
Qing and Zhang Boundary Value Problems         (2019) 2019:35 
https://doi.org/10.1186/s13661-019-1149-5

R E S E A R C H Open Access

Sharp criteria of blow-up solutions for the
cubic nonlinear beam equation
Jun Qing1* and Chuangyuan Zhang1

*Correspondence:
qingjunmath@163.com
1Department of Fundamental
Education, Guangzhou Railway
Polytechnic, Guangzhou, China

Abstract
In this paper, we obtain the precisely sharp criteria of blow-up and global existence
for the cubic nonlinear beam equation in the H2 energy-critical and H2 sub-critical
cases, respectively.

MSC: 35G25; 35B44

Keywords: Cubic nonlinear beam equation; H2 energy-critical; Sharp criteria;
Blow-up

1 Introduction
In this paper, we consider the Cauchy problem of the nonlinear beam equation

⎧
⎨

⎩

∂2

∂t2 u + �2u + mu – |u|2u = 0, t ≥ 0, x ∈R
d,

u(0, x) = u0, ∂
∂t u(0, x) = u1,

(1.1)

where u = u(t, x): R×R
d →R and d is the space dimension; �2 = �� and � =

∑d
j=1

∂2

∂x2
j

is

the Laplacian. The parameter m > 0. In fact, Eq. (1.1) is a class of fourth-order partial dif-
ferential equations having different physical settings (see [19]). In particular, when d = 1,
Eq. (1.1) is called Bretherton’s type equation, which appears in studying of weak interac-
tions of dispersive waves (see [2]). When d = 2, Eq. (1.1) models the motion of the clamped
plate and beams (see [15]). During the last two decades, Eq. (1.1) has been widely studied
(see [18] for a review).

The local well-posedness of Cauchy problem (1.1) was established by Levandosky in [12,
13]. The stability of traveling waves and standing waves was investigated by Levandosky in
[12, 13]. The asymptotic behavior and scattering properties of global solutions were widely
studied in [3, 14, 17]. On the other hand, for the blow-up solutions, a sufficient condition
for the existence of blow-up solutions was given by Hebey and Pausader in [9]. In the L2-
critical case: m = 1, d = 4, the sharp criteria and limiting profile of blow-up solutions were
investigated by Zheng and Leng in [22].

This motivates us to further study the blow-up solutions of Eq. (1.1) in the following
sense: Under what conditions will the waves become unstable to collapse (blow-up)? Un-
der what conditions will the waves be stable for all time (global existence)? In other words,
what are the sharp criteria of blow-up and global existence?
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In the present paper, we focus on the two typical cases: H2 energy-critical (i.e., d = 8)
and H2 sub-critical (i.e., d = 6). Indeed, we remark that Eq. (1.1) has the scaling symmetry
vλ := λ2u(λ4t,λx) provided m = 0. More precisely, when d = 8, vλ is a solution of Eq. (1.1)
provided u solves Eq. (1.1) and ‖vλ‖Ḣ2 = ‖u‖Ḣ2 . This case is called the H2 energy-critical
(see [9]). And when d = 6, this case is called the H2 sub-critical due to ‖vλ‖Ḣs = ‖u‖Ḣs

being invariant, where s < 2.
Our main arguments are from the studies of the nonlinear Schrödinger equations.

In fact, Kenig and Merle in [11] and Holmer and Roudenko in [10] injected the sharp
Gagliardo–Nirenberg inequality into the energy functional to obtain the sharp threshold
of blow-up and global existence for the nonlinear Schrödinger equations, in which the
scaling invariance and conservation of L2-norm play a crucial role. For the cubic non-
linear Schrödinger equations with defect, Goubet and Hamraoui in [7] investigated both
numerically and theoretically the influence of a defect on the blow-up of radial solutions
to a cubic NLS equation in dimension two.

But for Eq. (1.1), the scaling invariance and conservation of L2-norm fail, which is the
main difficulty. For the H2 energy-critical case: d = 8, by injecting some new estimates
into the best constant of the Sobolev embedding inequality, we find two invariant sets and
obtain the precisely sharp criteria of blow-up and global existence for Eq. (1.1). For the H2

sub-critical case: and d = 6, the best constant of the Sobolev inequality is not determined,
and the method in [11] for the H1 energy-critical Schrödinger equation and the method
in [10] for the L2 sup-critical nonlinear Schrödinger equation cannot be directly applied.
By exploring the convex properties of the energy functional, we can find two invariant sets
and obtain precisely sharp criteria of blow-up and global existence for Eq. (1.1).

