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Abstract
This paper is concerned with asymptotic solutions of a nonlinear boundary value
problem which arises from laminar flow in a uniformly porous channel with
expanding or contracting walls. For values of the wall suction Reynolds number,
multiple solutions are observed. A method involving the inclusion of exponentially
small terms in a perturbation series is mainly considered to obtain two of the
solutions analytically. In addition, numerical solutions presented for each case agree
well with asymptotic solutions, which illustrates that the asymptotic solutions
constructed in this paper are more reliable.
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1 Introduction
Studies of porous channel flows have become a topic of focus because of many related
applications like in the field of bioengineering and medicine. To name a few, biological
fluids are transported through shrinking or expanding containers, synchronous pulsation
of porous membranes, simulation of respiratory air cycles, and combustion surface re-
gression model of a solid rocket motor. In 1990, a mathematical model on the viscous flow
of Newtonian fluid inside a permeable tube with expanding or contracting cross section
was established by Goto and Uchida [1]. In their work, the expansion ratio α and the cross-
flow Reynolds number Re were introduced to measure the expansion of the pipe and the
mass transfer, respectively. Later, Dauenhauer and Majdalani [2] considered the case that
laminar flow in a porous channel with expanding or contracting walls and thus established
a mathematical model. So far there are some studies on the mathematical model. To list a
few, one may count Majdalani et al. [3], Asghar et al. [4], Hang Xu et al. [5] and [6–9]. In
fact, for the viscous flow in a porous channel with stationary wall, the earliest researcher
can be traced back to Berman [10], who showed that, for constant suction or injection at
the walls, the solution of the flow equations can be reduced to a single fourth order nonlin-
ear ODE that includes expansion ratio. In his study, a nonlinear boundary value problem
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(BVP) was obtained from the classical Navier–Stokes equations. Meanwhile, for small Re,
a regularly perturbed expansion was obtained.

For the above problem, a number of further studies about the existence of multiple so-
lutions of such a BVP follow shortly thereafter. There is the work of Robinson [9], Skalak
and Wang [11], Shih [12], Stephen [13]. Recently, when the walls of channel were not mo-
tionless, Hang Xu et al. obtained three solutions for large suction using homotopy analysis
method (HAM). What is more, the temporal and spatial stabilities were considered in the
past because of the existence of multiple solutions of the BVP, where one may count Brady
[14], Durlofsky and Brady [15], Sobey and Drazin [16]. Dauenhauer and Majdalani also
consider that the search for multiple solutions in the present analysis will be influenced
by both Reynolds number Re and expansion ratio α. However, in Robinson’s paper [9],
he considered only the influence of the Reynolds number Re, regardless of the expansion
ratio α. Meanwhile, the inner solution was not modified by Si et al. [17]. Besides, some
errors also occur in his paper, for example, in (58) the term
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Based on the above-mentioned work, we have realized the importance of extending pre-
vious investigations by presenting theoretical solutions for large suction in a porous chan-
nel with expanding or contracting walls. Therefore, a principal objective of the current
study is to overcome a deficiency in their model that does not account for modifying the
inner solution. Specifically, in Sect. 2, by introducing the flow geometry and governing
equations with boundary conditions, a BVP (15)–(16) including two parameters (i.e. Re
and α) is obtained. The numerical solution on multiple solutions are presented in Sect. 3.
In Sect. 4, in order to obtain the asymptotic solution with a large suction Reynolds number,
we use a singular perturbation method. An analytic investigation was carried out for larger
negative Re in which exponentially small terms were included. In Sect. 5, to get a more ac-
curate solution, we will modify the inner solution and outer solution, which produces dual
analytic solutions for large suction. The numerical and analytic results are compared and
discussed in Sect. 6. Finally, Sect. 7 concludes the paper.

