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Abstract
In this paper, we consider the initial boundary value problem of nonlinear evolution
equation with hereditary memory, variable density, and external force term

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|ut|ρutt – α�u –�utt +
∫ t
–∞ μ(t – s)�u(s)ds – γ�ut = f (u),

(x, t) ∈ Ω ×R
+,

u(x, t) = 0, (x, t) ∈ ∂Ω ×R
+,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω .

Under suitable assumptions, we prove the existence of a global solution by means of
the Galerkin method, establish the exponential stability result by using only one
simple auxiliary functional, and give the polynomial stability result.
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1 Introduction
In this paper, we are concerned with the following problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

|ut|ρutt – α�u – �utt +
∫ t

–∞ μ(t – s)�u(s) ds – γ�ut = f (u),

(x, t) ∈ Ω ×R
+,

u(x, t) = 0, (x, t) ∈ ∂Ω ×R
+,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω ,

(1.1)

where Ω is a bounded domain of Rn (n ≥ 1) with smooth boundary ∂Ω , ρ is a positive
constant, and γ ≥ 0. We prove the existence of a global solution by means of the Galerkin
method and establish the exponential stability under suitable assumptions by using a sim-
pler auxiliary functional than that in [1]. We also show the polynomial stability under
suitable conditions.

Partial differential equations in viscoelastic materials have important physical back-
ground and important mathematical significance. The viscous effects are described and
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characterized by an integral term, and the integral term indicates a dissipative effect. For
mathematical analysis on the motions of evolution equations with memory, we refer to [8,
32]. Problem (1.1) is related to the equations

f (ut)utt – �u – �utt = 0, (1.2)

which have several modeling features. If f (ut) is a constant, Eq. (1.2) has been used to
model extensional vibrations of thin rods (see [27, Ch. 20]) and it differs from D’Alembert’s
wave equation because of �utt , which is not a damping term. On the contrary, �utt in-
creases the energy functional. If f (ut) is not a constant, Eq. (1.2) shows that the density of
materials depends on the velocity ut .

In the past ten years, several authors studied the homogeneous Dirichlet boundary value
problem for the following model with memory (starting from the zero moment) and vari-
able density:

|ut|ρutt – �u +
∫ t

0
g(t – τ )�u(τ ) dτ + F(u, ut , utt) = 0

in a bounded domains Ω ⊂ R
n. Cavalcanti et al. [2] considered the model with integral

dissipation and strong damping

|ut|ρutt – �u – �utt +
∫ t

0
g(t – s)�u(s) ds – γ�ut = 0, (x, t) ∈ Ω ×R

+.

Assuming that 0 < ρ ≤ 2
n–2 if n ≥ 3 or ρ > 0 if n = 1, 2 and that g(t) decays exponentially,

they obtained the global existence of a solution for γ ≥ 0 and the uniform exponential de-
cay of the energy for γ > 0. Cavalcanti et al. [3] considered this model and proved intrinsic
decays for large classes of relaxation kernels described by the inequality g ′ + H(g) ≤ 0 with
convex function H . Han and Wang [11] considered the equation with integral dissipation
and linear damping

|ut|ρutt – �u – �utt +
∫ t

0
g(t – s)�u(s) ds + ut = 0, (x, t) ∈ Ω ×R

+.

They proved the global existence and exponential decay when g is decaying exponentially
by introducing two auxiliary functionals. Han and Wang [12] established the general decay
of energy for the equation with integral dissipation and nonlinear damping

|ut|ρutt – �u – �utt +
∫ t

0
g(t – s)�u(s) ds + |ut|mut = 0, (x, t) ∈ Ω ×R

+,

by introducing two auxiliary functionals. Messaoudi and Tatar [29, 30] considered the
equation only with integral dissipation

|ut|ρutt – �u – �utt +
∫ t

0
g(t – s)�u(s) ds = 0, (x, t) ∈ Ω ×R

+.

Under some assumptions on g , they obtained exponential and polynomial decay rates.
Messaoudi and Tatar [28] studied the equation with external force term and only with
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integral dissipation

|ut|ρutt – �u – �utt +
∫ t

0
g(t – s)�u(s) ds = b|u|p–2u, (x, t) ∈ Ω ×R

+. (1.3)

By introducing a new functional and using potential well method they showed that there
exists an appropriate set S (called a stable set) such that if the initial datum is in S, then the
solution continues to live there forever. They also showed that the solution goes to zero
with an exponential or polynomial rate depending on the decay rate of the relaxation func-
tion g . Liu [26] considered (1.3) and proved that, for certain class of relaxation functions
and certain initial data in the stable set, the decay rate of the solution energy is similar to
that of the relaxation function. Conversely, for certain initial data in the unstable set, there
are solutions that blow up in finite time.

Now, we list some important literature on the nonlinear evolution equation with hered-
itary memory and variable density. Araújo et al. [1] considered the equation with integral
dissipation in infinite interval

|ut|ρutt – α�u – �utt +
∫ t

–∞
μ(t – s)�u(s) ds – γ�ut + f (u) = h, (x, t) ∈ Ω ×R

+,

where Ω is a bounded domain of Rn (n ≥ 1) with smooth boundary ∂Ω . They estab-
lished the uniqueness of the solution, exponential decay, and global attractors. However,
the existence of a solution is not given in detail, two auxiliary functionals are introduced
to prove the exponential decay result, and the polynomial decay result is not given. Conti
et al. [5] established an existence, uniqueness, and continuous dependence result for weak
solutions to the nonlinear viscoelastic equation with hereditary memory on a bounded
three-dimensional domain

|∂tu|ρ∂ttu – �∂ttu + γ (–�)θ ∂tu – α�u +
∫ ∞

0
μ(s)�u(t – s) ds + f (u) = h

with Dirichlet boundary conditions. In particular, the parameter ρ belongs to the interval
[0, 4], the value 4 is critical for the Sobolev embeddings, whereas f can reach the critical
polynomial order 5. Lately, Conti et al. [4] studied the nonlinear viscoelastic equation

|∂tu|ρ∂ttu – �∂ttu – �u +
∫ ∞

0
μ(s)�u(t – s) ds + f (u) = h

and showed that the sole weak dissipation given by the memory term is enough to en-
sure the existence and optimal regularity of the global attractor Aρ for ρ < 4 and critical
nonlinearity f .