2 Notations and preliminaries
In this paper, we abbreviate Lq(Rd), ‖ · ‖Lq(Rd), H2(Rd), Ḣ2(Rd), and

∫

Rd ·dx by Lq, ‖ · ‖q,
H2, Ḣ2, and

∫ ·dx. The various positive constants will be simply denoted by C.
The work space is defined by

H2 :=
{

v ∈ L2
∣
∣
∣

∫
(|v|2 + |∇v|2 + |�v|2)dx < +∞

}

.

The norm is denoted by ‖v‖H2 = (‖v‖2
2 + ‖∇v‖2

2 + ‖�v‖2
2) 1

2 , which is equivalent to (‖v‖2
2 +

‖�v‖2
2) 1

2 . For Cauchy problem (1.1), we define two functionals in H2 × L2 by

E
((

v(t),
∂

∂t
v(t)

))

:=
∫ [

1
2

∣
∣
∣
∣
∂

∂t
v(t)

∣
∣
∣
∣

2

+
1
2
∣
∣�v(t)

∣
∣2 +

1
2
∣
∣v(t)

∣
∣2 –

1
4
∣
∣v(t)

∣
∣4

]

dx,

H
(
v(t)

)
:=

∫ [
1
2
∣
∣v(t)

∣
∣2 dx –

1
4
∣
∣v(t)

∣
∣4

]

dx.

The functionals E and H are well-defined by the Sobolev embedding theorem (see [9]).
The local well-posedness of Cauchy problem (1.1) is established by Hebey and Pausader
in the energy space H2 × L2 (see [9]) as follows.

Proposition 2.1 Let m = 1, 1 ≤ d ≤ 8, and (u0, u1) ∈ H2 × L2. There exists a unique solu-
tion u(t, x) of Cauchy problem (1.1) on [0, T) such that u(t, x) ∈ C([0, T); H2 ×L2). Moreover,
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either T = +∞ (global existence) or 0 < T < +∞ and limt→T ‖u(t, x)‖H2 = +∞ (blow-up).
Furthermore, for all t ∈ [0, T), u(t, x) satisfies the following conservation law:

E
((

u(t),
∂

∂t
u(t)

))

= E
(
(u0, u1)

)
. (2.1)

Remark 2.2 It follows from Hebey and Pausader’s result in [9] that the local well-
posedness of Cauchy problem (1.1) is also true in H2 × L2. Moreover, let u(t, x) ∈
C([0, T); H2 ×L2) be the solution of Cauchy problem (1.1). If 0 < T < +∞, then limt→T ‖u(t,
x)‖H2 = +∞ or lim supt→T ‖u(t, x)‖Lq

t ([0,T);Lr
x) = +∞ (blow-up), where (q, r) = ( 2(d+4)

d–4 ,
2d(d+4)

(d–4)(d+2) ) is B-admissible.

Next, we introduce two important sharp inequalities, which are used to describe the
sharp criteria of blow-up and global existence for Cauchy problem (1.1).

Lemma 2.3 Let v ∈ H2. Then

‖v‖4
4 ≤ 2

‖Q‖2
2
‖v‖ 8–d

2
2 ‖�v‖ d

2
2 , (2.2)

where Q is a ground state of

d
4
�2Q +

8 – d
4

Q – |Q|2Q = 0, Q ∈ H2. (2.3)

Lemma 2.4 Let d = 8 and W (x) = 8
√

30
(1+|x|2)2 solve

�2W – |W |2W = 0, W ∈ Ḣ2. (2.4)

Then the best constant C∗ > 0 of the Sobolev inequality

‖v‖4 ≤ C∗‖�v‖2, v ∈ Ḣ2 (2.5)

is given by C∗ = ‖�W‖– 1
2

2 , where W is the solution of (2.4).