2 Mathematical formulation of the problem
We assume that the channel is of semi-infinite length with one closed end. In addition, to
consider a two-dimensional flow, we assume that the distance 2α between the porous walls
is much smaller than the channel’s width. Both sidewalls are assumed to have equal per-
meability –νω and to expand or contract uniformly by a time-dependent rate α. As shown
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Figure 1 Physical configuration

in Fig. 1, x and y indicate the stream wise direction and the normal direction, respectively.
u and v denote the velocity components along x- and y-axes. The flow velocity is zero at
the closed end (x = 0). As a result, the motion of a viscous incompressible and electrically
conducting fluid through a porous channel with an applied transverse magnetic field can
be described by the following equation:

∇ · V = 0, (3)

∂V
∂t

+ (V · ∇)V = –
1
ρ

∇p + ν∇2V, (4)

where V = (u, v) and the symbols ν represent the viscosity of the fluid. When we take into
account the symmetry with respect to the midsection plan, the necessary boundary for
the half-domain may be as follows:

u = 0, v = –vw; y = a(t), (5)

∂u
∂y

= 0, v = 0; y = 0, (6)

u = 0, v = 0; x = 0. (7)

An appropriate stream function φ is introduced

φ =
νx
a

F(η, t), (8)

where η = y
a is a dimensionless variable. Then the velocity components become

u = νxa–2Fη, v = –
ν

a
F . (9)

Substituting Eq. (9) and Eqs. (5)–(7) and denoting f = F
Re , with the assumptions that the

wall expansion ratio α is constant and F is made dependent on y and α, we can obtain the
following equation:

Fηηηη + α(ηFηηη + 3Fηη) + FFηηη – FηFηη – α2ν–1Fηηt = 0, (10)

where α is the wall expansion ratio defined by

α =
aȧ
υ

. (11)
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Note that the expansion ratio will be positive for expansion and negative for contraction.
An integration of Eq. (10) produces

Fηηη + α(ηFηη + 2Fη) + FFηη – F2
η – α2ν–1Fηt = k0, (12)

where k0 is a space-invariant parameter. The boundary conditions (5)–(7) become

Fηη(0) = 0, F(0) = 0, Fη(1) = 0, F(1) = Re, (13)

where Re is the permeation Reynolds number defined by Re = avω

υ
. In view of the physical

meaning, Re is positive for injection and negative for suction. Let

g =
F
Re

, (14)

a similar solution with respect to both space and time can be developed by the transfor-
mation that Uchida and Aoki [18] has described: α is constant and f = f (η), which leads
to gηt = 0. Under these assumptions, Eq. (12) becomes

g ′′′ + α
(
ηg ′′ + 2g ′) + Re

(
gg ′′ – g ′2) = k, (15)

where k = k0
Re . The boundary conditions (13) are translated into

g ′′(0) = 0, g(0) = 0, g ′(1) = 0, g(1) = 1. (16)

3 Numerical solution of the equations of motion
Equation (15), subject to boundary conditions (16), is a two-point boundary value prob-
lem. Here we use bvp4c of Matlab to solve it. Unless stated otherwise, for all our computa-
tions with bvp4c, we use the default relative error tolerance 10–3 and the default absolute
error tolerance 10–6.

Based on the numerical method proposed in [19], the results of Fig. 2 will be discussed
by dividing the figure into three sections, as follows:

1. Section I contains the well behaved solutions for suction;
2. Section II covers the solutions whose centerline velocity is positive but whose axial

velocity profiles have a maximum located strictly between the wall and the center of
the channel;

Figure 2 Branches of –f ′′(1) vs. Re at α = –2, 0, 2
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3. Section III includes reverse flow near the center of the channel (η = 0).
Next, we will mainly concern on asymptotic solutions for Sections I and II solutions.

However, Section III solution will not be considered due to the difficulty in solving the
corresponding equations with perturbation method. Note that here the interesting math-
ematics is the way in which the inclusion of exponentially small terms leads to the predic-
tion of dual solutions, which could possibly be extended to predict the Section III solution.

