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Abstract
In this paper, we consider the singular Kirchhoff equation with two parameters

⎧
⎪⎨

⎪⎩

–a(
∫

Ω |∇u(x)|2 dx)�u(x) + K (x)g(u) = λf (x,u) +μh(x) in Ω ,

u > 0 in Ω ,

u = 0 on ∂Ω .

By using the sub-supersolution method together with the comparison principle for
elliptic equations, we obtain several existence and nonexistence theorems. Our works
improve the results in the previous literature.

Keywords: Elliptic problems of Kirchhoff type; Positive solution; Subsolution;
Supersolution

1 Introduction
In this paper, we study the existence and nonexistence of solutions to the following singular
nonlocal elliptic problem with two parameters:

⎧
⎪⎪⎨

⎪⎪⎩

–a(
∫

Ω
|∇u(x)|2 dx)�u(x) + K(x)g(u) = λf (x, u) + μh(x) in Ω ,

u > 0 in Ω ,

u = 0 on ∂Ω ,

(1.1)

where Ω is a smooth bounded domain in R
N (N ≥ 2), a : [0, +∞) → (0, +∞) is a continu-

ous and nondecreasing function with

inf
t∈[0,+∞)

a(t) = a(0) = a0 > 0,

K , h ∈ C0,γ (Ω̄) with K > 0 and h > 0 on Ω , and λ and μ are positive real numbers.
This problem is related to the general form of the stationary counterpart of the hyper-

bolic Kirchhoff equation

ρ
∂2u
∂t2 –

(
P0

h
+

E
2L

∫ L

0

∣
∣
∣
∣
∂u
∂x

∣
∣
∣
∣

2

dx
)

∂2u
∂t2 = g(x, u)
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for free vibrations of elastic strings [7]. Kirchhoff’s model takes into account the changes in
length of the string produced by transverse vibrations, in which L is the length of the string,
ρ is the mass density, and P0 is the initial tension. Many researchers began an extensive
research in equations of this type after Lions [10] put forward a basic framework. For
example, Perera and Zhang [17, 30] considered the following Kirchhof-type problems with
4-sublinear case, asymptotically 4-linear case, and 4-superlinear case terms:

⎧
⎨

⎩

–(a + b
∫

Ω
|∇u(x)|2 dx)�u(x) = f (x, u) in Ω ,

u = 0 on ∂Ω .
(1.2)

They obtained nontrivial solutions via the Yang index and the invariant sets of descent
flow. Sun and Tang [22] obtained the existence and multiplicity of weak solutions of (1.2)
by using the mountain pass theorem, the local linking theorem, the fountain theorem,
and the symmetric mountain pass lemma in critical point theory. Utilizing the local link-
ing theory, Yang and Zhang [29] obtained the nontrivial solutions of (1.2) with quasilinear
terms. Yang and Han [28] obtained infinitely many solutions when f (x, u) is odd by using
the fountain theorem. In recent years, many researchers studied the fractional Kirchhoff
equation. In [9] and [24] the authors deal with fractional Schrödinger–Kirchhoff equa-
tions. In [23] the authors obtained the multiplicity of solutions of a fractional p-Laplacian
Kirchhoff system. In [16] authors deal with nonlocal fractional problems. In addition, in
[25] the authors obtained the local existence and blowup of solutions of nonlocal Kirch-
hoff diffusion problems. Some other results can be found in [3–5, 11–15, 20, 26], and their
references.