Remark 2.5 The sharp Gagliardo–Nirenberg inequality (2.2) was obtained by Fibich, Ilan,
and Papanicolaou in [6], and the existence of the ground state solution of Eq. (2.3) was
proved by Zhu, Zhang, and Yang in [23]. For the sharp generalized Gagliardo–Nirenberg
inequalities (2.2) with fractional order derivatives, the readers can refer to [4, 5, 8, 21, 24,
25]. The sharp Sobolev inequality (2.5) was established in [1, 16, 20].

3 Sharp criteria of blow-up and global existence
In this section, we first consider the H2 energy-critical case: p = 3 and d = 8. By con-
structing the invariants, we can find the sharp criteria of blow-up and global existence
for Cauchy problem (1.1).

Theorem 3.1 Let m = 1, p = 3, d = 8, and W be the solution of (2.4). Assume that (u0, u1) ∈
H2 × L2 and

E
(
(u0, u1)

)
<

1
4
‖�W‖2

2. (3.1)
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Then
(i) if ‖�u0‖2

2 + ‖u0‖2
2 < ‖�W‖2

2, then the solution u(t, x) of Cauchy problem (1.1) exists
globally, and u(t, x) satisfies that, for all time t,

∥
∥�u(t)

∥
∥2

2 +
∥
∥u(t)

∥
∥2

2 < ‖�W‖2
2, (3.2)

(ii) if ‖�u0‖2
2 + ‖u0‖2

2 > ‖�W‖2
2, then the solution u(t, x) of Cauchy problem (1.1) blows

up in finite time 0 < T < +∞.

Proof Firstly, applying the best constant of Sobolev inequality (2.5) to the energy func-
tional E, for all t ∈ I (maximal existence interval), we get

E
((

u(t),
∂

∂t
u(t)

))

≥ 1
2
(∥
∥�u(t)

∥
∥2

2 +
∥
∥u(t)

∥
∥2

2

)
–

C4∗
4

(∥
∥�u(t)

∥
∥2

2

)2

≥ 1
2
(∥
∥�u(t)

∥
∥2

2 +
∥
∥u(t)

∥
∥2

2

)
–

C4∗
4

(∥
∥�u(t)

∥
∥2

2 +
∥
∥u(t)

∥
∥2

2

)2, (3.3)

where C∗ = ‖�W‖– 1
2

2 and W is the solution of (2.4). Now, define a function on the interval
[0, +∞) by

f (y) :=
1
2

y2 –
C4∗
4

y4.

Then, we see that f ′(y) = y – C4∗y3 = y(1 – C4∗y2), and there are two roots for the equation
f ′(y) = 0: y1 = 0, y2 = 1

C2∗
= ‖�W‖2. Hence, y1 is the minimizer of f (y) and y2 is the max-

imum of f (y). Meanwhile, f (y) is increasing on [y1, y2) and decreasing on [y2, +∞). Note
that f (y1) = 0 and f (y2) = ‖�W‖2

2
4 . It follows from (2.1) and (3.1) that, for all t ∈ I ,

f
(√∥

∥�u(t)
∥
∥2

2 +
∥
∥u(t)

∥
∥2

2

)
≤ E

((

u(t),
∂

∂t
u(t)

))

= E
(
(u0, u1)

)
< f (y2). (3.4)

Secondly, using the convexity and monotony of f (y) and the conservation of energy, we
construct two invariant evolution flows generated by Cauchy problem (1.1) as follows:

K1 :=
{

u(t) ∈ H2 \ {0}
∣
∣
∣
∥
∥�u(t)

∥
∥2

2 +
∥
∥u(t)

∥
∥2

2 < ‖�W‖2
2, 0 < E <

‖�W‖2
2

4

}

,

K2 :=
{

u(t) ∈ H2 \ {0}
∣
∣
∣
∥
∥�u(t)

∥
∥2

2 +
∥
∥u(t)

∥
∥2

2 > ‖�W‖2
2, 0 < E <

‖�W‖2
2

4

}

,

where E := E((u(t), ∂
∂t u(t))). Indeed, if u0 ∈ K1, i.e., ‖�u0‖2

2 + ‖u0‖2
2 < ‖�W‖2

2, then
√‖�u0‖2

2 + ‖u0‖2
2 < y2. Since f (y) is increasing on [0, y2) and for all t ∈ I ,

f
(√∥

∥�u(t)
∥
∥2

2 +
∥
∥u(t)

