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Abstract
In this article, we investigate the existence of positive solutions to fourth-order
problems with dependence on all derivatives in nonlinearities subject to the Stieltjes
integral boundary conditions

{
u(4)(t) = f (t,u(t),u′(t),u′′(t),u′′′(t)), t ∈ [0, 1],

u′(0) + β1[u] = 0, u′′(0) + β2[u] = 0, u(1) = β3[u], u′′′(1) = 0,

and

{
–u(4)(t) = g(t,u(t),u′(t),u′′(t),u′′′(t)), t ∈ [0, 1],

u(0) = α1[u], u′(0) = α2[u], u′′(0) = α3[u], u′′′(1) = 0,

where f : [0, 1]×R+ ×R
3
– → R+, g : [0, 1]×R

3
+ → R+ are continuous and βi[u], αi[u]

(i = 1, 2, 3) are linear functionals involving Stieltjes integrals of signed measures. Some
growth conditions are posed on nonlinearities f , g, meanwhile the spectral radii of
corresponding linear operators are restricted, which means the superlinear or
sublinear conditions. On the cones in C3[0, 1] we apply the theory of fixed point index,
the existence of positive solutions is obtained. We also give some examples under
mixed multi-point and integral boundary conditions with sign-changing coefficients.
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1 Introduction and preliminaries
In the article, we investigate the existence of positive solutions to fourth-order bound-
ary value problems (BVPs) with dependence on all derivatives in nonlinearities under the
boundary conditions involving Stieltjes integrals

⎧⎨
⎩u(4)(t) = f (t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ [0, 1],

u′(0) + β1[u] = 0, u′′(0) + β2[u] = 0, u(1) = β3[u], u′′′(1) = 0,
(1.1)
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and

⎧⎨
⎩–u(4)(t) = g(t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ [0, 1],

u(0) = α1[u], u′(0) = α2[u], u′′(0) = α3[u], u′′′(1) = 0,
(1.2)

where βi[u] =
∫ 1

0 u(t) dBi(t) and αi[u] =
∫ 1

0 u(t) dAi(t) are Stieltjes integrals with Bi, Ai of
bounded variation (i = 1, 2, 3).

Webb, Infante, and Franco [1] were concerned with the existence of positive solutions
for the fourth-order differential equation

u(4)(t) = g(t)f
(
t, u(t)

)
, a.e. t ∈ (0, 1)

subject to several nonlocal boundary conditions such as

u(0) = 0, u′(0) = 0, u(1) = α[u], u′(1) = 0

and

u(0) = 0, u′′(0) = 0, u(1) = α[u], u′′(1) = 0,

etc. In these equations α[u] denotes a linear functional on C[0, 1] given by α[u] =∫ 1
0 u(s) dA(s) involving a Stieltjes integral. Infante and Pietramala [2] proved the existence

of positive solutions for the cantilever equation

⎧⎨
⎩u(4)(t) = g(t)f (t, u(t)), t ∈ (0, 1),

u(0) = u′(0) = u′′(1) = 0, u′′′(1) + k0 + B(α[u]) = 0,

where k0 is a nonnegative constant, B is a nonnegative continuous function, and α[u] is as
the above. Their main ingredient is the classical fixed point index. By making use of the
monotonically iterative technique, Yao [3] studied the positive solution for a nonlinear
fourth-order two-point boundary value problem

⎧⎨
⎩u(4)(t) = f (t, u(t), u′(t)), t ∈ (0, 1),

u(0) = u′(0) = u′′(1) = u′′′(1) = 0.

Alves et al. [4] considered, also by using the monotone iteration method, the existence of
positive solutions for the beam equation

u(4)(t) = f
(
t, u(t), u′(t)

)

subject to boundary conditions

u(0) = u′(0) = 0, u′′′(1) = g
(
u(1)

)
, u′(1) = 0 or u′′(1) = 0,
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where g is a continuous function. Li [5] and Ma [6] discussed the conditions ensuring the
existence of positive solutions for the fourth-order boundary value problem

⎧⎨
⎩u(4)(t) = f (t, u(t), u′′(t)), t ∈ (0, 1),

u(0) = u′′(0) = u(1) = u′′(1) = 0.

The proofs of main results are respectively based upon fixed point index theory on cones
and global bifurcation techniques. Respectively, by Krasnosel’skii’s fixed point theorem
and convex functional fixed point theorem, Bai [7] and Guo et al. [8] explored the existence
of positive solutions for the nonlocal fourth-order problems

u(4)(t) + βu′′(t) = λf
(
t, u(t), u′′(t)

)
and

u(4)(t) + βu′′(t) = λf
(
t, u(t), u′(t), u′′(t), u′′′(t)

)
with the same boundary conditions

u(0) = u(1) =
∫ 1

0
p(s)u(s) ds, u′′(0) = u′′(1) =

∫ 1

0
q(s)u′′(s) ds,

where p, q ∈ L[0, 1] are nonnegative. Recently in [9], Li obtained the existence of positive
solutions for the local fully nonlinear problem

⎧⎨
⎩u(4)(t) = f (t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ [0, 1],

u(0) = u′(0) = u′′(1) = u′′′(1) = 0,

where f : [0, 1]×R
3
+ ×R– →R+ is continuous and f (t, x1, x2, x3, x4) may have superlinear or

sublinear growth in x1, x2, x3, x4. We also refer to some other relevant articles, for example,
[10–14].

By fixed point index on cones of completely continuous operators, Webb and Infante
[15] put forward a unified method to establish the existence of positive solutions to local
and nonlocal boundary problems if f does not depend on derivatives. They dealt with the
boundary problems involving Stieltjes integrals with signed measures.

Motivated by the above-mentioned works, we consider BVPs (1.1) and (1.2) in which
the nonlinearities depend on all derivatives and the boundary conditions include Stieltjes
integrals of signed measures. Some growth conditions are posed on nonlinearities f , g ,
meanwhile the spectral radii of corresponding linear operators are restricted, which means
the superlinear or sublinear conditions. On the cones in C3[0, 1] we apply the theory of
fixed point index, the existence of positive solutions to BVPs (1.1) and (1.2) is obtained.
For the superlinear case, we require the Nagumo-type condition similar to [9]. In view of
the above features, we treated them in a different way from those in the references earlier.
It is worth noting that two cones are defined, the large one is reproducing and serves as
the partial ordering, the small one is applied to compute fixed point index. Especially in
the process of derivation, the partial ordering induced by cone and the natural ordering
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of functions in function space are combined to use. In order to illustrate the results in this
paper, we give some examples under mixed multi-point and integral boundary conditions
with sign-changing coefficients.

For the sake of proving the theorems, we state the following lemmas, see [16, 17]. Let
X be a Banach space and P be a closed convex set in X, if λx ∈ P for any λ > 0, x ∈ P, and
x = 0 (the zero element in X) provided ±x ∈ P, then P is said to be a cone in X. A cone P
in X is called reproducing if X = P – P.

Lemma 1.1 Let Ω be a bounded open set with 0 ∈ Ω in X and P be a cone. If A : P ∩ Ω → P
is a completely continuous operator, and μAu �= u for u ∈ P ∩ ∂Ω , μ ∈ [0, 1], then the fixed
point index i(A, P ∩ Ω , P) = 1.

Lemma 1.2 Let Ω be a bounded open set in X and P be a cone. If A : P ∩ Ω → P is a
completely continuous operator, and there exists v0 ∈ P \ {0} such that u – Au �= νv0 for
u ∈ P ∩ ∂Ω and ν ≥ 0, then the fixed point index i(A, P ∩ Ω , P) = 0.