In recent years, Fatori et al. [9] studied long-time behavior of a class of thermoelastic
plates with nonlinear strain and long memory; the main result establishes the existence of
global and exponential attractors for the strongly damped problem through a stabilizabil-
ity inequality. In addition, for the weakly damped problem, they establish the exponential
stability of its Galerkin semiflows. Li et al. [13–15] proved the existence uniqueness, uni-
form energy decay rates, and limit behavior of the solution to the nonlinear viscoelastic
Marguerre–von Kármán shallow shells system. The global existence uniqueness and de-
cay estimates for nonlinear viscoelastic equation with boundary dissipation were given in
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[16, 17, 19, 22–25]. The authors in [10, 18, 20, 21] studied the blowup phenomenon for
some evolution equations. Du and Li [6, 7] proved the integrability and regularity of the
solution to some equations.

In this paper, we study the equation with hereditary memory (u0(x, t), t ≤ 0) and variable
density

|ut|ρutt – α�u – �utt +
∫ t

–∞
μ(t – τ )�u(τ ) dτ – γ�ut = f (u), (1.4)

that is,

|ut|ρutt – α�u – �utt +
∫ ∞

0
μ(τ )�u(t – τ ) dτ – γ�ut = f (u),

which can be rewritten as

|ut|ρutt –
(

α –
∫ ∞

0
μ(τ ) dτ

)

�u – �utt

–
∫ ∞

0
μ(τ )�

(
u(x, t) – u(x, t – τ )

)
dτ – γ�ut = f (u).

This equation inspires us to define

η := η(x, t, τ ) = u(x, t) – u(x, t – τ ), (x, τ ) ∈ Ω ×R
+, t ≥ 0,

which implies

ηt(x, t, τ ) = ut(x, t) – ut(x, t, τ ) = ut(x, t) – ητ (x, t – τ ), (x, τ ) ∈ Ω ×R
+, t ≥ 0,

and

t = 0 : η(x, 0, τ ) = u0(x, 0) – u0(x, –τ ), (x, τ ) ∈ Ω ×R
+.

Hence Eq. (1.4) can be rewritten as

|ut|ρutt –
(

α –
∫ ∞

0
μ(τ ) dτ

)

�u – �utt –
∫ ∞

0
μ(τ )�η(τ ) dτ – γ�ut = f (u).

Without loss of generality, we assume that α –
∫ ∞

0 μ(τ ) dτ = 1. Then

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

|ut|ρutt – �u – �utt –
∫ ∞

0 μ(τ )�η dτ – γ�ut = f (u), (x, t) ∈ Ω ×R
+,

ηt(x, t, τ ) = ut(x, t) – ητ (x, t, τ ),

u(x, 0) = u0(x), ut(x, 0) = u1(x),

η(x, t, 0) = 0, η(x, 0, τ ) = η0(x, τ ),

u = 0 ∂Ω ×R
+, η = 0 ∂Ω ×R

+ ×R
+,

(1.5)

where

η0(x, τ ) = u0(x, 0) – u0(x, –τ ), (x, τ ) ∈ Ω ×R
+.
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The main contribution of this paper are: (a) the equation with hereditary memory, vari-
able density, and external force term is representative; (b) the detailed construction pro-
cess of the energy functional is given by an integration method; (c) we give a detailed proof
of the existence for the solution; (d) the proof of the exponential decay result is simplified
by introducing only one auxiliary functional; (e) the polynomial decay result is established.

The outline of this paper is as follows. In Sect. 2, we present the preliminaries and im-
portant our results. In Sects. 3–5, we prove the main Theorems 2.1–2.3, respectively.

2 Assumptions and the main results
In this paper, we assume that the following conditions (A1)–(A3) hold:

(A1)

0 < ρ ≤ 2
n – 2

if n ≥ 3; ρ > 0 if n = 1, 2,

which implies that

H1
0 (Ω) ↪→ L2(ρ+1)(Ω).

(A2) f : R→ R and satisfies

∣
∣f (u) – f (v)

∣
∣ ≤ c0

(
1 + |u|p + |v|p)|u – v|, u, v ∈R,

where c0 > 0 and

0 < p ≤ 2
n – 2

if n ≥ 3; ρ > 0 if n = 1, 2,

and

f (s)s ≤ F(s) ≤ 0, ∀s ∈R,

where F(z) =
∫ z

0 f (σ ) dσ .
(A3) μ satisfies

μ ∈ C1(
R

+) ∩ L1(
R

+)
, 0 ≤ μ(τ ) < ∞, μ(0) > 0, μ(+∞) = 0

with
∫ ∞

0
μ(τ ) dτ =: k0 > 0,

and there exists a constant k1 > 0 satisfying

μ′(t) ≤ –k1μ
q(t), ∀t ∈R

+, 1 ≤ q <
3
2

.

To consider the relative displacement η as a new function, we introduce the weighted
L2-space

M := L2
μ

(
R

+; H1
0 (Ω)

)
=

{

v : R+ → H1
0 (Ω)

∣
∣
∣

∫ ∞

0
μ(τ )

∥
∥∇v(τ )

∥
∥2

2 dτ < ∞
}

,
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which is a Hilbert space endowed with inner product

(v, w)M =
∫ ∞

0
μ(τ )

(∫

Ω

∇v(τ ) · ∇w(τ ) dx
)

dτ

and norm

‖v‖2
M =

∫ ∞

0
μ(τ )

∥
∥∇v(τ )

∥
∥2

2 dτ .

