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Abstract
This paper is to provide an analysis of an ill-posed Cauchy problem in a half-plane.
This problem is novel since the Cauchy data on the accessible boundary is given,
whilst the additional temperature is involved on a line. The Dirichlet boundary
condition on part of the boundary is an essential condition in the physical meaning.
Then we use a redefined method of fundamental solutions (MFS) to determine the
temperature and the normal heat flux on the inaccessible boundary. The present
approach will give an ill-conditioned system, and this is a feature of the numerical
method employed. In order to overcome the ill-posedness of the corresponding
system, we use the Tikhonov regularization method combining Morozov’s
discrepancy principle to get a stable solution. At last, four numerical examples,
including a smooth boundary, a boundary with a corner, and a boundary with a jump,
are given to show the effectiveness of the present approach.
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1 Introduction
Cauchy problems, which arise in diverse science areas such as wave propagation, nonde-
structive testing, and geophysics have been intensively studied in the past decades [1, 7,
13, 33]. On account of the incomplete boundary conditions, Cauchy problems are classi-
fied as inverse problems and ill-posed, i.e., the solutions do not depend continuously on
the Cauchy data. In order to get a stable solution, various numerical methods have been
proposed to solve Cauchy problems [23, 31, 36]. The method of fundamental solutions
(MFS) is a popular and frequently used method for the solution of such problems.

The MFS is a meshless method which expands the solution utilizing fundamental solu-
tions [8, 16, 19, 20, 22, 28, 30, 39, 40]. It is a boundary collocation method which belongs
to the family of Trefftz methods, see [14] for a link to Trefftz methods, boundary element
methods, and MFS. It is applicable to boundary value problems in which the fundamental
solution of the operator in the governing equation is known. Since then, it has been suc-
cessfully applied to a large variety of physical problems, an account of which can be found
in the survey paper [16]. In [26], Liu et al. introduce a novel concept to construct Trefftz en-
ergy bases based on the MFS for the numerical solution of the Cauchy problem in an arbi-
trary star plane domain. The Trefftz energy bases used for the solution not only satisfy the
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Laplace equation but also preserve the energy. In [32], the authors give a meshless method
based on the MFS for the three-dimensional inverse heat conduction problems. In [27],
Marin investigates both theoretically and numerically the so-called invariance property
of the solution of boundary value problems associated with the anisotropic heat conduc-
tion equation in two dimensions. In [9], Fu et al. investigate the thermal behavior inside
skin tissue with the presence of a tumor and use the method of approximate particular
solutions to simulate a tumor in 3D. Following Fichera’s idea, Chen et al. [5] enriched the
MFS by an added constant and a constraint. This enrichment condition ensures a unique
solution of the problems considered. They also explained that this enrichment should be
used when there is a degenerate scale. In [41], Zhang and Wei give two iterative methods
for a Cauchy problem for an elliptic equation with variable coefficients in a strip region,
the convergence rates of two algorithms are obtained by an a-priori and an a-posteriori se-
lection rule for the regularization parameter. Other methods for the conduction problems
can be found in [21, 37].

Cauchy problems have been investigated using the MFS because of the ease with which
it can be implemented, particularly for the problems in complex geometries [10, 11, 25,
34]. Most of the studies consider Cauchy problems on the whole plane, but sometimes we
should consider the problems in a half-plane [2, 3, 15, 24]. In [2], Chapko and Johansson
consider a Cauchy problem for the Laplace equation in a two-dimensional semi-infinite
domain by a direct integral equation method. Later, they give a generalization of the situ-
ation to three-dimensions with the Cauchy data only partially given. Compared with their
previous work [2], they not only generalize that work to higher dimensions but also con-
sider the more realistic case when the Cauchy data is only partially known, i.e., the Neu-
mann/Dirichlet data measurements are specified throughout the plane bounding the up-
per half-space, and the Dirichlet/Neumann data is given only on a finite portion of this
plane.

In this paper, we consider another Cauchy problem in a half-plane. Let D be a bounded
and connected domain with piecewise smooth boundary ∂D = Γ1 ∪ Γ2 ∪ AB, the upper
boundary be Γ = Γ1 ∪ Γ2. Define the half-plane R

2
+ := {(x1, x2) : x2 ≥ 0} and the boundary

R
2
0 := {(x1, x2) : x2 = 0}. As is shown in Fig. 1, denote by

Γ :=
{

x =
(
ρ(θ ) cos θ ,ρ(θ ) sin θ

)
, 0 ≤ θ ≤ π

}

a simple piecewise smooth arc in R
2
+ with two endpoints A and B on R

2
0. The curve

Γ1 := {x ∈ Γ , 0 ≤ θ ≤ βπ}

is the accessible part of Γ with β ≤ 1/2.