Since the method of sub-supersolutions is an important tool to solve the existence of so-
lutions for boundary value problems, naturally, some authors hope to use the theorem of
sub-supersolutions to discuss the elliptic problems of Kirchhoff type. However, the nonlo-
cal term brings some difficulties. To overcome the difficulty from the nonlocal term, Alves
and Corrêa [1] considered following problem:

⎧
⎨

⎩

–a(
∫

Ω
|∇u(x)|2 dx)�u(x) = f (x, u) in Ω ,

u = 0 on ∂Ω ,
(1.3)

and obtained the existence of positive solutions by using the sub-supersolution method
under the condition that f : Ω × R → R is an increasing function. Moreover, Alves and
Corrêa [2] dealed with the quasilinear stationary Kirchhoff equation

⎧
⎨

⎩

–a(
∫

Ω
|∇u(x)|2 dx)�u(x) = f (x, u,∇u) in Ω ,

u = 0 on ∂Ω ,
(1.4)

and using the pseudomonotone operator theory, they established the existence of weak
solutions by constructing a supersolution and a family of subsolutions. Recently, Yan,
O’Regan, and Agarwal [27] discussed the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

–a(
∫

Ω
|∇u(x)|2 dx)�u(x) = F(x, u) in Ω ,

u > 0 in Ω ,

u = 0 on ∂Ω .

(1.5)
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They presented some new definitions of a sub-supersolution to problem (1.5) and obtained
the existence of classical solution to problem (1.5) when F(x, u) = λuq – up+1 (0 < q < 1,
p > 0).

Motivated by the ideas introduced in [6], we suppose that f : Ω × [0,∞) → [0,∞) is
a Hölder-continuous function that is positive on Ω × (0,∞). We also assume that f is
nondecreasing with respect to the second variable and is sublinear, that is,

(f1) the mapping (0,∞) � s 	→ f (x,s)
s is nonincreasing for all x ∈ Ω ;

(f2) lims→0
f (x,s)

s = +∞ and lims→+∞ f (x,s)
s = 0 uniformly in x ∈ Ω ;

(f3) there exists n0 > 0 such that λn0 f (x, s) ≥ f (x,λn0+1s) for all λ ≥ 1.
We assume that g ∈ C0,γ (0,∞) is a nonnegative and nonincreasing function satisfying:
(g1) lims→0 g(s) = +∞;
(g2) there exist C, δ0 > 0 and τ ∈ (0, 1) such that g(s) ≤ Cs–τ for all s ∈ (0, δ0).

Example The function f (s) = sα (0 < α < 1) fulfills (f1)–(f3), whereas g(s) = (sα + sβ )–1 (0 <
α < 1, β > 1) satisfies assumptions (g1)–(g2).

Denote D = {u ∈ C2(Ω) ∩ C(Ω); g(u) ∈ L1(Ω)}.
We show in this paper that (1.1) has at least one solution in D for λ belonging to a certain

range and any μ > 0. We also prove that in some cases, (1.1) has no solutions in D, provided
that λ and μ are sufficiently small.

Remark 1.1
(i) If u ∈ D, v ∈ C2(Ω) ∩ C(Ω), and 0 < u < v in Ω , then v ∈ D.

(ii) Let u ∈ C2(Ω) ∩ C(Ω) be a solution of (1.1). Then u ∈ D if and only if �u ∈ L1(Ω).

Our main results are the following.

Theorem 1.1 Assume that f satisfies (f1)–(f3) and g satisfies (g1)–(g2).
(1) If limλ→+∞ λ

a(λ2+2n0 ) = +∞, then there exists λ̄ such that (1.1) has at least one solution
in D for all λ > λ̄ and μ > 0.

(2) There exist λ∗ and μ∗ small enough such that (1.1) has no solution in D for all λ < λ∗

and μ < μ∗.

Theorem 1.2 Assume that f satisfies (f1)–(f2). If
∫ 1

0 g(s) ds = +∞, then (1.1) has no solution
in D for any λ,μ > 0.

This paper is organized as follows. Some preliminary lemmas are given in Sect. 2, and
Sect. 3 is devoted to proofs of the results. Some ideas also come from [19] and [18].