We introduce the notation

H = H1
0 (Ω) × H1

0 (Ω) ×M.

Remark 2.1
(1) H1

0 (Ω) ↪→ Lr(Ω) with

r :

⎧
⎨

⎩

2 ≤ r ≤ 2n
n–2 , n ≥ 3,

≥ 2, n = 1, 2,

which implies

‖ϕ‖r ≤ B‖ϕ‖2, ∀ϕ ∈ H1
0 (Ω).

(2) From (A2) we can easily get f (0) = 0.
(3) The condition q < 3

2 is imposed to ensure that
∫ ∞

0 μ2–q(τ ) dτ < ∞. In fact,
assumption (A3) implies

μ(t) ≤ C1

(1 + t)
1

q–1
,

2 – q
q – 1

> 1,

and therefore
∫ ∞

0 μ2–q(τ ) dτ < ∞.

Give the initial data (u0, u1,η0) ∈ H, a function z = (u, ut ,η) ∈ C([0, T],H) is a weak so-
lution of problem (1.5) if it satisfies the initial condition z(0) = (u0, u1,η0) and

(|ut|ρutt , w
)

+ (∇u,∇w) + (∇utt ,∇w) + γ (∇ut ,∇w) +
∫ ∞

0
μ(τ )(∇η,∇w) dτ

=
(
f (u), w

)
,

(∂tη + ∂τ η, v)M = (ut , v)M,

for all w ∈ H1
0 (Ω), v ∈M, and a.e. t ∈ [0, T].

Multiplying both sides of Eq. (1.5) by ut , integrating the resulting equation over Ω , and
using the Green formula, we have

∫

Ω

|ut|ρuttut dx +
∫

Ω

∇u · ∇ut dx +
∫

Ω

∇utt∇ut dx +
∫

Ω

∇ut

∫ ∞

0
μ(τ )∇η(τ ) dτ dx

+ γ

∫

Ω

|∇ut|2 dx =
∫

Ω

f (u)ut dx,
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that is,

d
dt

[
1

ρ + 2
‖ut‖ρ+2

ρ+2 +
1
2
‖∇u‖2

2 +
1
2
∥
∥∇ut(t)

∥
∥2

2 –
∫

Ω

F(u) dx
]

+ γ ‖∇ut‖2
2 +

∫

Ω

∇ut

∫ ∞

0
μ(τ )∇η dτ dx = 0.

A direct computation and application of (1.5) show that

∫

Ω

∇ut

∫ ∞

0
μ∇η(τ ) dτ dx =

∫

Ω

(∇ηt + ∇ητ )
∫ ∞

0
μ(τ )∇η dτ dx

=
∫

Ω

∇ηt

∫ ∞

0
μ(τ )∇η dτ dx +

∫

Ω

∇ητ

∫ ∞

0
μ(τ )∇η dτ dx

=
1
2

d
dt

‖∇η‖2
M + (∇ητ ,∇η)M.

This computation inspires us to define an energy functional as follows:

E(t) =
1

ρ + 2
‖ut‖ρ+2

ρ+2 +
1
2
‖∇u‖2

2 +
1
2
‖∇ut‖2

2 +
1
2
‖∇η‖2

M –
∫

Ω

F(u) dx (2.1)

and

E′(t) = –γ ‖∇ut‖2
2 – (ητ ,η)M.

Using (A3) and (1.5), we have

(ητ ,η)M =
1
2

∫

Ω

(∫ ∞

0
μ(τ )

∂

∂τ
|∇η|2 dτ

)

dx = –
1
2

∫

Ω

(∫ ∞

0
μ′(τ )|∇η|2 dτ

)

dx.

Then

E′(t) = –γ
∥
∥∇ut(t)

∥
∥2

2 +
1
2

∫ ∞

0
μ′(τ )

∥
∥∇η(τ )

∥
∥2

2 dτ ≤ 0. (2.2)

Theorem 2.1 Assume that conditions (A1)–(A3) hold and γ ≥ 0. If the initial data
(u0, u1,η0) ∈H, then for any T > 0, problem (1.5) has a weak solution

(u, ut ,η) ∈ C
(
[0, T],H

)

satisfying

u ∈ L∞(
R

+; H1
0 (Ω)

)
, ut ∈ L∞(

R
+; H1

0 (Ω)
)
,

utt ∈ L2([0, T]; H1
0 (Ω)

)
, η ∈ L2(

R
+;M

)
.

Theorem 2.2 Assume that conditions (A1)–(A3) hold and γ > 0. If q = 1, then

E(t) ≤ Ke–νt , t ≥ 0,

where K and ν are positive constants.
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Theorem 2.3 Assume that conditions (A1)–(A3) hold and γ > 0. If 1 < q < 3
2 , then

E(t) ≤ K(1 + t)– 1
2(q–1) , t ≥ 0,

where K is a positive constant.

3 Proof of Theorem 2.1
We study the equation

|ut|ρutt – �u – �utt –
∫ ∞

0
μ(τ )�η dτ – γ�ut = f (u).

Let {ωj}∞j=1 be an orthogonal basis of H1
0 with ωj satisfying

⎧
⎨

⎩

–�ωj = λjωj, x ∈ Ω ,

ωj|∂Ω = 0.