Figure 1 Sketch of the Cauchy problem in R
2
+
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Consider the following Cauchy problem for the Laplace equation: Given Cauchy data
f ∈ H1(Γ1) and g ∈ L2(Γ1) on Γ1 and the homogeneous boundary condition u(x) = 0 on
AB, find the solution u satisfying

�u(x) = 0, x ∈ D, (1)

u(x) = f (x), x ∈ Γ1, (2)

∂u
∂ν

(x) = g(x), x ∈ Γ1, (3)

where � is the Laplacian in R
2 and ν is the unit outward normal to Γ1.

The Cauchy problem in a half-plane is novel since the solution of the problem should
satisfy a Dirichlet boundary condition on part of the boundary AB and the Cauchy data on
the accessible boundary Γ1. We should note that a Dirichlet boundary condition on part of
the boundary is an essential condition in the physical meaning. In this paper, for simplicity,
we give a homogeneous boundary condition on the interface, i.e., the temperature is zero
on the interface for a physical phenomenon.

In what follows, we describe a MFS for the numerical solution of the corresponding
Cauchy problem. To prove the feasibility of the method, we use a single layer representa-
tion of the solution [18, 35]. Via the analysis of the single layer potentials, jump relations,
and the Green’s function in the half-plane, the solution given by the MFS is proved to be an
approximation of the genuine solution. An “auxiliary” curve is involved in the definition
of the single layer potential to avoid singularity.

This paper is organized as follows. In Sect. 2, we describe the MFS in a half-plane and
give some theoretical results for this method. In Sect. 3, we solve the equations by the
Tikhonov regularization method with Morozov’s principle. Finally, four numerical exam-
ples, including a smooth boundary, a boundary with a corner, and a boundary with a jump,
are presented to show the effectiveness of the presented method.

2 Formulation of the MFS
For s = (s1, s2) ∈ R

2
+, denote by sr := (s1, –s2) the reflection of s about the x1-axis. The

Green’s function of the Laplacian in the half space R2
+ with a Dirichlet boundary condition

[29] is

G(x, s) =
1

2π
ln |x – s| –

1
2π

ln |x – sr|, (4)

where s is the source point and

|x – s| =
√

(x1 – s1)2 + (x2 – s2)2.

Note that the Green’s function G(x, s) is the solution of

�G(x, s) = δ(x – s), x ∈R
2
+, (5)

G(x, s) = 0, x ∈R
2
0, (6)

where δ is the Dirac delta function.
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To get the solution u(x) of the Cauchy problem, we use the MFS approximation

uN (x) =
N∑

j=1

cjG(x, sj), sj ∈ De, (7)

where, for j = 1, 2, . . . , N , sj are the chosen source points in De := R
2
+ \ (R2

0 ∪ D) and cj are
unknown coefficients, which can be computed using the Cauchy data on Γ1.

For theoretical analysis, the single layer potential representation is involved, which can
be seen as a continuous version of the MFS.

Denote by Γ ′ := ∂Ω \R2
0 the source curve (see Fig. 1), where ∂Ω is the boundary of the

region D ⊂ Ω in R
2
+. In fact, if the source points sj are chosen on the curve Γ ′ with certain

roles, approximation (7) can be viewed as a discrete version of the single layer potential in
the half-plane

[
Sh

Γ ′φ
]
(x) :=

∫

Γ ′
G(x, y)φ(y) dsy , x ∈ R

2
+ \ Γ ′. (8)

Notice that we involve an “auxiliary” curve Γ ′ in (8) instead of directly defining the single
layer potential on ∂D. Then singularities caused by the integral equation in the single layer
potential are avoided since Γ ′ is apart from D. Another thing to notice is that the single
layer potential (8) is related to the Green’s function in the half-plane instead of that in the
free space. Further analysis is needed to get the properties of the single layer potential.

Firstly, we recall the classical single layer potential in the free space. Assume that the
endpoints of Γ ′ are A′ = (a′, 0) and B′ = (b′, 0) with a′ < b′. Denote the unbounded region
Ωe := {R2

+ \ Ω} with the lower boundary Λ := Γ ′
– ∪ Γ ′ ∪ Γ ′

+, where Γ ′
– := {x = (x1, 0) : x1 ≤

a′} and Γ ′
+ := {x = (x1, 0) : x1 ≥ b′}. Then the classical single layer potential on Λ is usually

defined as

[SΛφ](x) :=
∫

Λ

Φ(x, y)φ(y) dsy , x ∈R
2
+ \ Λ, (9)

where Φ(x, y) is the fundamental solution given by

Φ(x, y) =
1

2π
ln |x – y|.