2 Preliminaries
In this section, we consider the general problem

⎧
⎨

⎩

–a(
∫

Ω
|∇u(x)|2 dx)�u(x) = F1(x, u) + F2(x, u) in Ω ,

u = 0 on ∂Ω .
(2.1)

Let F(x, u) := F1(x, u) + F2(x, u).
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Definition 2.1 The pair of functions α,β ∈ C1(Ω) ∩ C2(Ω) are a subsolution and super-
solution of (2.1) if α(x) ≤ β(x) for x ∈ Ω and

⎧
⎨

⎩

–�α(x) ≤ 1
b0

F1(x,α(x)) + 1
a0

F2(x,α(x)), x ∈ Ω ,

α|∂Ω ≤ 0,
⎧
⎨

⎩

–�β(x) ≥ 1
a0

F1(x,β(x)) + 1
b0

F2(x,β(x)), x ∈ Ω ,

β|∂Ω ≥ 0,

where a0 = a(0) and b0 = a(
∫

Ω
H(x)2 dx), E ∈ Lp(Ω) (p > N ); here

E(x) = sup
u∈[α(x),β(x)]

∣
∣F(x, u)

∣
∣, x ∈ Ω ,

H(x) =
1
a0

∫

Ω

∣
∣Gx(x, y)

∣
∣E(y) dy, x ∈ Ω ,

G(x, y) is the Green function for –�u(x) = h, and u|∂Ω = 0.

Lemma 2.2 (see [27]) Let Ω ⊆R
N (N ≥ 1) be a smooth bounded domain. Let F : Ω ×R →

R be a continuous function. Let α and β be the subsolution and supersolution of (2.1),
respectively. If

F1(x, u) ≥ 0, F2(x, u) ≤ 0, ∀x ∈ Ω ,α(x) ≤ u ≤ β(x),

then problem (2.1) has at least one solution u such that

α(x) ≤ u(x) ≤ β(x) for all x ∈ Ω .

Let ϕ1 be the normalized positive eigenfunction corresponding to the first eigenvalue λ1

of the problem

⎧
⎨

⎩

–�u(x) = λu in Ω ,

u = 0 on ∂Ω .
(2.2)

Lemma 2.3 (see [8])
∫

Ω
ϕ–s

1 < ∞ if and only if s < 1.

Lemma 2.4 (see [21]) Let F : Ω̄ × (0,∞) → R be a Hölder-continuous function with ex-
ponent γ ∈ (0, 1) on each compact subset of Ω × (0,∞) satisfying:

(F1) lims→∞ sup(s–1 maxx∈Ω̄ F(x, s)) < λ1;
(F2) for each t > 0, there exists a constant D(t) > 0 such that

F(x, r) – F(x, s) ≥ –D(t)(r – s) for x ∈ Ω and r ≥ s ≥ t;

(F3) there exist η0 > 0 and an open subset Ω0 ⊂ Ω such that

min
x∈Ω̄

F(x, s) ≥ 0 for x ∈ (0,η0)
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and

lim
s→0

F(x, s)
s

= +∞ uniformly in x ∈ Ω0.

Then for any nonnegative function ϕ0 ∈ C2,γ (∂Ω), the problem

⎧
⎪⎪⎨

⎪⎪⎩

–�u(x) = F(x, u) in Ω ,

u > 0 in Ω ,

u = ϕ0 on ∂Ω

(2.3)

has at least one positive solution u ∈ C2,γ (G) ∩ C(Ω) for any compact set G ⊂ Ω ∪ {x ∈
∂Ω ;ϕ0(x) > 0}.

Lemma 2.5 (see [21]) Let F : Ω × (0,∞) → R be a continuous function such that the
mapping (0,∞) � s 	→ F(x,s)

s is strictly decreasing at each x ∈ Ω . Assume that there exists
ν,ω ∈ C2(Ω) ∩ C(Ω) such that:

(a) �ω + F(x,ω) ≤ 0 ≤ �ν + F(x,ν) in Ω ;
(b) ν,ω > 0 in Ω and ν ≤ ω on ∂Ω ;
(c) �ν ∈ L1(Ω).

Then ν ≤ ω in Ω .