By normalization we have ‖ωj‖2 = 1 and write Vk = span{ω1, . . . ,ωk}. For any given inte-
ger k, we consider the approximate solution

uk(t) =
k∑

j=1

cj
k(t)ωj

that satisfies

⎧
⎪⎪⎨

⎪⎪⎩

(|ukt|ρuktt ,ωj) + (∇uk ,∇ωj) + (∇uktt ,∇ωj) + γ (∇ukt ,∇ωj)

+
∫ ∞

0 μ(τ )(∇ηk ,∇ωj) dτ = (f (uk),ωj),

uk(0) = u0k , uk,t(0) = u1k , j = 1, 2, . . . , k,

(3.1)

and, as k → ∞,

u0k =
k∑

j=1

(u0,ωj)ωj → u0 in H1
0 and u1k =

k∑

j=1

(u1,ωj)ωj → u1 in H1
0 . (3.2)

Here we denote by (·, ·) the inner product in L2(Ω). Then (3.1) can be reduced to the
second-order ODE system

⎧
⎪⎪⎨

⎪⎪⎩

(|∑k
i=1 ci

k
′(t)ωi|ρ ∑k

i=1 ci
k
′′(t)ωi,ωj) + λjc

j
k(t) + λjc

j
k
′′
(t) + γ λjc

j
k
′
(t)

+ λj
∫ ∞

0 μ(τ )(cj
k(t) – cj

k(t – τ )) dτ = (f (
∑k

j=1 cj
k(t)ωj),ωj),

cj
k(0) = (u0,ωj), cj

k
′
(0) = (u1,ωj), j = 1, 2, . . . , k,

(3.3)

According to the standard existence theory for ordinary differential equations, we infer
that system (3.3) admits a solution cj

k(t) in [0, tm), where tm > 0. Then we can obtain an
approximate solution uk(t) of (3.1) in Vk over [0, tm), and the solution can be extended to
[0, T] for any given T > 0.
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Multiplying (3.3) by cj
k
′
(t) and summing with respect to j, we conclude that

d
dt

(
1

ρ + 2
‖ukt‖ρ+2

ρ+2 +
1
2
‖∇uk‖2

2 +
1
2
‖∇ukt‖2

2

)

+ γ ‖∇ukt‖2
2 +

∫ ∞

0
μ(τ )(∇ηk ,∇ukt) dτ

=
(
f (uk), u′

kt
)
. (3.4)

Simple calculations yield

∫ ∞

0
μ(τ )(∇ηk ,∇ukt) dτ

=
∫ ∞

0
μ(τ )(∇ηk ,∇ηkt + ∇ηkτ ) dτ =

1
2

d
dt

‖ηk‖2
M + (∇ητ ,∇η)M, (3.5)

(ηkτ ,ηk)M =
1
2

∫

Ω

(∫ ∞

0
μ(τ )

∂

∂τ
|∇ηk|2 dτ

)

dx

= –
1
2

∫

Ω

(∫ ∞

0
μ′(τ )|∇ηk|2 dτ

)

dx

= –
1
2

∫ ∞

0
μ′(τ )‖∇ηk‖2

2 dτ . (3.6)

Combining (3.4) and (3.6), we find

d
dt

(
1

ρ + 2
‖ukt‖ρ+2

ρ+2 +
1
2
‖∇uk‖2

2 +
1
2
‖∇ukt‖2

2 +
1
2
‖ηk‖2

M –
∫

Ω

F(uk) dx
)

= –γ ‖∇ukt‖2
2 +

1
2

∫ ∞

0
μ′(τ )‖∇kη‖2

2 dτ ≤ 0. (3.7)

Integrating (3.7) over (0, t) and noting (3.2), we obtain

1
ρ + 2

‖ukt‖ρ+2
ρ+2 +

1
2
‖∇uk‖2

2 +
1
2
‖∇ukt‖2

2 +
1
2
‖ηk‖2

M –
∫

Ω

F(uk) dx

≤ 1
ρ + 2

∥
∥ukt(0)

∥
∥ρ+2

ρ+2 +
1
2
∥
∥∇uk(0)

∥
∥2

2 +
1
2
∥
∥∇ukt(0)

∥
∥2

2

+
1
2
∥
∥ηk(0)

∥
∥2
M –

∫

Ω

F
(
uk(0)

)
dx

≤ K1, (3.8)

where K1 is a constant independent of k. It follows from (3.8) and the Poincaré inequality
that

⎧
⎪⎪⎨

⎪⎪⎩

{uk} is bounded in L∞(0, T ; H1
0 ),

{ukt} is bounded in L∞(0, T ; H1
0 ),

{ηkt} is bounded in L2(0, T ;M).

(3.9)
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Multiplying (3.1) by cj
k
′′
(t) and summing with respect to j, we obtain

∫

Ω

|ukt|ρ |uktt|2 dx + (∇uk ,∇uktt) + ‖∇uktt‖2
2 +

γ

2
d
dt

‖∇ukt‖2
2

+
∫ ∞

0
μ(τ )(∇ηk ,∇uktt) dτ =

(
f (uk), uktt

)
,

that is,

∫

Ω

|ukt|ρ |uktt|2 dx + ‖∇uktt‖2
2 +

γ

2
d
dt

‖∇ukt‖2
2

= –(∇uk ,∇uktt) –
∫ ∞

0
μ(τ )(∇ηk ,∇uktt) dτ +

(
f (uk), uktt

)
. (3.10)

The right-hand side of (3.10) can be estimated as follows:

∣
∣–(∇uk ,∇uktt)

∣
∣ =

∣
∣
∣
∣–

∫

Ω

∇uk∇uktt dx
∣
∣
∣
∣ ≤ ε‖∇uktt‖2

2 +
1

4ε
‖∇uk‖2

2 ∀ε > 0, (3.11)
∣
∣
∣
∣–

∫ ∞

0
μ(τ )(∇ηk ,∇uktt) dτ

∣
∣
∣
∣

≤ ε‖∇uktt‖2
2 +

1
4ε

∫

Ω

(∫ ∞

0
μ(τ )|∇ηk|dτ

)2

dx

≤ ε‖∇uktt‖2
2 +

1
4ε

∫

Ω

(∫ ∞

0

√
μ(τ )