Lemma 1.3 (Krein–Rutman) Let P be a reproducing cone in Banach space X and L : X →
X be a completely continuous linear operator with L(P) ⊂ P. If the spectral radius r(L) > 0,
then there exists ϕ ∈ P \ {0} such that Lϕ = r(L)ϕ.

Throughout this paper, X = C3[0, 1] is the Banach space which consists of all third-order
continuously differentiable functions on [0, 1], and its norm is ‖u‖C3 = max{‖u‖C ,‖u′‖C ,
‖u′′‖C ,‖u′′′‖C}. For r > 0, denote the bounded open set Ωr = {u ∈ C3[0, 1] : ‖u‖C3 < r}.

2 Positive solutions of BVP (1.1)
For BVP (1.1) we make the following assumption:

(C1) f : [0, 1] ×R+ ×R
3
– → R+ is continuous, here R+ = [0,∞) and R– = (–∞, 0].

As shown by Webb and Infante [15], there exists a solution to BVP (1.1) if and only if
the integral equation

u(t) =
3∑

i=1

βi[u]γi(t) +
∫ 1

0
k0(t, s)f

(
s, u(s), u′(s), u′′(s), u′′′(s)

)
ds =: (Tu)(t), (2.1)

where γ1(t) = 1 – t, γ2(t) = 1
2 (1 – t2), γ3(t) = 1,

k0(t, s) =

⎧⎨
⎩

1
2 s(1 – s) + 1

6 (s3 – t3), 0 ≤ t ≤ s ≤ 1,
1
2 s(1 – s) + 1

2 ts(s – t), 0 ≤ s ≤ t ≤ 1,
(2.2)

and βi[u] =
∫ 1

0 u(t) dBi(t) (i = 1, 2, 3), has a solution in C3[0, 1]. We set

(Bu)(t) =:
3∑

i=1

βi[u]γi(t), (Fu)(t) =:
∫ 1

0
k0(t, s)f

(
s, u(s), u′(s), u′′(s), u′′′(s)

)
ds,

so that (Tu)(t) = (Bu)(t) + (Fu)(t).
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We impose other hypotheses:
(C2) Bi is of bounded variation, moreover

Ki(s) :=
∫ 1

0
k0(t, s) dBi(t) ≥ 0, ∀s ∈ [0, 1] (i = 1, 2, 3);

(C3) The 3 × 3 matrix [B] is positive whose (i, j)th entry is βi[γj], i.e., it has nonnegative
entries. Furthermore its spectrum radius r([B]) < 1.

Making use of the notations in [15] and writing 〈β ,γ 〉 =
∑3

i=1 βiγi for the inner product
in R

3, we define the operator S as

(Su)(t) =
〈(

I – [B]
)–1

β[Fu],γ (t)
〉
+ (Fu)(t),

and thus S can be written as follows:

(Su)(t)

=
∫ 1

0

(〈(
I – [B]

)–1K(s),γ (t)
〉
+ k0(t, s)

)
f
(
s, u(s), u′(s), u′′(s), u′′′(s)

)
ds

=:
∫ 1

0
kS(t, s)f

(
s, u(s), u′(s), u′′(s), u′′′(s)

)
ds, (2.3)

i.e.,

kS(t, s) =
〈(

I – [B]
)–1K(s),γ (t)

〉
+ k0(t, s) =

3∑
i=1

κi(s)γi(t) + k0(t, s), (2.4)

where κi(s) is the ith component of (I – [B])–1K(s).

Lemma 2.1 If (C2) and (C3) hold, then κi(s) ≥ 0 (i = 1, 2, 3) and for t, s ∈ [0, 1],

c0(t)Φ0(s) ≤ kS(t, s) ≤ Φ0(s), (2.5)

where

Φ0(s) =
3∑

i=1

κi(s) +
1
2

s(1 – s) +
1
6

s3, c0(t) =
1
2
(
1 – t2),

and

c1(t)Φ1(s) ≤ –
∂kS(t, s)

∂t
≤ Φ1(s), c2(t)Φ2(s) ≤ –

∂2kS(t, s)
∂t2 ≤ Φ2(s), (2.6)

where

Φ1(s) =
2∑

i=1

κi(s) +
1
2

s(2 – s), c1(t) = t2, Φ2(s) = κ2(s) + s, c2(t) = t.
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Proof κi(s) ≥ 0 (i = 1, 2, 3) are due to [15]. (2.5) and (2.6) come directly from the inequali-
ties

1
2
(
1 – t2) 3∑

i=1

κi(s) ≤
3∑

i=1

κi(s)γi(t) ≤
3∑

i=1

κi(s),

1
2
(
1 – t2)(1

2
s(1 – s) +

1
6

s3
)

≤ (
1 – t2)(1

2
s(1 – s) +

1
6

s3
)

≤ k0(t, s) ≤ 1
2

s(1 – s) +
1
6

s3

and

t2
2∑

i=1

κi(s) ≤ t
2∑

i=1

κi(s) ≤ –
3∑

i=1

κi(s)γ ′
i (t) ≤

2∑
i=1

κi(s),

1
2

t2s(2 – s) ≤ –
∂k0(t, s)

∂t
≤ 1

2
s(2 – s),

tκ2(s) ≤ κ2(s) = –
3∑

i=1

κi(s)γ ′′
i (t), ts ≤ –

∂2k0(t, s)
∂t2 ≤ s

for t, s ∈ [0, 1]. �

In C3[0, 1] we denote the subsets

P =
{

u ∈ C3[0, 1] : u(t) ≥ 0, u′(t) ≤ 0, u′′(t) ≤ 0, u′′′(t) ≤ 0,∀t ∈ [0, 1]
}

, (2.7)

K =
{

u ∈ P : u(t) ≥ c0(t)‖u‖C , –u′(t) ≥ c1(t)
∥∥u′∥∥

C ,

– u′′(t) ≥ c2(t)
∥∥u′′∥∥

C ,∀t ∈ [0, 1];

β1[u] ≥ 0,β2[u] ≥ 0,β3[u] ≥ 0, u′′′(1) = 0
}

. (2.8)

It is easy to verify that P and K are cones in C3[0, 1] with K ⊂ P. Now define the following
linear operators:

(Liu)(t) =
∫ 1

0
kS(t, s)

(
aiu(s) – biu′(s) – ciu′′(s) – diu′′′(s)

)
ds (i = 1, 2), (2.9)

(L3u)(t) = a1

∫ 1

0
kS(t, s)u(s) ds, (2.10)

where ai, bi, ci, di (i = 1, 2) are nonnegative constants.
Stipulate the partial ordering induced by P: u � v, equivalently v � u, if and only if

v – u ∈ P. We know that if P is a solid cone, i.e., the interior point set P̊ �= ∅, then P is
reproducing (refer to [16–18]).

By the routine method we can prove the following Lemma 2.2 via Lemma 2.1 (cf. [15]).

Lemma 2.2 If (C1)–(C3) hold, then S : P → K and Li : C3[0, 1] → C3[0, 1] are all com-
pletely continuous, and Li(P) ⊂ K (i = 1, 2, 3).

Lemma 2.3 ([15]) If (C1)–(C3) hold, then S has the same fixed points in K as T . Further-
more, the positive solutions to BVP (1.1) are equivalent to the fixed points of S in K .
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Theorem 2.1 Suppose that (C1)–(C3) hold and that
(F1) there are constants a1, b1, c1, d1, C0 ≥ 0 such that

f (t, x1, x2, x3, x4) ≤ a1x1 – b1x2 – c1x3 – d1x4 + C0 (2.11)

for (t, x1, x2, x3, x4) ∈ [0, 1] ×R+ ×R
3
–, the spectral radius r(L1) < 1;

(F2) there are constants a2, b2, c2, d2 ≥ 0, and r > 0 such that

f (t, x1, x2, x3, x4) ≥ a2x1 – b2x2 – c2x3 – d2x4 (2.12)

for (t, x1, x2, x3, x4) ∈ [0, 1] × [0, r] × [–r, 0]3, the spectral radius r(L2) ≥ 1; here Li :
C3[0, 1] → C3[0, 1] (i = 1, 2) are defined by (2.9).