We observe that the hypotheses of Lemmas 2.4 and 2.5 are fulfilled for

Φλ(x, s) =
1
a0

(
λf (x, s) + h(x)

)
.

Lemma 2.6 Let f satisfy (f1)–(f2). Then for any λ,μ > 0, according to Lemmas 2.4 and 2.5,
the boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

–�U(x) = λf (x, U) + μh(x) in Ω ,

U > 0 in Ω ,

U = 0 on ∂Ω

(2.4)

has a unique solution Uλ,μ ∈ C2,γ (Ω) ∩ C(Ω).

3 Proofs of main theorems
Denote K∗ = maxx∈Ω K(x), K∗ = minx∈Ω K(x).

Proof of Theorem 1.1 According to Lemma 2.6, the boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

–�U(x) = 1
a0

(f (x, U) + h(x)) in Ω ,

U > 0 in Ω ,

U = 0 on ∂Ω

(3.1)
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has a unique solution U ∈ C2,γ (Ω) ∩ C(Ω). Let H : [0,∞) → [0,∞) be such that

⎧
⎨

⎩

H ′′(t) = g(H(t)) for all t > 0,

H ′(0) = H(0) = 0.
(3.2)

Obviously, H ∈ C2(0, +∞) ∩ C1[0, +∞) exists by our assumption (g2). From (3.2) it fol-
lows that H ′′ is nonincreasing, whereas H and H ′ are nondecreasing on (0,∞). Using
this fact and applying the mean value theorem, we deduce that, for all t > 0, there exist
ξ 1

t , ξ 2
t ∈ (0, t) such that

H(t)
t

=
H(t) – H(0)

t – 0
= H ′(ξ 1

t
) ≤ H ′(t)

and

H ′(t)
t

=
H ′(t) – H ′(0)

t – 0
= H ′(ξ 2

t
) ≥ H ′′(t).

These inequalities imply

H(t) ≤ tH ′(t) ≤ 2H(t) for all t > 0.

Hence

1 ≤ tH ′(t)
H(t)

≤ 2 for all t > 0. (3.3)

On the other hand, by (g2) and (3.2) there exists η > 0 such that

⎧
⎨

⎩

H(t) ≤ δ0 for all t ∈ (0,η),

H ′′(t) ≤ CH–τ (t) for all t ∈ (0,η),
(3.4)

which yields

H(t) ≤ ct
2

1+τ for all t ∈ (0,η), (3.5)

where c > 0 is a constant.
Set

αλ,μ = MH(ϕ1),

where M is a positive constant. Then we can get

–�αλ,μ +
1
a0

K(x)g(αλ,μ)

= λ1MH ′(ϕ1)ϕ1 +
1
a0

K(x)g
(
MH(ϕ1)

)
– Mg

(
H(ϕ1)

)|∇ϕ1|2 in Ω . (3.6)
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Fix M ≥ 1. The monotonicity of g leads to

g
(
MH(ϕ1)

) ≤ g
(
H(ϕ1)

)
in Ω ,

and by (3.6)

–�αλ,μ +
1
a0

K(x)g(αλ,μ)

≤ λ1MH ′(ϕ1)ϕ1 +
1
a0

K∗g
(
H(ϕ1)

)
– Mg

(
H(ϕ1)

)|∇ϕ1|2 in Ω . (3.7)

By Hopf ’s maximum principle there exist δ0 and Σ ⊂ Ω such that

|∇ϕ1| ≥ δ0 in Ω \ Σ ,

|ϕ1| ≥ δ0 in Σ .