4 Solution for the large suction Reynolds numbers
For large suction, Robinson [9] have pointed out the existence of thinning boundary layer
when α = 0. Here we not only consider the boundary layer, but also further extend to the
case α �= 0. When Re → –∞, the problem (15)–(16) becomes

εg ′′′ + εα
(
ηg ′′ + 2g ′) – gg ′′ + g ′2 = β2 + 2εαβ , (17)

where

ε = –
1

Re
, β2 + 2εαβ = –

k
Re

. (18)

4.1 Outer solution
Considering the conditions

g ′′(0) = 0, g(0) = 0, (19)

we can know that the outer solution of Eq. (15) is a linear solution, i.e.

g(η) = βη, (20)

where

β = β0 + β1ε + β2ε
2 + · · · =

∞∑
i=0

βiε
i. (21)

Here the coefficients βi (i = 0, 1, 2, . . .) are constants determined later.

4.2 Inner solution
To obtain a solution with the viscous layer, an appropriate transformation is introduced:

1 – η = εt. (22)

Combining Eq. (22) with Eq. (17) yields

εg ′′′ – εα
[
(1 – εt)g ′′ – 2εg ′] + gg ′′ – g ′2 = –β2ε2 – 2αβε3, (23)

where the prime (′) denotes differentiation with regard to t and the corresponding bound-
ary conditions become

g(0) = 1, g ′(0) = 0. (24)
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Because the inner solution meets the condition g(0) = 1, a perturbation solution will be
sought and has the form

g(t) = 1 +
∞∑

r=1

gr(t)εr . (25)

From Eq. (24), the relevant boundary condition to be satisfied gr(t) will become

gr(0) = 0, g ′
r(0) = 0. (26)

Substituting Eq. (25) into Eq. (23) and equating coefficients εr , we can obtain

g ′′′
1 + g ′′

1 = 0, (27)

g ′′′
2 + g ′′

2 = –β2
0 – g1g ′′

1 + g ′2
1 + αg ′′2

1 , (28)

g ′′′
3 + g ′′

3 = 2g ′
1g ′

2 – g1g ′′
2 – g ′′

1 g2 + αg ′′
2 – αtg ′′

1 – 2αg ′
1 – 2β0β1 – 2αβ0, (29)

g ′′′
n + g ′′

n = α
(
g ′′

n–1 – tg ′′
n–2 – 2g ′

n–2 – 2βn–3
)

+
∞∑
i=0

(
g ′

i g
′
n–i – gig ′′

n–i
)

–
n–2∑
i=0

βiβn–2–i. (30)

The result of Eq. (27) satisfying the condition Eq. (24) is

g1(t) = A1
(
t – 1 + e–t), (31)

where A1 is an arbitrary constant. In a similar way, from Eq. (26), the results for every gr(t)
can also be obtained and every gr (i = 1, 2, . . .) will include an arbitrary constant Ar . The
first two terms of the inner expansion are

g(t) = 1 + A1ε
(
t – 1 + e–t). (32)

The outer solution Eq. (20) expressed in terms of the inner variable t is

g(t) = β0 + (β1 – β0t)ε + (β2 – β1t)ε2 + · · · . (33)

As t → +∞, e–t → 0, matching the inner solution Eq. (32) with Eq. (33) gives

β0 = 1, A1(t – 1) = β1 – t. (34)

Therefore

β1 = 1, A1 = –1. (35)

Similarly, we can get the solutions of the equations for g1, g2 and g3 the forms are

g2 = 4 – t + α – e–t
(

t2

2
+ αt + 3t + 4 + α

)
, (36)
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g3 =
129

4
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(
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2
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)
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4
, (37)

g4 =
26,377

72
– α3 + 21α2 + 146α –

(
129

4
+ 11α + α3

)
t

– e–t
(

8963
24

+
1317t

4
+

497t2

4
+

82t3

3
+ 4t4 +

3t5

8
+ 8α2t2 +

21αt3

2
+

269αt
2

+ 20α2t + 50αt2 + 147α + 21α2 + α3t +
α3t2

2
+

3α2t3

2
+

11αt4

8
+ α3

+
α2t4

4
+

α3t3

6
+

αt5

8

)
+ e–2t

(
57
8

+
αt
2

+
t2

4
+

9t
4

+ α

)
–

e–3t

72
. (38)