Then BVP (1.1) has a positive solution in K .

Proof Let W = {u ∈ K : u = μSu,μ ∈ [0, 1]}, here S and K are defined by (2.3) and (2.8),
respectively.

First we prove that W is a bounded set. Actually, if u ∈ W , then u = μSu for some μ ∈
[0, 1]. It follows from (2.9) and (2.11) that

u(t) = μ(Su)(t) = μ

∫ 1

0
kS(t, s)f

(
s, u(s), u′(s), u′′(s), u′′′(s)

)
ds

≤
∫ 1

0
kS(t, s)

[
a1u(s) – b1u′(s) – c1u′′(s) – d1u′′′(s) + C0

]
ds

= (L1u)(t) + C0

∫ 1

0
kS(t, s) ds

and

(
(I – L1)u

)
(t) ≤ C0

∫ 1

0
kS(t, s) ds =: v(t), t ∈ [0, 1].

Clearly v ∈ P, and we can easily see from (2.11) with ∂kS(t,s)
∂t , ∂2kS(t,s)

∂t2 and ∂3kS(t,s)
∂t3 nonpositive

(see Lemma 2.1) that, for t ∈ [0, 1],

u′(t) ≥ (L1u)′(t) + v′(t), u′′(t) ≥ (L1u)′′(t) + v′′(t), u′′′(t) ≥ (L1u)′′′(t) + v′′′(t),

thus (I – L1)u � v. Since the spectral radius r(L1) < 1, the bounded inverse operator (I –
L1)–1 exists and it can be written as

(I – L1)–1 = I + L1 + L2
1 + · · · + Ln

1 + · · · .

Because L1(P) ⊂ K ⊂ P by Lemma 2.2, we have (I – L1)–1(P) ⊂ P, and thus the inequality
u � (I – L1)–1v holds. So, for t ∈ [0, 1],

0 ≤ u(t) ≤ (
(I – L1)–1v

)
(t), 0 ≥ u′(t) ≥ (

(I – L1)–1v
)′(t),

0 ≥ u′′(t) ≥ (
(I – L1)–1v

)′′(t), 0 ≥ u′′′(t) ≥ (
(I – L1)–1v

)′′′(t)

which imply that ‖u‖C3 ≤ ‖(I – L1)–1v‖C3 , i.e., W is bounded.
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Take R > max{r, sup W }, then μSu �= u for u ∈ K ∩ ∂ΩR and μ ∈ [0, 1], we have from
Lemma 1.1 that i(S, K ∩ ΩR, K) = 1.

Since L2 : P → K ⊂ P and r(L2) ≥ 1, by Lemma 1.3 there exists ϕ0 ∈ P \ {0} such that
L2ϕ0 = r(L2)ϕ0. Furthermore, ϕ0 = (r(L2))–1L2ϕ0 ∈ K .

Suppose that S has no fixed points in K ∩ ∂Ωr , and we will show that u – Su �= νϕ0 for
u ∈ K ∩ ∂Ωr and ν ≥ 0.

If otherwise, there exist u0 ∈ K ∩ ∂Ωr and ν0 ≥ 0 such that u0 – Su0 = ν0ϕ0, and clearly
ν0 > 0. Since u0 ∈ K ∩ ∂Ωr , we have

0 ≤ u0(t) ≤ r, –r ≤ u′
0(t), u′′

0(t), u′′′(t) ≤ 0, ∀t ∈ [0, 1].

From (2.4), (2.9), and (2.12) it follows that ∀t ∈ [0, 1],

(Su0)(t) ≥ (L2u0)(t), (Su0)′(t) ≤ (L2u0)′(t),

(Su0)′′(t) ≤ (L2u0)′′(t), (Su0)′′′(t) ≤ (L2u0)′′′(t),

these imply that

u0 = ν0ϕ0 + Su0 � ν0ϕ0 + L2u0 � ν0ϕ0. (2.13)

Set ν∗ = sup{ν > 0 : u0 � νϕ0}, then ν0 ≤ ν∗ < +∞ and u0 � ν∗ϕ0. Hence from (2.13) it
follows that

u0 � ν0ϕ0 + L2u0 � ν0ϕ0 + ν∗L2ϕ0 = ν0ϕ0 + ν∗r(L2)ϕ0.

However, r(L2) ≥ 1, so u0 � (ν0 + ν∗)ϕ0 contradicts the definition of ν∗. Therefore u – Su �=
νϕ0 for u ∈ K ∩ ∂Ωr and ν ≥ 0.

Therefore it follows from Lemma 1.2 that i(S, K ∩ Ωr , K) = 0.
Using the properties of fixed point index, we have that

i
(
S, K ∩ (ΩR \ Ωr), K

)
= i(S, K ∩ ΩR, K) – i(S, K ∩ Ωr , K) = 1,

and hence S has a fixed point in K . Thereby BVP (1.1) has a positive solution by
Lemma 2.3. �

Theorem 2.2 Suppose that (C1)–(C3) hold and that
(F3) there are constants a2, b2, c2, d2 ≥ 0, and r > 0 such that

f (t, x1, x2, x3, x4) ≤ a2x1 – b2x2 – c2x3 – d2x4 (2.14)

for (t, x1, x2, x3, x4) ∈ [0, 1] × [0.r] × [–r.0]3, the spectral radius r(L2) < 1, where L2 is
defined by (2.9);

(F4) there are positive constants a1, b1, c1, C0 satisfying

min

{
a1

4

∫ 1

0

(
1 – s2)Φ0(s) ds, b1

∫ 1

0
s2Φ1(s) ds, c1

∫ 1

0
sΦ2(s) ds

}
> 1 (2.15)
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such that

f (t, x1, x2, x3, x4) ≥ a1x1 – b1x2 – c1x3 – C0 (2.16)

for (t, x1, x2, x3, x4) ∈ [0, 1] ×R+ ×R
3
–.

If the condition of Nagumo type is fulfilled, i.e.,
(F5) for any M > 0, there exists a positive continuous function HM(ρ) on R+ which satisfies

∫ +∞

0

ρ dρ

HM(ρ) + 1
= +∞ (2.17)

such that ∀(t, x1, x2, x3, x4) ∈ [0, 1] × [0, M] × [–M, 0]2 ×R–,

f (t, x1, x2, x3, x4) ≤ HM
(|x4|

)
, (2.18)

then BVP (1.1) has a positive solution in K .

Proof (i) In this step we will show that μSu �= u for u ∈ K ∩ ∂Ωr , μ ∈ [0, 1], which implies
from Lemma 1.1 that i(S, K ∩ Ωr , K) = 1.

If otherwise, there exist u1 ∈ K ∩ ∂Ωr and μ0 ∈ [0, 1] such that u1 = μ0Su1, then we have
from

0 ≤ u1(t) ≤ r, 0 ≤ –u′
1(t), –u′′

1(t), –u′′′
1 (t) ≤ r, ∀t ∈ [0, 1]

and (2.14) that, for t ∈ [0, 1],

u1(t) ≤ (L2u1)(t), u′
1(t) ≥ (L2u1)′(t),

u′′
1(t) ≥ (L2u1)′′(t), u′′′

1 (t) ≥ (L2u1)′′′(t),

hence (I – L2)u1 � 0. Because the spectral radius r(L2) < 1, it follows that the bounded
inverse operator (I – L2)–1 : P → P exists and u1 � (I – L2)–10 = 0, which is a contradiction
to u1 ∈ K ∩ ∂Ωr .