On Ω \ Σ , we choose M ≥ M1 = max{1, K∗
a0δ2 }. Then we have

1
a0

K∗g
(
H(ϕ1)

) ≤ Mg
(
H(ϕ1)

)|∇ϕ1|2 in Ω \ Σ . (3.8)

Choosing M ≥ max{M1, K∗g(H(δ0))
a0λ1H′(δ0)δ0

}, we have

1
a0

K∗g
(
H(ϕ1)

) ≤ λ1MH ′(ϕ1)ϕ1 in Σ . (3.9)

It follows from (3.7)–(3.9) that

–�αλ,μ +
1
a0

K(x)g(αλ,μ) ≤ 2λ1MH ′(ϕ1)ϕ1 in Ω . (3.10)

Since ϕ1 > 0 in Ω , from (3.3) we have

1 ≤ H ′(ϕ1)ϕ1

H(ϕ1)
≤ 2 in Ω . (3.11)

Then (3.10) and (3.11) yield

–�αλ,μ +
1
a0

K(x)g(αλ,μ) ≤ 4λ1MH(ϕ1) = 4λ1αλ,μ in Ω . (3.12)

Take A0 = 4a0λ1c–1|α(x)|∞, where c = infx∈Ω̄ f (x, |αλ,μ|∞) > 0. If λ > A0, then assumption
(f1) produces

λf (x,αλ,μ)
a0αλ,μ

≥ A0f (x, |αλ,μ|∞)
a0|α(x)|∞ ≥ 4λ1 for all x ∈ Ω .

Combined with (3.12), this gives

–�αλ,μ +
1
a0

K(x)g(αλ,μ) ≤ 1
a0

λf (x,αλ,μ) in Ω .
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Denote Ω0 = {x ∈ Ω ;ϕ1(x) < η}. By (3.4) and (3.5) it follows that

g(αλ,μ) = g
(
MH(ϕ1)

) ≤ g
(
H(ϕ1)

) ≤ CH–τ (ϕ1) ≤ C0ϕ
–2τ
1+τ

1 in Ω0,

g(αλ,μ) ≤ g
(
MH(η)

)
in Ω \ Ω0.

These estimates combined with Lemma 2.3 yield g(αλ,μ) ∈ L1(Ω), and so �αλ,μ ∈ L1(Ω).
Set

βλ,μ = λn0+1U ,

where λ ≥ max{1,μ}.
We now prove that there exists A0 such that αλ,μ ≤ βλ,μ for all λ > A0.
Since

�βλ,μ +
1
a0

(
λf (x,βλ,μ) + h(x)

)
= λn0+1�U +

1
a0

(
λf

(
x,λn0+1U

)
+ h(x)

)

≤ λn0+1
(

�U +
1
a0

(
f (x, U) + h(x)

)
)

= 0,

we can get

�βλ,μ + Φλ(x,βλ,μ) ≤ 0 ≤ �αλ,μ + Φλ(x,αλ,μ) in Ω ,

αλ,μ,βλ,μ > 0 in Ω ,

αλ,μ = βλ,μ on ∂Ω ,

�αλ,μ ∈ L1(Ω).

By Lemma 2.5 it follows that αλ,μ ≤ βλ,μ on Ω for all λ > A0.
Define

E1(x) = λf (x,βλ,μ) + μh(x) + K(x)g(αλ,μ), x ∈ Ω ,

H1(x) =
1
a0

∫

Ω

∣
∣Gx(x, y)

∣
∣E1(y) dy, x ∈ Ω ,

b1 = a
(∫

Ω

H1(x)2 dx
)

,

that is,

E(x) = sup
u∈[αλ,μ(x),βλ,μ(x)]

∣
∣F(x, u)

∣
∣ ≤ E1(x), x ∈ Ω ,

H(x) =
1
a0

∫

Ω

∣
∣Gx(x, y)

∣
∣E(y) dy ≤ H1(x), x ∈ Ω ,

b0 = a
(∫

Ω

H(x)2 dx
)

≤ b1 = a
(∫

Ω

H1(x)2 dx
)

.
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We have

b1 = a
(∫

Ω

H1(x)2 dx
)

= a
(∫

Ω

[
1
a0

∫

Ω

∣
∣Gx(x, y)

∣
∣
(
λf

(
y,λn0+1U

)
+ μh(y) + K(y)g

(
MH(ϕ1)

))
dy

]2

dx
)