Apparently we have

G(x, y) = Φ(x, y) – Φ(x, yr). (10)

Denote by ν the unit outward normal vector to Λ, where Ωe is the exterior of the bound-
ary Λ. For a curve Γ and a function u, denote by γ +

Γ u and γ –
Γ u the restrictions of u to Γ

from exterior and interior, respectively. Denote by ∂+
ν,Γ u and ∂–

ν,Γ u the normal derivatives
on Γ from exterior and interior, respectively.

We recall the jumps of a function on a curve. Denote by

�γ u�Γ = γ –
Γ u – γ +

Γ u
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and

�∂νu�Γ = ∂–
ν,Γ u – ∂+

ν,Γ u

the jumps of u and ∂νu on Γ , respectively.
A symmetric continuation discussion shows that the Cauchy problem (1)–(3) is equiv-

alent to the classical Cauchy problem with symmetric structure [3], which is well known
to be uniquely solvable (for details, see [18]). Thus the Cauchy problem (1)–(3) also has a
unique solution u ∈ H3/2(D).

Note that we only care about u(x) for x ∈ Ω . Thus we can set

�γ u�Γ ′ = 0.

Then we have the following lemma about the single layer representation.

Lemma 1 The solution of

�u(x) = 0, x ∈R
2
+ \ Γ ′,

�γ u�Γ ′ = 0, x ∈ Γ ′,

u(x) = 0, x ∈R
2
0

has the representation

u(x) =
[
Sh

Γ ′φ
]
(x), x ∈R

2
+ \ Γ ′,

where the density function satisfies

φ = �∂νu�Γ ′ .

Proof Since the single layer potential [Sh
Γ ′φ](x) is formally an integral with the kernel

G(x, y), it is clear that [Sh
Γ ′φ](x) satisfies the Laplace equation in R

2
+ \ Γ ′. Moreover,

G(x, y) = 0 for y ∈R
2
0 implies

u(x) = 0, x ∈R
2
0.

The jump relation [15] implies that the density function satisfies

φ =
�
∂ν

(
Sh

Γ ′φ
)�

Γ ′ .

The proof is completed. �

Although Lemma 1 gives the representation of the density function φ with the jump
relation, φ is usually computed using boundary integral equations. Equations (2)–(3) imply
that Sh

Γ ′φ should satisfy

[
Sh

Γ ′φ
]
(x) = f (x), x ∈ Γ1, (11)
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∂[Sh
Γ ′φ]
∂ν

(x) = g(x), x ∈ Γ1. (12)

We have the following proposition about the solution of the Cauchy problem.

Proposition 1 Assume that φ ∈ L2(Γ ′) is the solution of the boundary integral equations
(11)–(12). Then the unique solution u ∈ H3/2(D) of the Cauchy problem (1)–(3) has the
single layer representation

u(x) =
∫

Γ ′
G(x, y)φ(y) dsy , x ∈ D. (13)

Proof As we have discussed, u = Sh
Γ ′φ satisfies the Laplace equation (1) and the Dirichlet

boundary condition u = 0.
Since φ ∈ L2(Γ ′) is the solution of the boundary integral equations (11)–(12), u ∈

H3/2(Ω) satisfies the Cauchy boundary conditions (2)–(3) (for details of the spaces, see
[18]). Thus u|D solves the Cauchy problem (1)–(3). The unique solvability of the Cauchy
problem implies that the solution has representation (13).

This completes the proof. �

Finally, we give the following theorem for the MFS.

Theorem 1 The MFS solution

uN (x) =
N∑

j=1

cjG(x, sj), sj ∈ Γ ′ (14)

is an approximation of the solution u to the Cauchy problem (1)–(3), where sj are chosen
as N equidistant discrete points on Γ ′ and

cj =
Len(Γ ′)

N
φ(sj), j = 1, 2, . . . , N ,

in which Len(Γ ′) is the length of Γ ′.