The coefficients βi (i = 2, 3, . . .) are given as follows:

β2 = 4 + α, β3 =
129

4
+ 11α + α2, β4 =

26,377
72

+ 146α + 21α2 + α3. (39)

5 Modified outer solution and inner solution
For large suction, the solution of the previous section agrees fairly accurately with the
numerical solutions. An effort to correctly predict these solution will now be made by
investigating the terms neglected in the matching process. Thus we consider modifying
the outer expansion these exponentially small terms, because we neglect the terms of the
form tre–rt in the inner expansion. Moreover, the terms have not been matched with any
corresponding exponentially small terms in the outer expansion.

5.1 Modified outer solution
To get the modified outer solution bearing responsibility for exponentially small terms,
satisfying the out conditions, the form of the out solution is assumed to be

g(η) = βη + rf1(η) + r2f2(η) + · · · , (40)

where r is exponentially small and r = o(εr), then substituting Eq. (40) into Eq. (17), the
forms of fl (l = 1, 2, . . .) are

εf ′′′
1 + εα

(
ηf ′′

1 + 2f ′
1
)

– 2βf ′
1 – βηf ′′

1 = 0, (41)

εf ′′′
2 + εα

(
ηf ′′

2 + 2f ′
2
)

– 2βf ′
2 – βηf ′′

2 = f1f ′′
1 – f ′2

1 . (42)

The outer condition Eq. (19), in terms of fr(η), is

fl(0) = 0, f ′′
l (0) = 0. (43)

It is hard to obtain the analytical solution of Eq. (41) and Eq. (42) in a direct way. But if the
expansion ratio α is small, a further expansion will be made in α, f1 and f2 can be expressed
as follows:

f1 = f10 + αf11 + o(α), (44)
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f2 = f20 + αf21 + o(α). (45)

According to Eq. (43), the corresponding boundary conditions about fij (i = 1, 2; j = 0, 1)
will be

fij(0) = 0, f ′′
ij (0) = 0. (46)

Substituting Eq. (44) into Eq. (45) and equating coefficients of α0 yields

εf ′′′
10 + 2βf ′

10 – βηf ′′
10 = 0. (47)

Differentiation about Eq. (47) gives

εf (4)
10 + βf ′′

10 – βηf ′′′
10 = 0, (48)

where we deduce

f (4)
10 (0) = 0. (49)

An extra differentiation of Eq. (48) gives

εf (5)
10 – βηf (4)

10 = 0. (50)

As a result, the solution of Eq. (50) becomes

f (4)
10 = Ce

βη2
2ε . (51)

Here C is a constant. From (49), C = 0 is obtained. So the solution of f10 is

f10(η) = mη3 + nη2 + pη + q, (52)

where m, n, p and q are constants. From (46), we can get n = q = 0, and substitution of
Eq. (52) into Eq. (47) yields ap = –3εm. Therefore, the solution for f10(η) is

f10(η) = η3 –
3εη

β
. (53)

Substituting Eq. (45) and Eq. (53) into Eq. (42), we can obtain

εf ′′′
20 + 2βf ′

20 – βηf ′′
20 = f10f ′′

10 – f ′2
10 = –3η4 – q2. (54)

Differentiating Eq. (54) twice with respect to η gives

εf (5)
20 – βηf (4)

20 = –36η2. (55)

Satisfying the condition of Eq. (49), the solution is

f (4)
20 (η) = –

36
ε

e
βη2
2ε

∫ η

0
s2e

–βs2
2ε ds = –

36
ε

e
βη2
2ε

[∫ η

0
s2e

–βs2
2ε ds –

∫ +∞

0
s2e

–βs2
2ε ds

]
. (56)
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The first integral equation (56) can be calculated, as Re → ∞ and η → 1, the second can
be estimated, the forms gives

f (4)
20 (η) ≈ –

36
β

(
πε

2α

) 1
2

e
βη2
2ε = –

36
ε

(π )
1
2

(
ε
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) 1
2

e
β
2ε e

βεt2
2 et–βte–t , (57)

g(4)(η) = ε–4g(4)(t)