∥
∥2

2

)
≤ E

(
(u0, u1)

)
<

‖�W‖2
2

4
= fmax = f (y2). (3.5)

According to the bootstrap and continuity argument, we can show that the corresponding
solution u(t, x) satisfies that, for all t ∈ I ,

√∥
∥�u(t)

∥
∥2

2 +
∥
∥u(t)

∥
∥2

2 < y2, (3.6)



Qing and Zhang Boundary Value Problems         (2019) 2019:35 Page 5 of 8

which implies that K1 is invariant. In fact, if (3.6) is not true, then there exists t1 ∈ I such
that

√‖�u(t1)‖2
2 + ‖u(t1)‖2

2 ≥ y2. Since the corresponding solution u(t, x) ∈ C([0, T); H2 ×
L2) of Cauchy problem (1.1) is continuous with respect to t, there exists 0 < t0 ≤ t1 such
that

√∥
∥�u(t0)

∥
∥2

2 +
∥
∥u(t0)

∥
∥2

2 = y2.

Thus, injecting this into (3.5) with t = t0,

f (y2) = f
(√∥

∥�u(t0)
∥
∥2

2 +
∥
∥u(t0)

∥
∥2

2

)
≤ E

(
(u0, u1)

)
<

‖�W‖2
2

4
= fmax = f (y2),

which is a contradiction. Hence, (3.6) is true. On the other hand, if u0 ∈ K2, i.e., ‖�u0‖2
2 +

‖u0‖2
2 > ‖�W‖2

2, then
√‖�u0‖2

2 + ‖u0‖2
2 > y2. Since f (y) is decreasing on [y2, +∞) and for

all t ∈ I ,

f
(√∥

∥�u(t)
∥
∥2

2 +
∥
∥u(t)

∥
∥2

2

)
≤ E

(
(u0, u1)

)
<

‖�W‖2
2

4
= fmax = f (y2).

According to the bootstrap and continuity argument (see the proof of the invariance of
K1), the corresponding solution u(t, x) satisfies that, for all t ∈ I ,

√∥
∥�u(t)

∥
∥2

2 +
∥
∥u(t)

∥
∥2

2 > y2, (3.7)

which implies that K2 is invariant.
Finally, we return to the proof of Theorem 3.1. By (3.1) and ‖�u0‖2

2 + ‖u0‖2
2 < ‖�W‖2

2,
we get u0 ∈ K1. Applying the invariant of K1, (3.2) is true and the solution u(t, x) of Cauchy
problem (1.1) exists globally by the local well-posedness (see Proposition 2.1). This com-
pletes part (i) of the proof.

On the other hand, (3.1) and ‖�u0‖2
2 + ‖u0‖2

2 > ‖�W‖2
2 imply u0 ∈ K2. Applying the

invariant of K2, (3.7) is true. According to the conservation of energy and assumption
(3.1), we deduce that, for all t ∈ I ,

∥
∥u(t)

∥
∥4

4 = –4E
(
(u0, u1)

)
+ 2

∥
∥
∥
∥

∂

∂t
u(t)

∥
∥
∥
∥

2

2
+ 2

∥
∥�u(t)

∥
∥2

2 + 2
∥
∥u(t)

∥
∥2

2

> –‖�W‖2
2 + 2

∥
∥
∥
∥

∂

∂t
u(t)

∥
∥
∥
∥

2

2
+ 2

∥
∥�u(t)

∥
∥2

2 + 2
∥
∥u(t)

∥
∥2

2. (3.8)

Letting J(t) :=
∫ |u(t, x)|2 dx and computing the derivatives of J(t), we see that, for all t ∈ I ,

J ′(t) = 2
∫

u(t) ∂
∂t u(t) dx and

J ′′(t) = 2
∫ (∣

∣
∣
∣
∂

∂t
u(t)

∣
∣
∣
∣

2

+
∣
∣u(t)

∣
∣4 –

∣
∣�u(t)

∣
∣2 –

∣
∣u(t)

∣
∣2

)

dx. (3.9)

Inject (3.8) into (3.9). For all t ∈ I ,

J ′′(t) ≥ 6
∥
∥
∥
∥

∂

∂t
u(t)