(ii) Let M be

max

{ 4C0
∫ 1

0 Φ0(s) ds
a1
∫ 1

0 (1 – s2)Φ0(s) ds – 4
,

C0
∫ 1

0 Φ1(s) ds
b1
∫ 1

0 s2Φ1(s) ds – 1
,

C0
∫ 1

0 Φ2(s) ds
c1
∫ 1

0 sΦ2(s) ds – 1

}
. (2.19)

Equation (2.15) tells us that M > 0. By (2.17) it can easily be seen that

∫ +∞

0

ρ dρ

HM(ρ) + C0
= +∞,

and so there exists M1 > M such that

∫ M1

0

ρ dρ

HM(ρ) + C0
> M. (2.20)
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(iii) For u ∈ K , define the homotopy H(λ, u) = Su + λv, where

v(t) = C0

∫ 1

0
kS(t, s) ds,

then v ∈ K and H : [0, 1] × K → K is completely continuous.
Let R > max{r, M1}, and we will prove that

H(λ, u) �= u, ∀u ∈ K ∩ ∂ΩR,λ ∈ [0, 1]. (2.21)

If it is false, there exist u2 ∈ K ∩ ∂ΩR and λ0 ∈ [0, 1] such that

H(λ0, u2) = u2, (2.22)

then by (2.16) and Lemma 2.1 we have that

‖u2‖C = u2(0)

=
∫ 1

0
kS(0, s)f

(
s, u2(s), u′

2(s), u′′
2(s), u′′′

2 (s)
)

ds + λ0C0

∫ 1

0
kS(0, s) ds

≥
∫ 1

0
kS(0, s)

[
a1u2(s) – b1u′

2(s) – c1u′′
2(s) – C0 + λ0C0

]
ds

≥
∫ 1

0
kS(0, s)

[
a1u2(s) – C0

]
ds ≥ a1

2

∫ 1

0
Φ0(s)u2(s) ds – C0

∫ 1

0
Φ0(s) ds

≥ a1‖u2‖C

4

∫ 1

0

(
1 – s2)Φ0(s) ds – C0

∫ 1

0
Φ0(s) ds,

∥∥u′
2
∥∥

C = –u′
2(1)

= –
∫ 1

0

∂kS(1, s)
∂t

f
(
s, u2(s), u′

2(s), u′′
2(s), u′′′

2 (s)
)

ds – λ0C0

∫ 1

0

∂kS(1, s)
∂t

ds

≥ –
∫ 1

0

∂kS(1, s)
∂t

[
a1u2(s) – b1u′

2(s) – c1u′′
2(s) – C0 + λ0C0

]
ds

≥ –
∫ 1

0

∂kS(1, s)
∂t

[
–b1u′

2(s) – C0
]

ds

≥ b1

∫ 1

0
Φ1(s)

(
–u′

2(s)
)

ds – C0

∫ 1

0
Φ1(s) ds

≥ b1
∥∥u′

2
∥∥

C

∫ 1

0
s2Φ1(s) ds – C0

∫ 1

0
Φ1(s) ds,

∥∥u′′
2
∥∥

C = –u′′
2(1)

= –
∫ 1

0

∂2kS(1, s)
∂t2 f

(
s, u2(s), u′

2(s), u′′
2(s), u′′′

2 (s)
)

ds – λ0C0

∫ 1

0

∂2kS(1, s)
∂t2 ds

≥ –
∫ 1

0

∂2kS(1, s)
∂t2

[
a1u2(s) – b1u′

2(s) – c1u′′
2(s) – C0 + λ0C0

]
ds

≥ –
∫ 1

0

∂2kS(1, s)
∂t2

[
–c1u′′

2(s) – C0
]

ds
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≥ c1

∫ 1

0
Φ2(s)

(
–u′′

2(s)
)

ds – C0

∫ 1

0
Φ2(s) ds

≥ c1
∥∥u′′

2
∥∥

C

∫ 1

0
sΦ2(s) ds – C0

∫ 1

0
Φ2(s) ds.

These imply by (2.19) that

‖u2‖C ≤ M,
∥∥u′

2
∥∥

C ≤ M,
∥∥u′′

2
∥∥

C ≤ M. (2.23)

From (2.18), (2.22), and (2.23) it follows that

u(4)
2 (t) = f

(
t, u2(t), u′

2(t), u′′
2(t), u′′′

2 (t)
)

+ λ0C0

≤ f
(
t, u2(t), u′

2(t), u′′
2(t), u′′′

2 (t)
)

+ C0 ≤ HM
(
–u′′′

2 (t)
)

+ C0. (2.24)

Multiplying both sides of (2.24) by –u′′′
2 (t) ≥ 0, we have that

–u′′′
2 (t)u(4)

2 (t)
HM(–u′′′

2 (t)) + C0
≤ –u′′′

2 (t), t ∈ [0, 1]. (2.25)

Then integrating (2.25) over [0, 1] and making the variable transformation such as ρ =
–u′′′

2 (t), we have from (2.23) that

∫ ‖u′′′
2 ‖C

0

ρ dρ

HM(ρ) + C0
=
∫ –u′′′

2 (0)

–u′′′
2 (1)

ρ dρ

HM(ρ) + C0
≤ u′′

2(0) – u′′
2(1) ≤ ∥∥u′′

2
∥∥

C ≤ M

since u′′′
2 (1) = 0 and u(4)

2 (t) ≥ 0 by (2.24). Hence by (2.20) we also have that ‖u′′′
2 ‖C ≤ M1

and ‖u2‖C3 ≤ M1, a contradiction to ‖u2‖C3 = R > M1.
By the homotopy invariance property, from (2.21) the fixed point index is

i(S, K ∩ ΩR, K) = i
(
H(0, ·), K ∩ ΩR, K

)
= i
(
H(1, ·), K ∩ ΩR, K

)
. (2.26)

(iv) Let h(t) = 1
2 (1 – t2), we have from (2.10) and Lemma 2.1 that

(L3h)(t) = a1

∫ 1

0

1
2
(
1 – s2)kS(t, s) ds

≥ a1

2
(
1 – t2)∫ 1

0

1
2
(
1 – s2)Φ0(s) ds

=
(

a1

2

∫ 1

0

(
1 – s2)Φ0(s) ds

)
h(t),

so by [18, p. 67, Theorem 2.5] and (2.15), there exist

λ1 ≥ a1

2

∫ 1

0

(
1 – s2)Φ0(s) ds > 2

and ϕ0 ∈ C[0, 1]\{0} such that ϕ0(t) ≥ 0 and ϕ0 = λ–1
1 L3ϕ0 since L3 is a completely contin-

uous linear operator in C[0, 1]. Obviously ϕ0 ∈ P and thus ϕ0 ∈ K by Lemma 2.2.
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(v) Now we prove that u – H(1, u) �= νϕ0 for u ∈ K ∩ ∂ΩR and ν ≥ 0, where ϕ0 appears in
step (iv), so then

i
(
H(1, ·), K ∩ ΩR, K

)
= 0 (2.27)

holds by Lemma 1.2.
If there exist u0 ∈ K ∩ ∂ΩR and ν0 ≥ 0 such that u0 – H(1, u0) = ν0ϕ0. Clearly ν0 > 0 by

(2.21) and thus

u0(t) =
(
H(1, u0)

)
(t) + ν0ϕ0(t) ≥ ν0ϕ0(t)

for t ∈ [0, 1]. Set

ν∗ = sup
{
ν > 0 : u0(t) ≥ νϕ0(t),∀t ∈ [0, 1]

}
,

then ν0 ≤ ν∗ < +∞ and u0(t) ≥ ν∗ϕ0(t) for t ∈ [0, 1]. From (2.16) we have that, for t ∈ [0, 1],

u0(t) =
(
H(1, u0)

)
(t) + ν0ϕ0(t) ≥ (L3u0)(t) + ν0ϕ0(t)

≥ ν∗(L3ϕ0)(t) + ν0ϕ0(t) = λ1ν
∗ϕ0(t) + ν0ϕ0(t).

