

(|∇u|2 + u2)dx –
λ

r

∫
R3

a(x)|u|r dx

≥ 1
2
‖u‖2

H1(R3) –
λ

r
|a| 6

6–r
|u|r6

≥ 1
2
‖u‖2

H1(R3) – C
λ

r
|a| 6

6–r
‖u‖r

H1(R3)

= ‖u‖2
H1(R3)

(
1
2

– C
λ

r
|a| 6

6–r
‖u‖r–2

H1(R3)

)
.

Then, for each e ∈ E \ {0}, by choosing ρλ = min{ 1
2‖e‖H1(R3), ( r

4Cλ|a| 6
6–r

) 1
r–2 }, we can get

I(u) ≥ 1
4
ρ2

λ := αλ, u ∈ E with ‖u‖H1(R3) = ρλ. �

Lemma 3.5 If (a)–(c) hold, then system (P) enjoys a nontrivial solution u2
λ ∈ E with I(u2

λ) =
cλ > 0 for every λ > λ∗.

Proof Lemma 3.3 implies that there exists a global nontrivial minimizer u1
λ ∈ E of I with

I(u1
λ) < 0 for every λ > λ∗. By choosing e = u1

λ in Lemma 3.4, I satisfies the geometrical
structure of Lemma 2.3. Thus I has a (PS)cλ sequence for every λ > λ∗. From Lemma 3.2,
we can get that I enjoys a nontrivial solution u2

λ with I(u2
λ) = cλ > 0 > I(u1

λ) for every fixed
λ ∈ (λ∗, +∞) (for more details, see the proof of Theorem A.3 in [26]). �

Proof of Theorem 1.1 In order to complete the proof of (i) in Theorem 1.1, similar to [33],
we only need to prove the fact that if system (P) has a nontrivial solution u ∈ E, then there
exists λ0 > 0 such that λ ≥ λ0. By 〈I ′(u), u〉 = 0 and –ω ≤ φu ≤ 0, we can get that

∫
R3

(|∇u|2 + u2)dx ≤ λ

∫
R3

a(x)|u|r dx –
∫
R3

b(x)|u|q dx. (3.5)

It implies that λ > 0. Since for any fixed k1, k2 > 0 and 0 < α < β , one can get

k1tα – k2tβ ≤ k1

(
k1

k2

) α
β–α

for all t ≥ 0.

By taking k1 = λa(x), k2 = b(x), α = r – 2, β = q – 2, and t = |u(x)|, it is easy to claim that

λa(x)
∣∣u(x)

∣∣r–2 – b(x)
∣∣u(x)

∣∣q–2 ≤ λ
q–2
q–r

(
a(x)q–2

b(x)r–2

) 1
q–r

for a.e. x ∈R
3. (3.6)

By (3.5), (3.6), (c), and Hölder’s inequality,

‖u‖2
H1(R3) ≤ λ

q–2
q–r

∫
R3

(
a(x)q–2

b(x)r–2

) 1
q–r

u2 dx ≤ Sλ
q–2
q–r

∣∣∣∣
(

a(x)q–2

b(x)r–2

) 1
q–r

∣∣∣∣ 3
2

‖u‖2
H1(R3),
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where S := infu∈D1,2(R3),|u|6=1 |∇u|22 is the optimal constant in the Sobolev inequality. Since
u �= 0, we have

λ ≥
(

1

S|( aq–2

br–2 )
1

q–r | 3
2

) q–r
q–2

:= λ0.

Therefore, if system (P) has a nontrivial solution, then λ has a positive lower bound λ0.
That is to say, 0 is the only solution of system (P) for every λ < λ0.

(ii) Combine Lemma 3.3 with Lemma 3.5, system (P) enjoys at least two nontrivial so-
lutions for every λ > λ∗. �
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