Proof Proposition 1 implies that the solution of the Cauchy problem (1)–(3) has repre-
sentation (13). The discretization of the integral in (13) implies

u(x) ≈
N∑

j=1

Len(Γ ′)
N

G(x, sj)φ(sj),

where sj are N equidistant discrete points on Γ ′ and Len(Γ ′) is the length of Γ ′. Thus (14)
is the approximation of the solution to (1)–(3). �

The coefficients cj will be determined by a collocation method from the interpolation
conditions at Nc collocation points. In fact, the coefficients cj, j = 1, 2, . . . , N , are deter-
mined by solving a linear system of 2Nc equations, which consist of the boundary condi-
tions at the N collocation points

Ac = b. (15)
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The matrix A, the unknown vector c, and the right-hand side b will be given by the
following form:

Al,j = G(xl, sj), ANc+l,j =
∂G(xNc+l, sj)

∂ν(x)
,

bl = f (xl), bNc+l = g(xl), l = 1, . . . , Nc, j = 1, . . . , N .

In order to guarantee enough information to get a numerical solution, we need to choose
Nc such that Nc ≥ N

2 .

3 Regularization method
In this section, we give a brief introduction to the Tikhonov regularization and Morozov’s
discrepancy principle, which are used to solve system (15). In general, the right-hand side
vector b of system (15) consists of noise denoted by bδ , so we should solve the following
equation:

Acδ = bδ . (16)

The vector bδ is the measured noisy data satisfying

bδ
i = bi + δ rand(i)bi,

where δ is the percentage noise and the number rand(i) is a pseudo-random number drawn
from the standard uniform distribution on the interval [–1, 1] generated by the Matlab
command –1 + 2 rand(i, 1).

The formally Tikhonov regularized solution of system (16) is given by

(
αI + A	A

)
cδ
α = A	bδ . (17)

From equation (17), we can see that the solution accuracy depends on the regularization
parameter α, and hence how to choose an optimal regularization parameter α is crucial.
There are some methods to choose a regularization parameter, such as the L-curve [12],
the Cesàro mean in conjunction with the L-curve [6], Morozov’s discrepancy principle
[17], the multi-parameter Tikhonov regularization [38], the Gaussian window together
with L-curve [4], etc. Especially when there is a priori information about the amount of
noise available, we also use Morozov’s discrepancy principle. We will choose the regu-
larization parameter α by Morozov’s discrepancy principle, which was developed in [33].
The computation of α can be carried out with Newton’s method as follows:

1. Set n = 0, and give an initial regularization parameter α0 > 0;
2. Get cδ

αn from (A∗A + αnI)cδ
αn = A∗bδ ;

3. Get d
dα

cδ
αn from (αnI + A∗A) d

dα
cδ
αn = –cδ

αn ;
4. Get F(αn) and F ′(αn) by

F(αn) =
∥∥Acδ

αn – bδ
∥∥2 – δ2
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and

F ′(αn) = 2αn

∥∥∥∥A
d

dα
cδ
αn

∥∥∥∥

2

+ 2α2
n

∥∥∥∥
d

dα
cδ
αn

∥∥∥∥

2

,

respectively.
5. Set αn+1 = αn – F(αn)

F ′(αn) . If ‖αn+1 – αn‖ < ε (ε � 1), end. Else, set n = n + 1 and return
to 2.

When the regularization parameter α∗ is fixed, we can obtain the regularized solution.

4 Numerical experiments
In this section, we provide some numerical examples to show the effectiveness of the pro-
posed method.

Example 1 The boundary is smooth, and the exact solution is chosen as

u(x1, x2) = ex1 sin x2 + x3
2 – 3x2x2

1.

– Case 1: Γ is chosen as x1 = (0.6 + 0.1 cos 3t)(cos t, sin t), t ∈ [0,π ].
– Case 2: Γ is chosen as x2 = (cos t + 0.65 cos 2t – 0.65, 1.5 sin t), t ∈ [0,π ].
– Case 3: Γ is chosen as x3 = 0.6

√
4.25 + 2 cos 3t(cos t, sin t), t ∈ [0,π ].

First, we investigate the influence of the noise level on the numerical solution in case 1.
The source curve Γ ′ is chosen as

x′
1 = 3(0.6 + 0.1 cos 3t)(cos t, sin t), t ∈ [0,π ].

Choose N = 50, Nc = 100, and β = 0.5. The sketch can be seen in Fig. 2(a). Figure 2 shows
the numerical solutions with different noise levels δ = 0.05, δ = 0.1, and δ = 0.15, whilst
it shows that our algorithm is effective and robust to random noise since the algorithm
provides a smooth approximation of the solution.