√
μ(τ )|∇ηk|dτ

)2

dx

≤ ε‖∇uktt‖2
2 +

1
4ε

∫ ∞

0
μ(τ ) dτ

∫

Ω

∫ ∞

0
μ(τ )|∇ηk|2 dτ dx

= ε‖∇uktt‖2
2 +

k0

4ε
‖∇ηk‖2

M (3.12)

with k0 =
∫ ∞

0 μ(τ ) dτ . Using (A2), the Sobolev embedding theorem, and the Poincaré in-
equality, we have

∣
∣
(
f (uk), uktt

)∣
∣ =

∣
∣
∣
∣–

∫

Ω

f (uk)uktt dx
∣
∣
∣
∣

≤ c0

∫

Ω

(
1 + |uk|p

)|uk||uktt|dx

≤ Cε

(‖uk‖2
2 + ‖uk‖2(p+1)

2(p+1)
)

+ ε‖uktt‖2
2

≤ C∗(‖∇uk‖2
2 + ‖∇uk‖2(p+1)

2
)

+ εC‖∇uktt‖2
2. (3.13)

By (3.10)–(3.13) we have

∫

Ω

|ukt|ρ |uktt|2 dx + ‖∇uktt‖2
2 +

γ

2
d
dt

‖∇ukt‖2
2

≤ (2 + C)ε‖∇uktt‖2
2 +

(
1

4ε
+ C∗

)

‖∇uk‖2
2 + C∗‖∇uk‖2(p+1)

2 +
k0

4ε
‖∇ηk‖2

M,
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that is,

∫

Ω

|ukt|ρ |uktt|2 dx +
[
1 – (2 + C)ε

]‖∇uktt‖2
2 +

γ

2
d
dt

‖∇ukt‖2
2

≤
(

1
4ε

+ C∗
)

‖∇uk‖2
2 + C∗‖∇uk‖2(p+1)

2 +
k0

4ε
‖∇ηk‖2

M. (3.14)

From (3.14) and (3.18) we know that

∫

Ω

|ukt|ρ |uktt|2 dx +
[
1 – (2 + C)ε

]‖∇uktt‖2
2 +

γ

2
d
dt

‖∇ukt‖2
2 ≤ K2. (3.15)

Integrating (3.15) over (0, t) (0 < t ≤ T ) and noting (3.2) yield

∫ t

0

∫

Ω

|uktt|ρ |uktt|2 dx dτ +
[
1 – (2 + C)ε

]
∫ t

0
‖∇uktt‖2

2 dτ +
γ

2
‖∇ukt‖2

2 ≤ CT . (3.16)

Taking ε suitably small in (3.16), we can obtain the second estimate

∫ t

0
‖∇uktt‖2

2 dτ + ‖∇ukt‖2
2 ≤ CT ,

which implies that

{uktt} is uniformly bounded in L2(0, T ; H1
0
)
. (3.17)

According to estimates (3.9) and (3.17), we infer that there exists a subsequence in {um}
(denoted by the same symbol) such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

uk
∗

⇀ u weak-star in L∞(0, T ; H1
0 (Ω)),

ukt
∗

⇀ ut weak-star in L∞(0, T ; H1
0 (Ω)),

uktt
∗

⇀ utt weakly in L2(0, T ; H1
0 (Ω)),

ηk
∗

⇀ η weakly in L2(0, T ;M),

(3.18)

which, combined with the Aubin–Lions compactness lemma, implies

⎧
⎨

⎩

uk → u strongly in C([0, T]; H1
0 (Ω)),

ukt → ut strongly in C([0, T]; H1
0 (Ω)).

(3.19)

Using (A2) and (3.19), we get

f (uk) → f (u).

From (3.19) we get ukt → ut a.e. in Ω × (0, T). Hence

|ukt|ρukt → |ut|ρut a.e. in Ω × (0, T). (3.20)
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On the other hand, by the Sobolev embedding theorem and ‖∇ukt‖2
2 ≤ L1, we have

∥
∥|ukt|ρukt

∥
∥

L2(0,T ;L2(Ω)) =
∫ T

0

∫

Ω

|ukt|2(ρ+1) dx dt ≤ B2(ρ+1)
∫ T

0
‖∇ukt‖2(ρ+1)

2 dt

≤ B2(ρ+1)L(ρ+1)
1 T ≤ CT . (3.21)

Thus, using (3.20), (3.21), and the Lions lemma, we derive

|ukt|ρukt ⇀ |ut|ρut weakly in L2(0, T ; L2(Ω)
)
. (3.22)

Let D(0, T) be the space of C∞ functions with compact support in (0, T). Multiplying
(3.1) by θ (t) ∈D(0, T) and integrating over (0, T), it follows that

∫ T

0

(|ukt|ρuktt ,ωj
)
θ (t) dt +

∫ T

0
(∇uk ,∇ωj)θ (t) dt +

∫ T

0
(∇uktt ,∇ωj)θ (t) dt

+ γ

∫ T

0
(∇ukt ,∇ωj)θ (t) dt +

∫ T

0

∫ ∞

0
μ(τ )(∇ηk ,∇ωj)θ (t) dt dτ

=
∫ T

0

(
f (uk),ωj

)
θ (t) dt. (3.23)

Noting that {ωj}∞j=1 is a basis of H1
0 , via convergences (3.18), (3.19), and (3.22), we can get

from (3.23) that

(|ut|ρutt ,ωj
)