From λ1 > 2, we have that λ1ν
∗ + ν0 > ν∗ contradicts the definition of ν∗.

(vi) Finally it follows from (2.26) and (2.27) that i(S, K ∩ ΩR, K) = 0 and

i
(
S, K ∩ (ΩR \ Ωr), K

)
= i(S, K ∩ ΩR, K) – i(S, K ∩ Ωr , K) = –1.

Hence S has a fixed solution and BVP (1.1) has a positive solution by Lemma 2.3. �

In order to give some examples, consider the fourth-order boundary problem under
mixed multi-point and integral boundary conditions with sign-changing coefficients

⎧⎪⎪⎨
⎪⎪⎩

u(4)(t) = f (t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ [0, 1],

u′(0) + 1
4 u( 1

4 ) – 1
12 u( 3

4 ) = 0, u′′(0) +
∫ 1

0 u(t) cos(π t) dt = 0,

u(1) = 1
2 u( 1

2 ) – 1
4 u( 3

4 ), u′′′(1) = 0,

(2.28)

thus β1[u] = 1
4 u( 1

4 ) – 1
12 u( 3

4 ), β2[u] =
∫ 1

0 u(t) cos(π t) dt, β3[u] = 1
2 u( 1

2 ) – 1
4 u( 3

4 ). We estimate
some coefficients, and Matlab is used to calculate in some places.

K1(s) =
∫ 1

0
k0(t, s) dB1(t) =

1
4

k0

(
1
4

, s
)

–
1

12
k0

(
3
4

, s
)

=

⎧⎪⎪⎨
⎪⎪⎩

– 1
12 s2 + 19

192 s, 0 ≤ s ≤ 1
4 ,

1
24 s3 – 11

96 s2 + 41
384 s – 1

1536 , 1
4 < s ≤ 3

4 ,
1

36 s3 – 1
12 s2 + 1

12 s + 1
192 , 3

4 < s ≤ 1,

and hence 0 ≤K1(s) ≤K1(1) = 19
576 < 0.0330;

K2(s) =
∫ 1

0
k0(t, s) cos(π t) dt =

2s – s2

2π2 +
cosπs

π4 –
1
π4 (0 ≤ s ≤ 1),
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and hence 0 ≤K2(s) ≤K2(1) < 0.0302;

K3(s) =
∫ 1

0
k0(t, s) dB3(t) =

1
2

k0

(
1
2

, s
)

–
1
4

k0

(
3
4

, s
)

=

⎧⎪⎪⎨
⎪⎪⎩

– 3
32 s2 + 17

128 s, 0 ≤ s ≤ 1
2 ,

1
12 s3 – 7

32 s2 + 25
128 s – 1

96 , 1
2 < s ≤ 3

4 ,
1

24 s3 – 1
8 s2 + 1

8 s + 11
1536 , 3

4 < s ≤ 1,

and hence 0 ≤K3(s) ≤K3(1) = 25
512 < 0.0489.

The 3 × 3 matrix

[B] =

⎛
⎜⎝

β1[γ1] β1[γ2] β1[γ3]
β2[γ1] β2[γ2] β2[γ3]
β3[γ1] β3[γ2] β3[γ3]

⎞
⎟⎠ =

⎛
⎜⎝

1
6

19
192

1
6

2
π2

1
π2 0

3
16

17
128

1
4

⎞
⎟⎠

and its spectrum radius r([B]) ≈ 0.4479 < 1. Those mean that (C2) and (C3) are satisfied.
Now we take into account the constants in Theorem 2.1 and Theorem 2.2.

(
I – [B]

)–1 <

⎛
⎜⎝

1.3112 0.1875 0.2915
0.2957 1.1551 0.0658
0.3802 0.2515 1.4179

⎞
⎟⎠

and

(
I – [B]

)–1K(s) <

⎛
⎜⎝

0.0633
0.0480
0.0896

⎞
⎟⎠ ,

thus kS(t, s) < 0.0633(1–t)+0.0480× 1
2 (1–t2)+0.0896+k0(t, s) < 0.3437. So, for u ∈ C3[0, 1]

and t ∈ [0, 1],

∣∣(Liu)(t)
∣∣≤ 0.3437

∫ 1

0

(
ai
∣∣u(s)

∣∣ + bi
∣∣u′(s)

∣∣ + ci
∣∣u′′(s)

∣∣ + di
∣∣u′′′(s)

∣∣)ds

≤ 0.3437(ai + bi + ci + di)‖u‖C3 (i = 1, 2),

here Li (i = 1, 2) are defined in (2.9). Since all the terms are nonpositive in the first, second,
and third derivatives of kS(t, s) with respect to t, we also have that, for u ∈ C3[0, 1] and
t ∈ [0, 1],

∣∣(Liu)′(t)
∣∣≤ 0.6114

∫ 1

0

(
ai
∣∣u(s)

∣∣ + bi
∣∣u′(s)

∣∣ + ci
∣∣u′′(s)

∣∣ + di
∣∣u′′′(s)

∣∣)ds

≤ 0.6114(ai + bi + ci + di)‖u‖C3 (i = 1, 2),

∣∣(Liu)′′(t)
∣∣≤ 1.0480

∫ 1

0

(
ai
∣∣u(s)

∣∣ + bi
∣∣u′(s)

∣∣ + ci
∣∣u′′(s)

∣∣ + di
∣∣u′′′(s)

∣∣)ds

≤ 1.0480(ai + bi + ci + di)‖u‖C3 (i = 1, 2),



Ma et al. Boundary Value Problems         (2019) 2019:41 Page 14 of 22

∣∣(Liu)′′′(t)
∣∣≤ ∫ 1

0

(
ai
∣∣u(s)

∣∣ + bi
∣∣u′(s)

∣∣ + ci
∣∣u′′(s)

∣∣ + di
∣∣u′′′(s)

∣∣)ds

≤ (ai + bi + ci + di)‖u‖C3 (i = 1, 2).

Therefore the radius r(Li) ≤ ‖Li‖ ≤ 1.0480(ai + bi + ci + di) < 1 if

ai + bi + ci + di < 1.0480–1 (i = 1, 2). (2.29)

On the other hand, we have from Lemma 2.1 and Lemma 2.2 that, for u ∈ K \ {0} and
t ∈ [0, 1],

(L2u)(t) ≥
∫ 1

0
kS(t, s)a2u(s) ds ≥ a2c0(t)

∫ 1

0
Φ0(s)u(s) ds

≥ a2c0(t)
∫ 1

0
Φ0(s)c0(s)‖u‖C ds = a2c0(t)‖u‖C

∫ 1

0
c0(s)Φ0(s) ds

and

∥∥(L2u)
∥∥

C = (L2u)(0) ≥ 1
2

a2‖u‖C

∫ 1

0
c0(s)Φ0(s) ds,

hence

(
L2

2u
)
(t) ≥ a2

∫ 1

0
kS(t, s)(L2u)(s) ds ≥ a2c0(t)

∫ 1

0
Φ0(s)(L2u)(s) ds

≥ a2c0(t)
∫ 1

0
Φ0(s)c0(s)

∥∥(L2u)
∥∥

C ds ≥ 1
2

a2
2c0(t)‖u‖C

(∫ 1

0
c0(s)Φ0(s) ds

)2

and

∥∥(L2
2u
)∥∥

C =
(
L2

2u
)
(0) ≥ 1

4
a2

2‖u‖C

(∫ 1

0
c0(s)Φ0(s) ds

)2

.