Second, we consider the influence of β in case 2. Choose N = 50, Nc = 100, and δ = 0.05.
The source curve Γ ′ is chosen as

x′
2 = 2(cos t + 0.65 cos 2t – 0.65, 1.5 sin t), t ∈ [0,π ].

The sketch can be seen in Fig. 3(a). Figure 3 shows the numerical solutions with β = 0.3,
β = 0.4, and β = 0.5. From Fig. 3, it can be seen that the algorithm is effective with dif-
ferent choices of β and the error increases as β decreases, which is reasonable since the
information of the Cauchy data is limited with small β .

To this end, the influence of the number Nc is investigated in case 3. Choose N = 50,
β = 0.5, and δ = 0.05. The source curve Γ ′ is chosen as

x′
3 = 1.2

√
4.25 + 2 cos 3t(cos t, sin t), t ∈ [0,π ].

The sketch can be seen in Fig. 4(a). Figure 4(b) shows the relative errors with different
choices of Nc ∈ [25, 985]. A decreasing trend of the error can be seen in Fig. 4(b) as Nc

increases. The trend in the figure is unsharp since the noise added to the Cauchy data is
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Figure 2 The exact solution and the numerical solutions on Γ2 with δ ∈ {0.05, 0.1, 0.15}

random, which means that the errors may change as we redo the experiment. Fortunately,
the error changes within a limit and the decreasing trend of the errors can be observed
from Fig. 4(b).

Example 2 In this example, Γ is continuous but with a “corner”. The exact solution is
chosen as

u2(x) = ex1 sin x2.

The curve Γ is chosen as the combination of

x4 =
0.5

cos(0.25π – t)
(cos t, sin t), t ∈

[
0,

π

2

]

and

x5 =
0.5

cos(0.75π – t)
(cos t, sin t), t ∈

[
π

2
,π

]
.

The source curve Γ ′ is chosen as

x′
4 = 1.5(cos t, sin t), t ∈ [0,π ].

Choose N = 50, Nc = 100, and β = 0.5. The sketch of Example 2 can be seen in Fig. 5(a).
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Figure 3 The exact solution and the numerical solutions on Γ2 with β ∈ {0.3, 0.4, 0.5}

Figure 4 (a) Sketch of case 3. (b) The relative errors on Γ2 with different choices of Nc ∈ [25, 985]

Figure 5 shows the numerical solutions with different noise levels δ = 0.01, δ = 0.03, and
δ = 0.05. As is shown in Fig. 5, the computation of ∂u

∂ν
is more sensitive to the error in this

case.

Example 3 In this case, Γ has a jump at t = π
2 . The exact solution is chosen as

u3(x) = cosh x1 sin x2.
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Figure 5 Example 2: The exact solution and the numerical solutions on Γ2

The curve Γ is chosen as the combination of

x6 =
0.5 + 0.4 cos t + 0.1 sin 2t

1 + 0.7 cos t
(cos t, sin t), t ∈

[
0,

π

2

]

and

x7 = (0.6 + 0.1 cos 3t)(cos t, sin t), t ∈
[

π

2
,π

]
.

The source curve Γ ′ is chosen as x′
4. Choose N = 50, Nc = 100, and β = 0.5. The sketch of

Example 3 can be seen in Fig. 6(a). Figure 6 shows the numerical solutions with different
noise levels δ = 0.01, δ = 0.03, and δ = 0.05. It can be seen from Fig. 6 that the algorithm is
still effective when Γ1 is apart from Γ2.

Example 4 In the previous examples, an analytic solution is available. We consider that
the curve Γ is chosen by

x1 = (0.6 + 0.1 cos 3t)(cos t, sin t), t ∈ [0,π ].

Consider the following boundary value problem:

�u(x) = 0, x ∈ D, (18)
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Figure 6 Example 3: The exact solution and the numerical solutions on Γ2

Figure 7 Example 4: The exact solution and the numerical solutions on Γ2

u(x) = x2ex1 , x ∈ ∂D. (19)

In this case, an analytic solution is not available. The input Cauchy data f = x2ex1 |Γ1 and
g = ∂nu|Γ1 , in which g = ∂nu|Γ1 can be obtained numerically by solving the direct problem
(18).

Figure 7 shows the numerical solutions for this case. It can be seen that the numerical
solutions are stable approximations.
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5 Conclusion
In this paper, we have dealt with a Cauchy problem connected with the Laplace equa-
tion in a half-plane. With the Green’s function of the Laplacian in the half-plane, we have
proposed a method of fundamental solutions to solve the Cauchy problem. Numerical
experiments have also been given to show the effectiveness of the algorithm.
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