≤ a
(∫

Ω

[
1
a0

∫

Ω

∣
∣Gx(x, y)

∣
∣
(
λf

(
y,λn0+1U

)
+ λh(y) + K∗g

(
H(ϕ1)

))
dy

]2

dx
)

≤ a
((

λ

a0

)2 ∫

Ω

[∫

Ω

∣
∣Gx(x, y)

∣
∣
(
f
(
y,λn0+1U

)
+ h(y) + K∗g

(
H(ϕ1)

))
dy

]2

dx
)

≤ a
(

λ2+2n0

a2
0

∫

Ω

[∫

Ω

∣
∣Gx(x, y)

∣
∣
(
f (y, U) + h(y) + K∗g

(
H(ϕ1)

))
dy

]2

dx
)

.

Let

C =
(

1
a0

)2 ∫

Ω

[∫

Ω

∣
∣Gx(x, y)

∣
∣
(
f (y, U) + h(y) + K∗g

(
H(ϕ1)

))
dy

]2

dx,

that is,

b1 ≤ a
(
Cλ2+2n0

)
,

where C is a positive constant. Since limλ→+∞ λ

a(λ2+2n0 ) = +∞, there exists B0 such that

λ

a(Cλ2+2n0 )
≥ 4λ1c–1|α|∞ for all λ ≥ B0.

Choosing λ̄ = max{1,μ, A0, B0}, we easily to see that

–�αλ,μ ≤ 1
b0

(
λf (x,αλ,μ) + μh(x)

)
–

1
a0

K(x)g(αλ,μ) in Ω for all λ > λ̄.

Since

–�λn0 U =
1
a0

λn0
(
f (x, U) + h(x)

) ≥ 1
a0

(
f
(
x,λn0+1U

)
+ h(x)

)
in Ω ,

we get

–�λn0+1U ≥ λ

a0

(
f
(
x,λn0+1U

)
+ h(x)

)
in Ω .

Hence

–�βλ,μ ≥ 1
a0

(
λf (x,βλ,μ) + μh(x)

)
–

1
b0

K(x)g(βλ,μ) in Ω for all λ > λ̄.

By Lemma 2.2 (1.1) has at least one solution uλ,μ such that αλ,μ ≤ uλ,μ ≤ βλ,μ in Ω . Since
g(αλ,μ) ∈ L1(Ω), we have αλ,μ ∈ D. By Remark 1.1 we deduce that uλ,μ ∈ D. Hence, for all
λ ≥ λ̄ and μ > 0, problem (1.1) has at least one solution uλ,μ ∈ D.
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Nonexistence for λ, μ small. Let λ,μ > 0. Set

Θλ,μ(x.s) =
1
a0

(
λf (x, s) + μh(x) – K(x)g(s)

)
in Ω .

Since K∗ > 0, assumption (g1) implies lims→0 Θλ,μ(x.s) = –∞ uniformly in x ∈ Ω . Then
there exists c > 0 such that

Θλ,μ(x.s) < 0 for all (x, s) ∈ Ω × (0, c). (3.13)

Let s ≥ c. From (f1) we deduce

Θλ,μ(x.s)
s

≤ 1
a 0

(

λ
f (x, s)

s
+ μ

h(x)
s

)

≤ 1
a0

(

λ
f (x, c)

c
+ μ

|h|∞
s

)

for all x ∈ Ω̄ . Fix μ ≤ cλ1a0
2|h|∞ and let M = supx∈Ω

f (x,c)
a0c > 0. From the above inequality we have

Θλ,μ(x.s)
s

≤ λM +
λ1

2
for all (x, s) ∈ Ω × (c, +∞). (3.14)

Set A(λ) = λM. Inequalities (3.13) and (3.14) yield

Θλ,μ(x.s) ≤ A(λ)s +
λ1

2
s for all (x, s) ∈ Ω × (0, +∞). (3.15)

Moreover, A(λ) → 0 as λ → 0. If (1.1) has a solution uλ,u, then

λ1

∫

Ω

u2
λ,μ(x) dx ≤

∫

Ω

∣
∣∇uλ,μ(x)

∣
∣2 dx

= –
∫

Ω

uλ,μ(x)�uλ,μ(x) dx,

and using (3.15), we get

λ1

∫

Ω

u2
λ,μ(x) dx ≤

[

A(λ) +
λ1

2

]∫

Ω

u2
λ,μ(x) dx.