+ (∇u,∇ωj) + (∇utt ,∇ωj) + γ (∇ut ,∇ωj) +
∫ ∞

0
μ(τ )

(∇η(τ ),∇ωj
)

dτ

=
(
f (u),ωj

)
,

and hence, for all ω ∈ H1
0 (Ω),

(|ut|ρutt ,ω
)

+ (∇u,∇ω) +
(∇utt(t),∇ω

)
+ γ (∇ut ,∇ω) +

∫ ∞

0
μ(τ )

(∇η(τ ),∇ω
)

dτ

=
(
f (u),ω

)
. (3.24)

Using (3.2) and (3.19), we have

u(0) = u0, ut(0) = u1. (3.25)

On the other hand, by Pata and Zucchi [31] we have that

η ∈ C
(
[0, T],M

)
. (3.26)

Combining (3.20), (3.25), and (3.26), we complete the proof.

Remark 2.4 For the uniqueness of the weak solution, see [1].
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4 Proof of Theorem 2.2
Define the functionals

Φ(t) =
1

ρ + 1

∫

Ω

|ut|ρutu dx –
∫

Ω

�utu dx (4.1)

and

L(t) = ME(t) + Φ(t), (4.2)

where M > 0 will be fixed later. We recall that E(t) is decreasing since E′(t) ≤ 0.

Lemma 4.1 For M > 0 sufficiently large, there exist constants β1,β2 > 0 such that

β1E(t) ≤L(t) ≤ β2E(t), t ≥ 0.

Proof By the Hölder and Cauchy inequalities we have

∣
∣Φ(t)

∣
∣ ≤ 1

ρ + 1

∫

Ω

|ut|ρ+1|u|dx +
∣
∣
∣
∣

∫

Ω

∇ut · ∇u dx
∣
∣
∣
∣

≤ 1
ρ + 1

(∫

Ω

|ut|2(ρ+1) dx
) 1

2
(∫

Ω

|u|2 dx
) 1

2

+
1
2
‖∇ut‖2

2 +
1
2
‖∇u‖2

2

=
1

ρ + 1
‖ut‖ρ+1

2(ρ+1)‖u‖2 +
1
2
‖∇ut‖2

2 +
1
2
‖∇u‖2

2.

Since E(t) is decreasing, from the Sobolev embedding theorem we have

1
ρ + 1

‖ut‖ρ+1
2(ρ+1)‖u‖2 ≤ 1

2(ρ + 1)
‖ut‖2(ρ+1)

2(ρ+1) +
1

2(ρ + 1)
‖u‖2

2

≤ C1Eρ(0)‖∇ut‖2
2 + C1‖∇u‖2

2.

Therefore

∣
∣Φ(t)

∣
∣ ≤ CE(t).

Then taking M > C, we complete the proof. �

Lemma 4.2 There exist C2 > 0 and C3 > 0, dependent on the initial data, such that

Φ ′(t) ≤ –E(t) –
(

1
2

– ε

)
∥
∥∇u(t)

∥
∥2

2 + C2
∥
∥∇ut(t)

∥
∥2

2

– C3

∫ ∞

0
μ′(τ )

∥
∥∇η(τ )

∥
∥2

2 dτ ∀t ≥ 0.
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Proof From the definition of Ψ (t) we get

Φ ′(t) =
1

ρ + 1

∫

Ω

(|ut|ρuttu + |ut|ρutut +
((

u2
t
) ρ

2
)

tutu
)

dx –
∫

Ω

(�uttu + �utut) dx

=
1

ρ + 1

∫

Ω

(∣
∣ut(t)

∣
∣ρuttu + |ut|ρutut + ρ|ut|ρuttu

)
dx –

∫

Ω

(
�uttu + |∇ut|2

)
dx

=
∫

Ω

(|ut|ρutt – �utt
)
u dx +

1
ρ + 1

‖ut‖ρ+2
ρ+2 + ‖∇ut‖2

2.

Using (1.5), we easily see that

∫

Ω

(|ut|ρutt – �utt
)
u dx

= –‖∇u‖2
2 +

∫ ∞

0
μ(τ )

(∫

Ω

�η(τ )u(t) dx
)

dτ + γ

∫

Ω

�utu dx +
∫

Ω

f (u)u dx.

We now estimate the second and third terms in the right-hand side as follows. Using the
Cauchy inequality with ε and the Hölder inequality, we have

∣
∣
∣
∣

∫ ∞

0
μ(τ )

(∫

Ω

�η(τ )u(t) dx
)

dτ

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

Ω

∇u(t)
∫ ∞

0
μ(τ )∇η(τ ) dτ dx

∣
∣
∣
∣

≤ 1
2
ε‖∇u‖2

2 +
1

2ε

∫

Ω

(∫ ∞

0
μ(τ )∇η(τ ) dτ

)2

dx

≤ 1
2
ε‖∇u‖2

2 +
k0

2ε
‖η‖2

M

and

∣
∣
∣
∣γ

∫

Ω

�utu dx
∣
∣
∣
∣ ≤ 1

2
ε‖∇u‖2

2 +
γ 2

2ε
‖∇ut‖2

2.

Therefore

Φ ′(t) ≤ –(1 – ε)‖∇u‖2
2 +

(

1 +
γ 2

2ε

)

‖∇ut‖2
2 +

1
ρ + 1

‖ut‖ρ+2
ρ+2 +

k0

2ε
‖η‖2

M.