∥
∥
∥
∥

2

2
– 2‖�W‖2

2 + 2
∥
∥�u(t)

∥
∥2

2 + 2
∥
∥u(t)

∥
∥2

2 > 6
∥
∥
∥
∥

∂

∂t
u(t)

∥
∥
∥
∥

2

2
, (3.10)
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which implies that J ′′(t) is positive and has a lower bound for all t ∈ I . Applying the Hölder
inequality to J ′(t), we get

(
J ′(t)

)2 ≤ 4
∥
∥u(t)

∥
∥2

2

∥
∥
∥
∥

∂

∂t
u(t)

∥
∥
∥
∥

2

2

for all t ∈ I . Multiplying (3.10) with J(t), we deduce that, for all t ∈ I ,

J(t)J ′′(t) > 6
∥
∥
∥
∥

∂

∂t
u(t)

∥
∥
∥
∥

2

2

∥
∥u(t)

∥
∥2

2 >
3
2
(
J ′(t)

)2, (3.11)

and there exists t0 > 0 such that J ′(t) > 0 for all t > t0. Therefore, as the proof of Theo-
rem 3.1, the solution u(t, x) of Cauchy problem (1.1) blows up in finite time 0 < T < +∞. �

Now, we investigate the sharp criteria of blow-up and global existence for Cauchy prob-
lem (1.1) in the H2 sub-critical case: p = 3 and d = 6.

Theorem 3.2 Let m = 1, p = 3, and d = 6. Assume that (u0, u1) ∈ H2 × L2 and

E
(
(u0, u1)

)
<

√
3

6
‖Q‖2

2. (3.12)

Then
(i) if ‖�u0‖2 < ( 4

3 ) 1
4 ‖Q‖2, then the solution u(t, x) of Cauchy problem (1.1) exists

globally and u(t, x) satisfies that, for all time t,

∥
∥�u(t)

∥
∥

2 <
(

4
3

) 1
4 ‖Q‖2, (3.13)

(ii) if ‖�u0‖2 > ( 4
3 ) 1

4 ‖Q‖2, then the solution u(t, x) of Cauchy problem (1.1) blows up in
finite time 0 < T < +∞,

where Q is the ground state of (2.3).

Proof It follows from the proof of Theorem 3.1 that we give the main schedule of the
proof of Theorem 3.2 in the following. From the sharp generalized Gagliardo–Nirenberg
inequality (2.2) with d = 6, we see that, for all t ∈ I (maximal existence interval),

E
((

u(t),
∂

∂t
u(t)

))

≥ 1
2
∥
∥�u(t)

∥
∥2

2 +
1
2
∥
∥u(t)

∥
∥2

2 –
1

2‖Q‖2
2

∥
∥u(t)

∥
∥

2

∥
∥�u(t)

∥
∥3

2

≥ 1
2
∥
∥�u(t)

∥
∥2

2 +
1
2
∥
∥u(t)

∥
∥2

2 –
1
2
∥
∥u(t)

∥
∥2

2 –
1

8‖Q‖4
2

∥
∥�u(t)

∥
∥6

2

≥ 1
2
∥
∥�u(t)

∥
∥2

2 –
1

8‖Q‖4
2

∥
∥�u(t)

∥
∥6

2. (3.14)

Define a function f (y) on the interval [0, +∞) by

f (y) =
1
2

y2 –
1

8‖Q‖4
2

y6.
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We see that y1 = 0 is the minimizer of f (y) and y2 = ( 4
3 ) 1

4 ‖Q‖2 is the maximum of f (y).
Meanwhile, f (y) is increasing on [y1, y2) and decreasing on [y2, +∞). Note that f (y1) = 0
and f (y2) = 2

√
3

9 ‖Q‖2
2. By (2.1) and (3.12), we see that, for all t ∈ I ,

f
(∥
∥�u(t)

∥
∥

2

) ≤ E
((

u(t),
∂

∂t
u(t)

))

= E
(
(u0, u1)

)
<

√
3

6
‖Q‖2

2 < f (y2). (3.15)

Then, as in the proof of Theorem 3.1, we can construct two invariant evolution flows
generated by Cauchy problem (1.1) as follows:

K1 :=
{

u(t) ∈ H2 \ {0}
∣
∣
∣
∥
∥�u(t)

∥
∥

2 <
(

4
3

) 1
4 ‖Q‖2, 0 < E <

√
3

6
‖Q‖2

2

}

,

K2 :=
{

u(t) ∈ H2 \ {0}
∣
∣
∣
∥
∥�u(t)

∥
∥

2 >
(

4
3

) 1
4 ‖Q‖2, 0 < E <

√
3

6
‖Q‖2

2

}

,

where E := E((u(t), ∂
∂t u(t))). Finally, using the invariances of K1 and K2, we can complete

the proof of Theorem 3.2. (3.12) and ‖�u0‖2 < ( 4
3 ) 1

4 ‖Q‖2 imply that u0 ∈ K1. Applying
the invariant of K1, (3.13) is true and the solution u(t, x) of Cauchy problem (1.1) exists
globally by Proposition 2.1. This completes the proof of part (i).

(3.12) and ‖�u0‖2 > ( 4
3 ) 1

4 ‖Q‖2 imply that u0 ∈ K2. Applying the invariant of K2, (2.1),
and (3.12), we deduce that, for all t ∈ I ,

2
∥
∥u(t)

∥
∥4

4 = –8E
(
(u0, u1)

)
+ 4

∥
∥
∥
∥

∂

∂t
u(t)

∥
∥
∥
∥

2

2
+ 4

∥
∥�u(t)

∥
∥2

2 + 4
∥
∥u(t)

∥
∥2

2

> –
4
√

3
3

‖Q‖2
2 + 4

∥
∥
∥
∥

∂

∂t
u(t)

∥
∥
∥
∥

2

2
+ 4

∥
∥�u(t)

∥
∥2

2 + 4
∥
∥u(t)

∥
∥2

2. (3.16)

Letting J(t) :=
∫ |u(t, x)|2 dx, by some basic computations, we deduce that, for all t ∈ I ,

J ′(t) = 2
∫

u(t) ∂
∂t u(t) dx and

J ′′(t) = 2
∫ (∣

∣
∣
∣
∂

∂t
u(t)

∣
∣
∣
∣

2

+
∣
∣u(t)

∣
∣4 –

∣
∣�u(t)

∣
∣2 –

∣
∣u(t)

∣
∣2

)

dx. (3.17)

It follows from (3.16) and (3.17) that, for all t ∈ I ,

J ′′(t) > 6
∥
∥
∥
∥

∂

∂t
u(t)

∥
∥
∥
∥

2

2
–

4
√

3
3

‖Q‖2
2 + 2

∥
∥�u(t)

∥
∥2

2 + 2
∥
∥u(t)

∥
∥2

2 ≥ 6
∥
∥
∥
∥

∂

∂t
u(t)

∥
∥
∥
∥

2

2
, (3.18)

which implies that J ′′(t) is positive and has a lower bound for all t ∈ I . Applying the Hölder
inequality, we get J ′(t)2 ≤ 4‖u(t)‖2

2‖ ∂
∂t u(t)‖2

2. Multiplying (3.18) with J(t), one deduces that,
for all t ∈ I ,

J(t)J ′′(t) > 6
∥
∥
∥
∥

∂

∂t
u(t)

∥
∥
∥
∥

2

2

∥
∥u(t)

∥
∥2

2 >
3
2

J ′(t)2. (3.19)

Thus, as the proof of Theorem 3.1, the solution u(t, x) of Cauchy problem (1.1) blows up
in finite time 0 < T < +∞. �



Qing and Zhang Boundary Value Problems         (2019) 2019:35 Page 8 of 8

Acknowledgements
The authors would like to thank the reviewers for their helpful comments and suggestions.

Funding
This work is supported by the National Natural Science Foundation of China (No. 11871138).

Abbreviations
Not applicable.

Availability of data and materials
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JQ and CYZ have the same contribution to this work. All authors read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 5 December 2018 Accepted: 4 February 2019

References
1. Aubin, T.: Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math.