By induction,

∥∥(Ln
2u
)∥∥

C =
(
Ln

2u
)
(0) ≥

(
a2

2

)n

‖u‖C

(∫ 1

0
c0(s)Φ0(s) ds

)n

.

As a result, it follows that, for u ∈ K \ {0},

∥∥Ln
2
∥∥‖u‖C3 ≥ ∥∥Ln

2u
∥∥

C3 ≥ ∥∥Ln
2u
∥∥

C ≥
(

a2

2

)n

‖u‖C

(∫ 1

0
c0(s)Φ0(s) ds

)n

,

and according to Gelfand’s formula, the spectral radius

r(L2) = lim
n→∞

∥∥Ln
2
∥∥1/n

≥ a2

2

(∫ 1

0
c0(s)Φ0(s) ds

)
lim

n→∞

( ‖u‖C

‖u‖C3

)1/n

=
a2

2

(∫ 1

0
c0(s)Φ0(s) ds

)
,
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which implies that r(L2) ≥ 1 when

a2 ≥ 720
13

=
2∫ 1

0
1
2 (1 – s2)[ 1

2 s(1 – s) + 1
6 s3] ds

≥ 2∫ 1
0 c0(s)Φ0(s) ds

. (2.30)

Example 2.1 If f (t, x1, x2, x3, x4) = 3√x1 – 3√x4, then BVP (2.28) has a positive solution.

Proof Take a1 = 1
4 , b1 = c1 = 0, d1 = 1

6 , C0 = 2 and a2 = 56, b2 = c2 = 0, d2 = 1, r = 1/2500.
Obviously, (2.29) and (2.30) are satisfied, meanwhile conditions (2.11) and (2.12) are ful-
filled. Then BVP (2.28) has a positive solution by Theorem 2.1. �

Example 2.2 If

f (t, x1, x2, x3, x4) =
1
2 x1

4 + 1
10 x4

2 + 1
8 x4

3 + 1
9 x4

4

1 + x2
1 + x2

2 + x2
3 + x2

4
,

then BVP (2.28) has a positive solution.

Proof Take a2 = 1
2 , b2 = 1

10 , c2 = 1
8 , d2 = 1

9 , r < 1, it is easy to check that (2.14) and (2.29) are
satisfied. Now take a1 = 56, b1 = 10, c1 = 3, it is clear that

a1

4

∫ 1

0

(
1 – s2)Φ0(s) ds >

a1

4

∫ 1

0

(
1 – s2)[1

2
s(1 – s) +

1
6

s3
]

ds

>
1
4

× 720
13

∫ 1

0

(
1 – s2)[1

2
s(1 – s) +

1
6

s3
]

ds = 1,

b1

∫ 1

0
s2Φ1(s) ds > b1

∫ 1

0

1
2

s4 ds = 1,

c1

∫ 1

0
sΦ2(s) ds > c1

∫ 1

0
s2 ds = 1,

so (2.15) is valid. It can be seen that (2.16) is satisfied for C0 large enough. Let HM(ρ) =
M2 + ρ2 for (F5). Then BVP (2.28) has a positive solution by Theorem 2.2. �

3 Positive solutions of BVP (1.2)
For BVP (1.2) we make the following assumption:

(C′
1) g : [0, 1] ×R

4
+ →R+ is continuous.

As in [15], there exists a solution to BVP (1.2) if and only if the integral equation

u(t) =
3∑

i=1

αi[u]δi(t) +
∫ 1

0
k̃0(t, s)g

(
s, u(s), u′(s), u′′(s), u′′′(s)

)
ds =: (T̃u)(t),

where δ1(t) = 1, δ2(t) = t, δ3(t) = 1
2 t2,

k̃0(t, s) =

⎧⎨
⎩

1
6 t3, 0 ≤ t ≤ s ≤ 1,
1
6 s(3t2 – 3ts + s2), 0 ≤ s ≤ t ≤ 1,
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and αi[u] =
∫ 1

0 u(t) dAi(t) (i = 1, 2, 3), has a solution in C3[0, 1]. We set

(Au)(t) =:
3∑

i=1

αi[u]δi(t), (̃Fu)(t) =:
∫ 1

0
k̃0(t, s)g

(
s, u(s), u′(s), u′′(s), u′′′(s)

)
ds,

so that (T̃u)(t) = (Au)(t) + (̃Fu)(t).
We impose other hypotheses:
(C′

2) Ai is of bounded variation, moreover

K̃i(s) :=
∫ 1

0
k̃0(t, s) dAi(t) ≥ 0, ∀s ∈ [0, 1] (i = 1, 2, 3);

(C′
3) The 3 × 3 matrix [A] is positive whose (i, j)th entry is αi[δj] and whose spectrum

radius r([A]) < 1.
Writing 〈α, δ〉 =

∑3
i=1 αiδi for the inner product in R

3, we define the operator S̃ as

(̃Su)(t) =
〈(

I – [A]
)–1

α[̃Fu], δ(t)
〉
+ (̃Fu)(t), (3.1)

and thus S̃ can be written as follows:

(̃Su)(t)

=
∫ 1

0

(〈(
I – [A]

)–1K̃(s), δ(t)
〉
+ k̃0(t, s)

)
g
(
s, u(s), u′(s), u′′(s), u′′′(s)

)
ds

=:
∫ 1

0
k̃S(t, s)g

(
s, u(s), u′(s), u′′(s), u′′′(s)

)
ds,

that is,

k̃S(t, s) =
〈(

I – [A]
)–1K̃(s), δ(t)

〉
+ k̃0(t, s) =

3∑
i=1

κ̃i(s)δi(t) + k̃0(t, s),

where κ̃i(s) is the ith component of (I – [A])–1K̃(s).

Lemma 3.1 If (C′
2) and (C′

3) hold, then κ̃i(s) ≥ 0 (i = 1, 2, 3) and, for t, s ∈ [0, 1],

c̃0(t)Φ̃0(s) ≤ k̃S(t, s) ≤ Φ̃0(s), (3.2)

where

Φ̃0(s) =
3∑

i=1

κ̃i(s) +
1
6

s3 +
1
2

s(1 – s), c̃0(t) =
1
2

t3,

and

c̃1(t)Φ̃1(s) ≤ ∂ k̃S(t, s)
∂t

≤ Φ̃1(s), c̃2(t)Φ̃2(s) ≤ ∂ 2̃kS(t, s)
∂t2 ≤ Φ̃2(s), (3.3)
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where

Φ̃1(s) =
3∑

i=2

κ̃i(s) +
1
2

s(2 – s), c̃1(t) = t2, Φ̃2(s) = κ̃3(s) + s, c̃2(t) = t.