= –ε–3e–t
[

1 – ε

(
t – αt + 2 –

t2

2
+ 3α + 4e–tt2

)
– ε2(3αt2 + 4e–t

–
t4

8
+ 2t – 7α2 +

9
2

+ 3α2t – 4αt + 5α +
t3

2
– 3α2 –

t2α2

2
–

αt3

2

+ ε3
(

54e–t + α3 +
t5

8
–

9e–2t

8
–

9αt
2

–
t6

48
– 8α2t2 + 14α2t –

α3t3

6

–
t4

4
+

301
24

+ 8αte–t + 7αt2 +
3α3t2

2
–

α2t4

4
+

5t3

3
–

7αt3

3
+

9αt4

8

+
5α2t3

2
+ 10α –

7t2

4
– 3tα3 + 20te–t +

237t
12

+ · · ·
)]

. (58)

Equation (57) includes e–t , so f(20) will match with those terms of the form tre–t , in (32),
the matching will be taken effect, using the fourth derivative of terms in Eq. (57), which
refers to e–t , i.e. (58). Matching (57)–(58) yields

r2 36
β

(
πε

2β

) 1
2

e
β
2ε = –ε–3

[
1 – ε

(
t – αt + 2 –

t2

2
+ 3α + 4e–tt2

)
– ε2(3αt2 + 4e–t –

t4

8

+ 2t – 7α2 +
9
2

+ 3α2t – 4αt + 5α +
t3

2
– 3α2 –

t2α2

2
–

αt3

2

+ ε3
(

54e–t + α3 +
t5

8
–

9e–2t

8
–

9αt
2

–
t6

48
– 8α2t2 + 14α2t

–
α3t3

6
–

t4

4
+

301
24

+ 8αte–t + 7αt2 +
3α3t2

2
–

α2t4

4
+

5t3

3

–
7αt3

3
+

9αt4

8
+

5α2t3

2
+ 10α –

7t2

4
– 3tα3

+ 20te–t +
237t
12

+ · · ·
)]

e– βεt2
2 eβt–t . (59)

However, the terms t and higher powers are not involved in the left-hand side. Therefore,
we can cancel terms in t and higher powers in the right-hand side,

r2 =
β

36

(
2β

πε7

) 1
2

e– β
2ε

[
1 – ε(2 + 3α) – ε2

(
9
2

+ 5α – 10α2
)

+ ε3
(

–α3 – 10α –
301
24

)
+ · · ·

]

=
β2

36

(
2

πε7

) 1
2

e– 1+ε–1
2

[
1 – ε

(
9
2

+
7α

2

)
– ε2

(
57
4

–
33α2

8
+

5α

4

)

– ε3
(

18,313
144

+
79α3

48
–

159α2

16
–

23α

8

)
+ o

(
ε3)]. (60)
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Clearly, if ε is so small, the series is positive in the right-hand side. However, Eq. (60)
may not offer a good approximation to this critical value of ε, because the coefficients of
εr in Eq. (60) all have the same sign. The right-hand side of Eq. (60) can be modified by
multiplying β–6, and we can get an alternative series with a better convergence.

r2 =
β8

36

(
2

πε7

) 1
2

e– 1+ε–1
2

[
1 – ε

(
21
2

+
7α

2

)
+ ε2

(
39
4

–
33α2

8
+

55α

4

)

– ε3
(

15,793
144

+
79α3

48
–

3α2

16
–

191α

8

)
+ o

(
ε3)]. (61)

If the terms of o(ε4) are now believed to be negligible in Eq. (61), then there are two roots
for r, provided Re < –( 21