Since A(λ) → 0 as λ → 0, this relation leads to a contradiction for λ,μ > 0 sufficiently
small. The proof of Theorem 1.1 is now complete. �

Proof of Theorem 1.2 Suppose to the contrary that exist λ and μ such that (1.1) has a
solution uλ,μ ∈ D, and by Lemma 2.6 the boundary value problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–�V (x) = 1
a(

∫

Ω |∇uλ,μ|2 dx) (λf (x, V ) + μh(x)) in Ω ,

V > 0 in Ω ,

V = 0 on ∂Ω

(3.16)

has a unique solution Vλ,μ ∈ C2,γ (Ω) ∩ C(Ω).
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Set

Ψλ,μ(x, s) =
1

a(
∫

Ω
|∇uλ,μ|2 dx)

(
λf (x, s) + μh(x)

)
.

Since

�Vλ,μ + Ψλ,μ(x, Vλ,μ) ≤ 0 ≤ �uλ,μ + Ψλ,μ(x, uλ,μ) in Ω ,

by Lemma 2.5 we get uλ,μ ≤ Vλ,μ in Ω .
Consider the perturbed problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–�u + K∗g(u + ε) = 1
a(

∫

Ω |∇uλ,μ|2 dx) (λf (x, u) + μh(x)) in Ω ,

u > 0 in Ω ,

u = 0 on ∂Ω .

(3.17)

Since K∗ > 0, it follows that uλ,μ and Vλ,μ are subsolution and supersolution for (3.17),
respectively. Then there exists a solution uε ∈ C2,γ (Ω) of (3.17) such that

uλ,μ ≤ uε ≤ Vλ,μ.

Integrating in (3.17), we deduce

–
∫

Ω

�uε dx + K∗
∫

Ω

g(uε + ε) dx =
1

a(
∫

Ω
|∇uλ,μ|2 dx)

∫

Ω

[
λf (x, uε) + μh(x)

]
dx.

Hence

–
∫

∂Ω

∂uε

∂n
+ K∗

∫

Ω

g(uε + ε) dx ≤ M, (3.18)

where M > 0 is a constant. Since ∂uε

∂n ≤ 0 on ∂Ω , relation (3.18) yields K∗
∫

Ω
g(uε + ε) dx ≤

M, and so K∗
∫

Ω
g(Vλ,μ + ε) dx ≤ M. Thus, for any compact subset ω ⊂ Ω , we have

K∗
∫

ω

g(Vλ,μ + ε) dx ≤ M.

Letting ε → 0, this relation leads to K∗
∫

ω
g(Vλ,μ) dx ≤ M. Therefore

K∗
∫

Ω

g(Vλ,μ) dx ≤ M. (3.19)

Choose δ > 0 sufficiently small and define Ωδ := {x ∈ Ω ; dist(x, ∂Ω) ≤ δ}. Taking into ac-
count the regularity of the domain, we get that there exists k > 0 such that

Vλ,μ ≤ k dist(x, ∂Ω) for all x ∈ Ωδ .

Then
∫

Ω

g(Vλ,μ) dx ≥
∫

Ωδ

g(Vλ,μ) dx ≥
∫

Ωδ

g
(
k dist(x, ∂Ω)

)
dx = +∞,



Di and Yan Boundary Value Problems         (2019) 2019:40 Page 12 of 13

which contradicts (3.19). It follows that problem (1.1) has no solution in D, and the proof
of Theorem 1.2 is now complete. �
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