Pures Appl. (9) 55, 269–296 (1976)
2. Bretherton, F.P.: Resonant interaction between waves: the case of discrete oscillations. J. Fluid Mech. 20, 457–479

(1964)
3. Cui, S., Guo, A.: Solvability of the Cauchy problem of nonlinear beam equation in Besov spaces. Nonlinear Anal. 65,

802–824 (2006)
4. Feng, B.H.: Sharp threshold of global existence and instability of standing wave for the Schrödinger–Hartree equation

with a harmonic potential. Nonlinear Anal., Real World Appl. 31, 132–145 (2016)
5. Feng, B.H.: On the blow-up solutions for the nonlinear Schrödinger equation with combined power-type

nonlinearities. J. Evol. Equ. 18, 203–220 (2018)
6. Fibich, G., Ilan, B., Papanicolaou, G.: Self-focusing with fourth-order dispersion. SIAM J. Appl. Math. 62, 1437–1462

(2002)
7. Goubet, O., Hamraoui, E.: Blow-up of solutions to cubic nonlinear Schrödinger equations with defect: the radial case.

Adv. Nonlinear Anal. 6, 183–197 (2017)
8. Guo, Q., Zhu, S.H.: Sharp threshold of blow-up and scattering for the fractional Hartree equation. J. Differ. Equ. 264,

2802–2832 (2018)
9. Hebey, E., Pausader, B.: An introduction to fourth order nonlinear wave equations.

http://hebey.u-cergy.fr/HebPausSurvey.pdf
10. Holmer, J., Roudenko, S.: On blow-up solutions to the 3D cubic nonlinear Schrödinger equation. Appl. Math. Res.

Express 2007, Article ID 004 (2007)
11. Kenig, C., Merle, F.: Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear

Schrödinger equation in the radial case. Invent. Math. 166, 645–675 (2006)
12. Levandosky, S.P.: Stability and instability of fourth-order solitary waves. J. Dyn. Differ. Equ. 10, 151–188 (1998)
13. Levandosky, S.P.: Decay estimates for fourth order wave equations. J. Differ. Equ. 143, 360–413 (1998)
14. Levandosky, S.P., Strauss, W.A.: Time decay for the nonlinear beam equation. Methods Appl. Anal. 7, 479–488 (2000)
15. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Dover, New York (1944)
16. Miao, C., Xu, G., Zhao, L.: Global well-posedness and scattering for the focusing energy-critical nonlinear Schrödinger

equations of fourth order in the radial case. J. Differ. Equ. 246, 3715–3749 (2009)
17. Pausader, B.: Scattering for the beam equation in low dimension. Indiana Univ. Math. J. 59, 791–822 (2009)
18. Pausader, B.: Problèmes bien posés et diffusion pour des équations non linéaires dispersives d’ordre quatre. Ph.D.

thesis (2009)
19. Peletier, L., Troy, W.C.: Spatial Patterns: Higher Order Models in Physics and Mechanics. Progress in Nonlinear

Differential Equations and Their Applications, vol. 45. Birkhäuser, Basel (2001)
20. Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110, 353–372 (1976)
21. Zhang, J., Zhu, S.H.: Stability of standing waves for the nonlinear fractional Schrödinger equation. J. Dyn. Differ. Equ.

29, 1017–1030 (2017)
22. Zheng, P.S., Leng, L.H.: Limiting behavior of blow-up solutions for the cubic nonlinear beam equation. Bound. Value

Probl. 2018, 167 (2018)
23. Zhu, S., Zhang, J., Yang, H.: Limiting profile of the blow-up solutions for the fourth-order nonlinear Schrödinger

equation. Dyn. Partial Differ. Equ. 7, 187–205 (2010)
24. Zhu, S.H.: On the blow-up solutions for the nonlinear fractional Schrödinger equation. J. Differ. Equ. 261, 1506–1531

(2016)
25. Zhu, S.H.: Existence of stable standing waves for the fractional Schrödinger equations with combined nonlinearities.

J. Evol. Equ. 17, 1003–1021 (2017)

http://hebey.u-cergy.fr/HebPausSurvey.pdf

	Sharp criteria of blow-up solutions for the cubic nonlinear beam equation
	Abstract
	MSC
	Keywords

	Introduction
	Notations and preliminaries
	Sharp criteria of blow-up and global existence
	Acknowledgements
	Funding
	Abbreviations
	Availability of data and materials
	Competing interests
	Authors' contributions
	Publisher's Note
	References