2 + 7α
2 ),

r = ±1
6

(
2

πε7

) 1
4

e– 1+ε–1
4

[
1 – ε

(
5
4

+
7α

4

)
– ε2

(
253
32

–
17α2

32
+

85α

16

)

– ε3
(

82,621
1152

–
41α3

348
+

261α2

128
+

3653α

128

)
+ o

(
ε3)], (62)

g ′′′(η)|η=0 ≈
(

2
πε7

) 1
4

e– 1+ε–1
4

[
1 – ε

(
5
4

+
7α

4

)
– ε2

(
253
32

–
17α2

32
+

85α

16

)

– ε3
(

82,621
1152

–
41α3

348
+

261α2

128
+

3653α

128

)
+ o

(
ε4)]

= ∓
(

2|Re|7
π

) 1
4
[

1 +
1

Re

(
5
4

+
7α

4

)
–

1
Re2

(
253
32

–
17α2

32
+

85α

16

)

+
1

Re3

(
82,621
1152

–
41α3

348
+

261α2

128
+

3653α

128

)
+ o

(
1

Re3

)]
. (63)

5.2 Modified inner solution
The term rf1(η) applied for the modified outer expansion is not suit to any terms in the
inner expansion. As a consequence, we will modify the inner solution so as to contain the
terms that is suit to rf1(η), and the form is as follows:

g(t) = 1 +
∞∑

r=1

gr(t)εr + r1

∞∑
r=0

hr(t)εr + o(r1). (64)

Besides, the constant α takes two values, i.e., dual solutions, relying on the sign of r. So
the form should be

α =
∞∑

r=0

αrε
r + r

∞∑
r=0

βrε
r + o(r). (65)

In Eqs. (64)–(65), βr and hr(t) must meet Eq. (23) and the boundary conditions Eq. (24),
while r1 is an exponentially small term with respect to r, and the corresponding boundary
condition for hr(t) becomes

hr(0) = 0, h′
r(0) = 0. (66)
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Considering Eq. (53) and Eq. (65), the first two terms of the modified outer solution Eq. (40)
will be

g(η) =
∞∑

r=0

αrε
rη + r

∞∑
r=0

βrε
rη + r

(
η3 –

3εη

α

)
+ · · · . (67)

In the above, the terms of order r become

r

[
η3 +

( ∞∑
r=0

βrε
r –

3ε

α

)
η

]
. (68)

To obtain the single term with (68), we set

∞∑
r=0

βrε
r –

3ε

α
η =

∞∑
r=0

wrε
r , (69)

which makes the modified outer and inner solutions match much simpler and easier. By
combining the constant w with the inner variable t, (68) will be

r
[
1 + w0 + (w1 – w0t – 3t)ε +

(
w2 – w1t – 3t2)ε2

+
(
w3 – w2t – t3)ε3 + (w4 – w3t)ε4 + · · · ]. (70)

We differentiate Eq. (23) about t once again, the form will become

giv + 3ε2αg ′′ +
(
ε2αt – εα

)
g ′′′ – g ′g ′′ – gg ′′′ = 0. (71)

Substituting Eq. (64) into Eq. (71) and equating coefficients of r1, the equation about h0(t)
will be

hiv
0 (t) + h′′′

0 (t) = 0. (72)

The corresponding boundary conditions Eq. (66) belong to Eq. (72). So the solution be-
comes

h0(t) = A0
(
t – 1 – e–t) + B0t2, (73)

where A0 and B0 are constants. Matching with (69) and letting t → +∞ in Eq. (73), we can
obtain

A0r1(t – 1) + B0r1t2 ∼ r
[
1 + w0 + (w1 – w0t – 3t)ε + · · · ]. (74)

The terms of o(r) match only if

1 + w0 = 0, i.e. w0 = –1. (75)

In the same way, the terms of o(εr) about (74) show that

r1 = rε (76)
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and

A0 = –w0 – 3 = –2, w1 = –A0 = 2, B0 = 0. (77)