Proof κ̃i(s) ≥ 0 (i = 1, 2, 3) are due to [15]. (3.2) and (3.3) come directly from the inequali-
ties

1
2

t3
3∑

i=1

κ̃i(s) ≤ 1
2

t2
3∑

i=1

κ̃i(s) ≤
3∑

i=1

κ̃i(s)δi(t) ≤
3∑

i=1

κ̃i(s),

1
2

t3
(

1
6

s3 +
1
2

s(1 – s)
)

≤ t3
(

1
6

s3 +
1
2

s(1 – s)
)

≤ k̃0(t, s) ≤ 1
6

s3 +
1
2

s(1 – s)

and

t2
3∑

i=2

κ̃i(s) ≤ t
3∑

i=2

κ̃i(s) ≤
3∑

i=1

κ̃i(s)δ′
i(t) ≤

3∑
i=2

κ̃i(s),

1
2

t2s(2 – s) ≤ ∂ k̃0(t, s)
∂t

≤ 1
2

s(2 – s),

tκ̃3(s) ≤ κ̃3(s) =
3∑

i=1

κ̃i(s)δ′′
i (t), ts ≤ ∂ 2̃k0(t, s)

∂t2 ≤ s

for t, s ∈ [0, 1]. �

In C3[0, 1] we denote the subsets

P̃ =
{

u ∈ C3[0, 1] : u(t) ≥ 0, u′(t) ≥ 0, u′′(t) ≥ 0, u′′′(t) ≥ 0,∀t ∈ [0, 1]
}

, (3.4)

K̃ =
{

u ∈ P̃ : u(t) ≥ c0(t)‖u‖C , u′(t) ≥ c1(t)
∥∥u′∥∥

C ,

u′′(t) ≥ c2(t)
∥∥u′′∥∥

C ,∀t ∈ [0, 1];

α1[u] ≥ 0,α2[u] ≥ 0,α3[u] ≥ 0, u′′′(1) = 0
}

. (3.5)

It is easy to verify that P̃ and K̃ are cones in C3[0, 1] with K̃ ⊂ P̃. Now define the following
linear operators:

(̃Liu)(t) =
∫ 1

0
k̃S(t, s)

(̃
aiu(s) + b̃iu′(s) + c̃iu′′(s) + d̃iu′′′(s)

)
ds (i = 1, 2),

(̃L3u)(t) = ã1

∫ 1

0
k̃S(t, s)u(s) ds,

(3.6)

where ãi, b̃i, c̃i, d̃i (i = 1, 2) are nonnegative constants.
By the routine method we can prove the following Lemma 3.2 via Lemma 3.1.

Lemma 3.2 If (C′
1)–(C′

3) hold, then S̃ : P̃ → K̃ and L̃i : C3[0, 1] → C3[0, 1] are all com-
pletely continuous, and L̃i (̃P) ⊂ K̃ (i = 1, 2, 3).
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Lemma 3.3 ([15]) If (C′
1)–(C′

3) hold, then S̃ has the same fixed points in K̃ as T̃ . Further-
more, the positive solutions to BVP (1.2) are equivalent to fixed points of S̃ in K̃ .

Theorem 3.1 Suppose that (C′
1)–(C′

3) hold and that
(̃F1) there are constants ã1, b̃1, c̃1, d̃1, C̃0 ≥ 0 such that

g(t, x1, x2, x3, x4) ≤ ã1x1 + b̃1x2 + c̃1x3 + d̃1x4 + C̃0 (3.7)

for (t, x1, x2, x3, x4) ∈ [0, 1] ×R
4
+, the spectral radius r(̃L1) < 1;

(̃F2) there are constants ã2, b̃2, c̃2, d̃2 ≥ 0, and r̃ > 0 such that

g(t, x1, x2, x3, x4) ≥ ã2x1 + b̃2x2 + c̃2x3 + d̃2x4 (3.8)

for (t, x1, x2, x3, x4) ∈ [0, 1] × [0, r̃]4, the spectral radius r(̃L2) ≥ 1; here L̃i : C3[0, 1] →
C3[0, 1] (i = 1, 2) are defined by (3.6).

Then BVP (1.2) has a positive solution in K .

Proof It is easy to verify that P̃ defined by (3.4) is a solid cone, and we define the partial
ordering induced by P̃ such as u � v if and only if v – u ∈ P̃. The rest is similar to the proof
of Theorem 2.1. �

Theorem 3.2 Suppose that (C′
1)–(C′

3) hold and that
(̃F3) there are constants ã2, b̃2, c̃2, d̃2 ≥ 0, and r̃ > 0 such that

g(t, x1, x2, x3, x4) ≤ ã2x1 + b̃2x2 + c̃2x3 + d̃2x4 (3.9)

for (t, x1, x2, x3, x4) ∈ [0, 1] × [0.̃r]4, the spectral radius r(̃L2) < 1, where L̃2 is defined
by (3.6),

(̃F4) there are positive constants ã1, b̃1, c̃1, C̃0 satisfying

min

{
ã1

4

∫ 1

0
s3Φ̃0(s) ds, b̃1

∫ 1

0
s2Φ̃1(s) ds, c̃1

∫ 1

0
sΦ̃2(s) ds

}
> 1 (3.10)

such that

g(t, x1, x2, x3, x4) ≥ ã1x1 + b̃1x2 + c̃1x3 – C̃0 (3.11)

for (t, x1, x2, x3, x4) ∈ [0, 1] ×R
4
+.

If the condition of Nagumo type is fulfilled, i.e.,
(̃F5) for any M > 0, there exists a positive continuous function H̃M(ρ) on R+ which satisfies

∫ +∞

0

ρ dρ

H̃M(ρ) + 1
= +∞

such that

g(t, x1, x2, x3, x4) ≤ H̃M(x4), ∀(t, x1, x2, x3, x4) ∈ [0, 1] × [0, M]3 ×R+, (3.12)

then BVP (1.2) has a positive solution in K .
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Proof Let

M = max

{ 4C̃0
∫ 1

0 Φ̃0(s) ds
ã1
∫ 1

0 s3Φ̃0(s) ds – 4
,

C̃0
∫ 1

0 Φ̃1(s) ds
b̃1
∫ 1

0 s2Φ̃1(s) ds – 1
,

C̃0
∫ 1

0 Φ̃2(s) ds
c̃1
∫ 1

0 sΦ̃2(s) ds – 1

}

and the rest is similar to the proof of Theorem 2.2 in which h(t) = 1
2 t3 for step (iv). �

In the following, we consider the fourth-order boundary problem under mixed multi-
point and integral boundary conditions with sign-changing coefficients

⎧⎪⎪⎨
⎪⎪⎩

–u(4)(t) = g(t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ [0, 1],

u(0) = 1
2 u( 1

4 ) – 1
160 u( 3

4 ), u′(0) =
∫ 1

0 (t – 1
8 )u(t) dt,

u′′(0) = 1
2 u( 1

2 ) – 1
14 u( 3

4 ), u′′′(1) = 0,

(3.13)

thus α1[u] = 1
2 u( 1

4 ) – 1
160 u( 3

4 ), α2[u] =
∫ 1

0 (t – 1
8 )u(t) dt, α3[u] = 1

2 u( 1
2 ) – 1

14 u( 3
4 ). We also

estimate some coefficients as in the previous section.