Noting the definitions of E(t) and (A2), we obtain

Φ ′(t) ≤ –E(t) –
(

1
2

– ε

)

‖∇u‖2
2 +

(
3
2

+
γ 2

2ε

)

‖∇ut‖2
2 +

2
ρ + 1

‖ut‖ρ+2
ρ+2

+
(

1
2

k0

2ε

)

‖η‖2
M. (4.3)

By Sobolev embedding we have

‖ut‖ρ+2
ρ+2 ≤ BE(0)

ρ
2 ‖∇ut‖2

2. (4.4)



Li and Jia Boundary Value Problems         (2019) 2019:37 Page 15 of 23

Using (A3), we get

‖η‖2
M ≤ –

1
k1

∫ ∞

0
μ′(τ )

∥
∥∇η(τ )

∥
∥2

2 dτ . (4.5)

Combining (4.3)–(4.5), we finish the proof of Lemma 4.2. �

Proof of Theorem 2.2 By Lemma 4.2 we have

Φ ′(t) ≤ –E(t) + C2
∥
∥∇ut(t)

∥
∥2

2 – C3

∫ ∞

0
μ′(τ )

∥
∥∇η(τ )

∥
∥2

2 dτ .

Note that

E′(t) = –γ
∥
∥∇ut(t)

∥
∥2

2 +
1
2

∫ ∞

0
μ′(τ )

∥
∥∇η(τ )

∥
∥2

2 dτ

and

L(t) = ME(t) + Φ(t).

Then taking M = max(2C3, C2
γ

), we have

L′(t) ≤ –E(t).

Using Lemma 4.1, we obtain

L′(t) ≤ –
1
β2

L(t).

By the Gronwall inequality we obtain

L(t) ≤L(0)e– 1
β2

t .

By Lemma 4.1 we have

β1E(t) ≤L(t) ≤ β2E(0)e– 1
β2

t ,

that is,

E(t) ≤ Ke–νt ,

where ν = 1
β2

and K = β2E(0)
β1

. �

5 Proof of Theorem 2.3
We define

Φ(t) =
1

ρ + 1

∫

Ω

|ut|ρutu dx –
∫

Ω

�utu dx, (5.1)

Ψ (t) =
∫

Ω

�ut

(∫ ∞

0
μ(τ )η dτ

)

dx –
1

ρ + 1

∫

Ω

|ut|ρut

(∫ ∞

0
μ(τ )η dτ

)

dx (5.2)
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and set

L(t) = ME(t) + εΨ (t) + χ (t),

where M and ε will be fixed later.

Lemma 5.1 For M > 0 sufficiently large, there exist constants β1,β2 > 0 such that

β1E(t) ≤L(t) ≤ β2E(t), t ≥ 0,

for any 0 < ε ≤ 1.

Proof Since

∣
∣
∣
∣

∫

Ω

�ut

(∫ ∞

0
μ(τ )η dτ

)

dx
∣
∣
∣
∣ ≤

∫ ∞

0
μ(τ )

∣
∣
∣
∣

∫

Ω

�utη dx
∣
∣
∣
∣dτ

=
∫ ∞

0
μ(τ )

∣
∣
∣
∣

∫

Ω

∇ut · ∇η dx
∣
∣
∣
∣dτ

≤ k0

2
‖∇ut‖2

2 +
1
2
‖η‖2

M,

by the Hölder and Cauchy inequalities we have

1
ρ + 1

∣
∣
∣
∣

∫

Ω

|ut|ρutη dx
∣
∣
∣
∣ ≤ 1

ρ + 1

∫

Ω

∣
∣ut(t)

∣
∣ρ+1|η|dx

≤ 1
ρ + 1

(∫

Ω

∣
∣ut(t)

∣
∣2(ρ+1) dx

) 1
2
(∫

Ω

|η|2 dx
) 1

2

=
1

ρ + 1
‖ut‖ρ+1

2(ρ+1)‖η‖2.

Since E(t) is decreasing, from the Sobolev inequality we have

1
ρ + 1

‖ut‖ρ+1
2(ρ+1)‖η‖2 ≤ 1

2(ρ + 1)
‖ut‖2(ρ+1)

2(ρ+1) +
1

2(ρ + 1)
‖η‖2

2

≤ C1Eρ(0)‖∇ut‖2
2 + C1‖∇η‖2

2.

Therefore

∣
∣
∣
∣–

1
ρ + 1

∫

Ω

|ut|ρut

(∫ ∞

0
μ(τ )η dτ

)

dx
∣
∣
∣
∣ ≤ k0C1Eρ(0)‖∇ut‖2

2 + C1‖∇η‖2
M.

Consequently,

∣
∣Ψ (t)

∣
∣ ≤ CE(t).

Using Lemma 4.1 and taking M large enough, we complete the proof of Lemma 5.1. �
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Lemma 5.2 Under the conditions of Theorem 2.2, the functional

Φ(t) =
1

ρ + 1

∫

Ω

∣
∣ut(t)

∣
∣ρut(t)u(t) dx –

∫

Ω

�ut(t)u(t) dx

satisfies

Φ ′(t) ≤ –
[
1 – (1 + k0)δ1

]‖∇u‖2
2 +

(

1 +
γ 2

4δ1

)

‖∇ut‖2
2 +

1
ρ + 1

‖ut‖ρ+2
ρ+2

+
1

4δ1

∫ ∞

0
μ2–q(τ ) dτ

∫ ∞

0
μq(τ )‖∇η‖2

2 dτ +
∫

Ω

f (u)u dx

for any δ1 > 0.