As a result, the form of h0(t) is as follows:

h0(t) = –2
(
t – 1 – e–t). (78)

Next, we will collect the coefficient of εr1, and the form of h1(t) is

hiv
1 + h′′′

1 = αh′′′
0 + g ′

1h′′
0 + g ′′

1 h′
0 – g1h′′′

0 – g ′′′
1 h0. (79)

With (79), we can obtain

hiv
1 + h′′′

1 = 2αe–t + 4te–t . (80)

The solution of Eq. (80) that is satisfied with the conditions at t = 0 is

h1(t) = –
(
2t2 + 12t + 2αt + C1 + 6α + 24

)
e–t +

C2t2

2
+ C3t + C4, (81)

where C1, C2, C3, and C4 are constants. Combining Eq. (80) with Eq. (70) and collecting
the coefficients of rε2, we can get

C1 = –4α – 10, C2 = 6, C3 = –2, C4 = 2α + 14, (82)

and therefore

h1(t) = –
(
2t2 + 12t + 2αt + 2α + 14

)
e–t + 3t2 – 2t + 2α + 14. (83)

In the same way, the equation for h2(t) is obtained as follows:

hiv
2 + h′′′

2 = –3αh′′
0 – αth′′′

0 + αh′′′
1 + g ′

1h′′
1 + g ′

2h′′
0 + g ′′

2 h′
0

+ g ′′
1 h′

1 – g1h′′′
1 – g2h′′′

0 – g ′′′
2 h0 – g ′′′

1 h1. (84)

The equation for h2(t) is

hiv
2 + h′′′

2 =
(
6αt2 + 2α2t – 6αt – 4α – 4α2 + 3t3 – 3t2 – 10t – 6

)
e–t + 12e–2t – 6. (85)

In a similar way, we can obtain the solution for h2(t), the forms are as follows:

h2(t) = –4α2 + 52α +
247

2
– (2α + 14)t – t3 –

3
2

e–2t – e–t
[

3
4

t4 + (2α + 8)t3

+ (40 + 15α)t2 +
(
4α2 + 50α + 108

)
t – 4α2 + 52α + 125

]
, (86)

with

w2 = 2α + 14, w3 = –4α2 + 52α +
247

3
. (87)
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6 Comparison of the numerical and the modified analytic solutions
Through comparing two of its main feature with numerical results, we will check on the
accuracy of the modified solution. This is not the case in the ordinary numerical, but g ′′′(η)
at η = 0 is

g ′′′(η)|η=0 ≈ ±
(

2
πε7

) 1
4

e– 1+ε–1
4

[
1 – ε

(
5
4

+
7α

4

)
– ε2

(
253
32

–
17α2

32
+

85α

16

)

– ε3
(

82,621
1152

–
41α3

348
+

261α2

128
+

3653α

128

)
+ o

(
ε3)], (88)

which, in terms of Re, is

= ∓
(

2|Re|7
π

) 1
4

e– 1–Re
4

[
1 +

1
Re

(
5
4

+
7α

4

)
–

1
Re2

(
253
32

–
17α2

32
+

85α

16

)

+
1

Re3

(
82,621
1152

–
41α3

348
+

261α2

128
+

3653α

128

)
+ o

(
1

Re3

)]
. (89)

identically zero, for the ordinary outer solution Eq. (20). Combining Eq. (25) with Eq. (39),
we can get the numerical results about the inner solution, i.e.

[
g ′′′(η)

]
η=1 = ε–2[g ′′(t)

]
t=0

= –
[

1
ε

– 1 – α –
(

13
2

– α

)
ε –

(
α3 + 3α2 + 16α +

677
12

)
ε2 + o

(
ε2)], (90)

which, in terms of Re, is

= –
[

–Re – 1 – α +
(

13
2

– α

)
1

Re
–

(
α3 + 3α2 + 16α +

677
12

)
1

Re2 + o
(

1
Re2

)]
. (91)