K̃1(s) =
∫ 1

0
k̃0(t, s) dA1(t) =

1
2

k̃0

(
1
4

, s
)

–
1

160
k̃0

(
3
4

, s
)

=

⎧⎪⎪⎨
⎪⎪⎩

79
960 s3 – 77

1280 s2 + 71
5120 s, 0 ≤ s ≤ 1

4 ,
1

768 – 9
5120 s + 3

1280 s2 – 1
960 s3, 1

4 < s ≤ 3
4 ,

53
61,440 , 3

4 < s ≤ 1,

and hence 0 ≤ K̃1(s) < 0.0011;

K̃2(s) =
1
6

∫ s

0

(
t –

1
8

)
t3 dt +

1
6

∫ 1

s

(
t –

1
8

)
s
(
3t2 – 3ts + s2)dt < 0.0282;

K̃3(s) =
∫ 1

0
k̃0(t, s) dB3(t) =

1
2

k̃0

(
1
2

, s
)

–
1

14
k̃0

(
3
4

, s
)

=

⎧⎪⎪⎨
⎪⎪⎩

1
14 s3 – 11

112 s2 + 19
448 s, 0 ≤ s ≤ 1

2 ,
1

96 – 9
448 s + 3

112 s2 – 1
84 s3, 1

2 < s ≤ 3
4 ,

29
5376 , 3

4 < s ≤ 1,

and hence 0 ≤ K̃3(s) < 0.0060.
The 3 × 3 matrix

[A] =

⎛
⎜⎝

α1[δ1] α1[δ2] α1[δ3]
α2[δ1] α2[δ2] α2[δ3]
α3[δ1] α3[δ2] α3[δ3]

⎞
⎟⎠ =

⎛
⎜⎝

79
160

77
640

71
5120

3
8

13
48

5
48

3
7

11
56

19
448

⎞
⎟⎠

and its spectrum radius r([A]) = 0.6600 < 1. Those mean that (C′
2) and (C′

3) are satisfied.
Now we take into account the constants in Theorem 3.1 and Theorem 3.2.

(
I – [A]

)–1 <

⎛
⎜⎝

2.3438 0.4079 0.0784
1.3962 1.6558 0.2004
1.3354 0.5223 1.1205

⎞
⎟⎠
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and

(
I – [A]

)–1K̃(s) <

⎛
⎜⎝

0.0145
0.0494
0.0229

⎞
⎟⎠ ,

thus k̃S(t, s) < 0.0145 + 0.0494t + 0.0229 × 1
2 t2 + k̃0(t, s) < 0.2421. So, for u ∈ C3[0, 1] and

t ∈ [0, 1],

∣∣(̃Liu)(t)
∣∣ ≤ 0.2421

∫ 1

0

(̃
ai
∣∣u(s)

∣∣ + b̃i
∣∣u′(s)

∣∣ + c̃i
∣∣u′′(s)

∣∣ + d̃i
∣∣u′′′(s)

∣∣)ds

≤ 0.2421(̃ai + b̃i + c̃i + d̃i)‖u‖C3 (i = 1, 2),

here L̃i is defined in (3.6) (i = 1, 2). Since all the terms are nonnegative in the first, second,
and third derivatives of k̃S(t, s) with respect to t, we also have that, for u ∈ C3[0, 1] and
t ∈ [0, 1],

∣∣(̃Liu)′(t)
∣∣≤ 0.5732

∫ 1

0

(̃
ai
∣∣u(s)

∣∣ + b̃i
∣∣u′(s)

∣∣ + c̃i
∣∣u′′(s)

∣∣ + d̃i
∣∣u′′′(s)

∣∣)ds

≤ 0.5732(̃ai + b̃i + c̃i + d̃i)‖u‖C3 (i = 1, 2),

∣∣(̃Liu)′′(t)
∣∣≤ 1.0229

∫ 1

0

(̃
ai
∣∣u(s)

∣∣ + b̃i
∣∣u′(s)

∣∣ + c̃i
∣∣u′′(s)

∣∣ + d̃i
∣∣u′′′(s)

∣∣)ds

≤ 1.0229(̃ai + b̃i + c̃i + d̃i)‖u‖C3 (i = 1, 2),

∣∣(̃Liu)′′′(t)
∣∣≤ ∫ 1

0

(̃
ai
∣∣u(s)

∣∣ + b̃i
∣∣u′(s)

∣∣ + c̃i
∣∣u′′(s)

∣∣ + d̃i
∣∣u′′′(s)

∣∣)ds

≤ (̃ai + b̃i + c̃i + d̃i)‖u‖C3 (i = 1, 2).

Therefore the radius r(̃Li) ≤ ‖̃Li‖ ≤ 1.0229(̃ai + b̃i + c̃i + d̃i) < 1 if

ãi + b̃i + c̃i + d̃i < 1.0229–1 (i = 1, 2). (3.14)

By the same reasoning as in the last section, we have from Lemma 3.1 and Lemma 3.2
that, for u ∈ K̃ \ {0} and t ∈ [0, 1],

∥∥(̃Ln
2u
)∥∥

C =
(̃
Ln

2u
)
(1) ≥

(
ã2

2

)n

‖u‖C

(∫ 1

0
c̃0(s)Φ̃0(s) ds

)n

and the spectral radius

r(̃L2) ≥ ã2

2

(∫ 1

0
c̃0(s)Φ̃0(s) ds

)
,

which implies that r(̃L2) ≥ 1 when

ã2 ≥ 1680
17

=
2∫ 1

0
1
2 s3[ 1

2 s(1 – s) + 1
6 s3] ds

≥ 2∫ 1
0 c̃0(s)Φ̃0(s) ds

. (3.15)
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Example 3.1 If g(t, x1, x2, x3, x4) = √x1 + √x4, then BVP (3.13) has a positive solution.

Proof Take ã1 = 1
4 , b̃1 = c̃1 = 0, d̃1 = 1

5 , C̃0 = 9
4 and ã2 = 100, b̃2 = c̃2 = 0, d̃2 = 1, r̃ = 1/40,000.

Obviously, (3.14) and (3.15) are satisfied, meanwhile conditions (3.7) and (3.8) are fulfilled.
Then BVP (3.13) has a positive solution by Theorem 3.1. �

Example 3.2 If

g(t, x1, x2, x3, x4) =
1
4 x1

4 + 1
20 x4

2 + 1
20 x4

3 + 1
5 x4

4

1 + x2
1 + x2

2 + x2
3 + x2

4
,

then BVP (3.13) has a positive solution.

Proof Take ã2 = 1
4 , b̃2 = 1

20 , c̃2 = 1
20 , d̃2 = 1

5 , r̃ < 1, it is easy to check that (3.9) and (3.14) are
satisfied. Now take ã1 = 99, b̃1 = 7, c̃1 = 3, it is clear that

ã1

4

∫ 1

0
s3Φ̃0(s) ds >

ã1

4

∫ 1

0
s3
[

1
2

s(1 – s) +
1
6

s3
]

ds

>
1
4

× 1680
17

∫ 1

0
s3
[

1
2

s(1 – s) +
1
6

s3
]

ds = 1,

b̃1

∫ 1

0
s2Φ̃1(s) ds > b̃1

∫ 1

0

1
2

s3(2 – s) ds >
20
3

∫ 1

0

1
2

s3(2 – s) ds = 1,

c̃1

∫ 1

0
sΦ̃2(s) ds > c̃1

∫ 1

0
s2 ds = 1,

so (3.10) is valid. It can be seen that (3.11) is satisfied for C̃0 large enough. Let H̃M(ρ) =
M2 + ρ2 for (̃F5). Then BVP (3.13) has a positive solution by Theorem 3.2. �

4 Conclusion
By the theory of fixed point index on cones in C3[0, 1], we in this paper give the sufficient
conditions for the existence of positive solutions to two classes of fourth-order problems
with dependence on all derivatives in nonlinearities subject to Stieltjes integral boundary
conditions. These sufficient conditions include some inequality ones on nonlinearities and
the spectral radius ones of linear operators so that the nonlinearities have superlinear or
sublinear growth. The derivatives, from the first to third order, of the positive solutions
are nonpositive for one class and are nonnegative for the other class respectively. Some ex-
amples are also presented to illustrate the theorems under mixed multi-point and integral
boundary conditions with sign-changing coefficients.
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