Proof As in the proof of Lemma 4.2, we get

Φ ′(t) =
∫

Ω

(|ut|ρutt – �utt
)
u dx +

1
ρ + 1

‖ut‖ρ+2
ρ+2 + ‖∇ut‖2

2 (5.3)

and

∫

Ω

(|ut|ρutt – �utt
)
u dx

= –‖∇u‖2
2 +

∫ ∞

0
μ(τ )

(∫

Ω

�η(τ )u(t) dx
)

dτ

+ γ

∫

Ω

�utu dx +
∫

Ω

f (u)u dx. (5.4)

By the Cauchy inequality the second and third terms can be estimated as follows:

∫ ∞

0
μ(τ )

(∫

Ω

�ηu(t) dx
)

dτ

≤ δ1k0‖∇u‖2
2 +

1
4δ1

∫ ∞

0
μ2–q(τ ) dτ

∫ ∞

0
μq(τ )‖∇η‖2

2 dτ , (5.5)

and

∣
∣
∣
∣γ

∫

Ω

�utu dx
∣
∣
∣
∣ =

∣
∣
∣
∣–γ

∫

Ω

∇ut · ∇u dx
∣
∣
∣
∣ ≤ δ1‖∇u‖2

2 +
γ 2

4δ1
‖∇ut‖2

2, (5.6)

where δ1 > 0.
Combining (5.3)–(5.6), we establish Lemma 5.2. �

Lemma 5.3 Under the conditions of Theorem 2.2, there exist constants C, C′, C′′ > 0 such
that

Ψ (t) =
∫

Ω

�ut

(∫ ∞

0
μ(τ )η dτ

)

dx –
1

ρ + 1

∫

Ω

|ut|ρut

(∫ ∞

0
μ(τ )η dτ

)

dx



Li and Jia Boundary Value Problems         (2019) 2019:37 Page 18 of 23

satisfies

Ψ ′(t) ≤ (δ2 + δ2C)‖∇u‖2
2 +

(
δ2γ

2 – k0 + 2δ2C′)‖∇ut‖2
2 –

k0

ρ + 1
‖ut‖ρ+2

ρ+2

+ C′
∫ ∞

0
μ2–q(τ ) ds

∫ ∞

0
μq(τ )‖∇η‖2

2 dτ – 2C′′
∫ ∞

0
μ′(τ )

∥
∥∇η(τ )

∥
∥2

2 dτ

for any δ2 > 0.

Proof From definition of Ψ we have

Ψ ′(t) =
∫

Ω

�utt

(∫ ∞

0
μ(τ )η dτ

)

dx +
∫

Ω

�ut

(∫ ∞

0
μ(τ )ηt dτ

)

dx

–
1

ρ + 1

∫

Ω

|ut|ρutt

(∫ ∞

0
μ(τ )η dτ

)

dx

–
1

ρ + 1

∫

Ω

|ut|ρut

(∫ ∞

0
μ(τ )ηt dτ

)

dx

–
1

ρ + 1

∫

Ω

((
u2

t
) ρ

2
)

tut

(∫ ∞

0
μ(τ )η dτ

)

dx

=
∫

Ω

(
–|ut|ρutt + �utt

)
(∫ ∞

0
μ(τ )η dτ

)

dx

+
∫

Ω

(

–
|ut|ρut

ρ + 1
+ �ut

)(∫ ∞

0
μ(τ )ηt dτ

)

dx

:= I1 + I2.

From (1.5) we see that

I1 =
∫

Ω

(

–�u –
∫ ∞

0
μ(τ )�η dτ – γ�ut – f (u)

)(∫ ∞

0
μ(τ )η dτ

)

dx.

By the Green formula and the Cauchy and Hölder inequalities we have the following esti-
mates:

∫

Ω

–�u
(∫ ∞

0
μ(τ )η dτ

)

dx

=
∫

Ω

∇u ·
(∫ ∞

0
μ(τ )∇η dτ

)

dx

≤ δ2‖∇u‖2
2 +

1
4δ2

∫ ∞

0
μ2–q(τ ) dτ

∫ ∞

0
μq(τ )‖∇η‖2

2 dτ ,

–γ

∫

Ω

�ut

(∫ ∞

0
μ(τ )η(τ ) dτ

)

dx

= γ

∫

Ω

∇ut ·
(∫ ∞

0
μ(τ )∇η dτ

)

dx

≤ δ2γ
2‖∇ut‖2

2 +
1

4δ2

∫ ∞

0
μ2–q(τ ) dτ

∫ ∞

0
μq(τ )‖∇η‖2

2 dτ ,
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and

–
∫

Ω

(∫ ∞

0
μ(τ )�η dτ

)(∫ ∞

0
μ(τ )η dτ

)

dx =
∫

Ω

(∫ ∞

0
μ

2–q
2 μ

q
2 (τ )∇η(τ ) dτ

)2

dx
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From (1.5) we easily obtain
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Using the Green formula and the Cauchy and Hölder inequalities, we have
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Using the method similar to that in the proof of Lemma 4.1, we get
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Considering (5.7) and (5.8), we arrive at the conclusion. �
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Proof of Theorem 2.3 Using
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Using (A3), we can easily show that
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Using the conditions of Theorem 2.3, the Hölder inequality, and (5.10), we see that
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Therefore we get, for σ > 1,
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By choosing θ = 1
2 and σ = 2q – 1 (hence σθ
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= 1) estimate (5.12) gives
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A combination of (5.9) and (5.13) then leads to
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By Lemma 5.1 we have
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A simple integration of (5.14) over (0, t) yields

L(t) ≤ C1(1 + t)– 1
σ–1 , t ≥ 0, (5.15)

that is,

L(t) ≤ C1(1 + t)– 1
2(q–1) , t ≥ 0. �

6 Conclusions
In this paper, we consider the Dirichlet boundary value problem of nonlinear evolution
equation with hereditary memory, variable density, and external force term. We prove the
existence of a global solution by means of the Galerkin method, establish the exponen-
tial stability by using only one auxiliary functional (this method is simpler than that in
[1]), and also show the polynomial stability under suitable conditions. Under suitable hy-
potheses on the external force term function f and integral kernel function μ with γ ≥ 0
in the model, we can further consider the local existence and blowup phenomenon of the
solution.
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