We can get the two results g ′′(η) at η = 1 for the modified inner solution Eq. (64), which is
a combination of Eq. (91) and a correction because of the exponentially small terms. The
correction is

rε
ε2

[
h′′

0(0) + h′′
1(0) + h′′

2(0)
]

+ o(r), (92)

which

= ∓1
6

(
2
π

) 1
4 |Re| 11

4 e– 1–Re
4

[
1 +

1
Re

(
5
4

+
7α

4

)
–

1
Re2

(
253
32

–
17α2

32
+

85α

16

)

+
1

Re3

(
82,621
1152

–
41α3

348
+

261α2

128
+

3653α

128

)]

×
[

–2 –
2α + 12

Re
+

–6α2 + 22α + 17
Re2 + · · ·

]
+ o(r). (93)

In Table 1 numerical results for g ′′′(η) at η = 0 are compared with the analytic values
obtained by (89). As observed in Table 1, these results appear to be more accurate for
Section I (or II) solutions when the value of |Re| is increased.
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Table 1 Numerical values of g′′′(η) at η = 0, for various Re in different sections, compared with the
analytical formula (89)

Re Section α = –0.05 α = 0 α = 0.05

(89) Numerical (89) Numerical Robinson [9] (89) Numerical

–28.142 I –0.1993 –0.1064 –0.1986 –0.1791 –0.1984 –0.1978 –0.3094
–37.519 I –0.0322 –0.0047 –0.0321 –0.0313 –0.0321 –0.2320 –0.2160
–49.008 I –0.0029 0.0000 –0.0029 –0.0029 –0.0029 –0.2289 –0.2109
–55.934 I –0.0007 0.0000 –0.0007 –0.0007 –0.0007 –0.2124 –0.2104
–28.139 II 0.1994 0.3571 0.1987 0.2249 0.1986 0.1979 0.1377
–37.791 II 0.0305 0.2058 0.0304 0.0311 0.0303 0.0303 0.0045
–44.717 II 0.0073 0.1992 0.0073 0.0073 0.0073 0.0073 0.0002
–56.008 II 0.0006 0.0000 0.0006 0.0006 0.0006 0.0006 0.0000

Table 2 Numerical values of g′′(η) at η = 1 for various values of Re compared with the analytic
results obtained from (91) with the exponentially small correction (93)

Re Section α = –0.05 α = 0 α = 0.05

g′′(1) Numerical g′′(1) Numerical Robinson [9] g′′(1) Numerical

–28.142 I –25.4335 –26.0717 –25.3943 –25.4998 –25.396 –25.3550 –24.5345
–37.519 I –36.0186 –36.2887 –35.9709 –35.9577 –35.972 –35.9233 –34.0197
–49.008 I –47.9502 –47.8963 –47.9011 –47.8015 –47.901 –47.8519 –47.7897
–55.934 I –54.8382 –54.8469 –54.7889 –54.8047 –54.789 –54.7395 –54.7409
–28.139 II –28.3421 –29.4494 –28.2829 –28.3993 –28.282 –28.2237 –27.7088
–37.791 II –36.9498 –38.8043 –36.9171 –36.2464 –36.898 –36.8484 –36.5494
–44.717 II –43.6865 –43.5820 –43.6368 –43.4384 –43.636 –43.5872 –43.4808
–56.008 II –54.9340 –54.9216 –54.8847 –54.8572 –54.885 –54.8353 –54.8143
–64.296 II –63.2327 –63.2286 –63.1833 –63.1729 –63.184 –63.1339 –63.1232

The numerical results are compared with the analytic results in Table 2, which include
the exponentially small correction. As seen in Table 2, the asymptotic solutions agree well
with the numerical ones, indicating that our results are valid.

7 Conclusions
In this paper, through modifying outer and inner solutions, we have successfully con-
structed asymptotic solutions for the BVP (15)–(16). Based on numerical solutions with
bvp4c, the accuracy of these asymptotic solutions is also easily verified. Here the idea of
obtaining multiple solutions with considering exponentially small terms can also better
understand the flow phenomenon.
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