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Abstract
This paper uses the Lie group method to analyze the symmetries of the Yao–Zeng
two-component short-pulse equation which describes the propagation of polarized
ultrashort light pulses in cubically nonlinear anisotropic optical fibers. Similarity
reductions and exact solutions are obtained by constructing an optimal system of
one-dimensional subalgebras. Moreover, the explicit solutions are constructed by the
power series method and the convergence of power series solutions is proved. In
addition, nonlinear self-adjointness and conservation laws of this system are
discussed.
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1 Introduction
In the last decades, the short pulse equation has attracted much attention. It was intro-
duced as a model equation to describe the propagation of ultrashort optical pules in silica
optical fibers [1] which has the form

uxt = u +
1
6
(
u3)

xx, (1)

where u represents the magnitude of the electric field, subscripts denote partial differ-
entiation. In order to obtain more information to study Eq. (1), a number of works have
been presented. For instance, its integrability in [2–4], solitary wave solutions in [5], pe-
riodic and traveling wave solutions in [6], two-loop soliton solutions in [7], periodic and
multiloop solitons in [8].

To describe the propagation of polarized ultra-short pulses, the short pulse equation
has been generalized to the multi-component integrable systems. Among them, Matsuno
presented the two-component system [9]

⎧
⎨

⎩
uxt = u + 1

2 (uvux)x,

vxt = v + 1
2 (uvvx)x,

(2)

which is addressed from its multi-component model.
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Another integrable coupled short-pulse equation is given by Feng [10] as follows:
⎧
⎨

⎩
uxt = u + 1

6 (u3)xx + 1
2 v2uxx,

vxt = v + 1
6 (v3)xx + 1

2 u2vxx.
(3)

Let u = v, Eq. (2) degenerates to Eq. (1); v = 0, Eq. (3) recasts to Eq. (1).
In this paper, we consider the Yao–Zeng two-component short-pulse equation [11]

⎧
⎨

⎩
uxt = u + 1

6 (u3)xx,

vxt = v + 1
2 (u2vx)x,

(4)

which describes the propagation of polarized ultrashort light pulses in cubically nonlinear
anisotropic optical fibers. The Hamiltonian structure of Eq. (4) was established in [11], the
zero-curvature representation of Eq. (4) was analyzed in [12]. For the sake of getting more
information about Eq. (4), the goal of the present paper is to analyze symmetries, invariant
solutions, and conservation laws of Eq. (4). The Lie group method [13–15] is considered to
be one of the most effective methods to obtain exact solutions for lots of nonlinear partial
differential equations(PDEs). Another important research topic is related to conservation
laws of PDEs. For the PDEs which do not admit a Lagrangian, based on symmetries [16],
Ibragimov presented the concept of an adjoint equation to investigate conservation laws
by using the conservation law theorem in [17]. There has been a lot of success in this
direction to construct conservation laws for PDEs [16, 18, 19]. By means of conservation
laws, one can determine exact solutions of PDEs [20, 21].

The rest of the paper is arranged as follows. In Sect. 2, we present the Lie point symme-
tries of Eq. (4). In Sect. 3, the similarity reductions are made, exact solutions are consid-
ered by means of the Lie group method. In Sect. 4, the explicit solutions for the reduced
equations are presented via the power series method, and the detailed proof for the con-
vergence of the power series solutions is provided. In Sect. 5, we prove that Eq. (4) is non-
linearly self-adjoint and construct its conservation laws by applying Ibragimov’s method.
Finally, we have a summary of the paper.

2 Lie point symmetries
In this section, we apply the Lie point symmetry method to Eq. (4) and determine its
infinitesimal generators and the commutation table of Lie algebras.

First of all, let us consider a one-parameter Lie group admitted by Eq. (4) with a generator
of the Lie algebras of the form

X = ξ∂x + τ∂t + φ∂u + ϕ∂v, (5)

where ξ , τ , φ, ϕ are functions of x, t, u, v and are described as infinitesimals of the sym-
metry groups.

The invariance criterion for Eq. (4) with respect to operator (5) is read as [13, 22]

pr X(2)
[

uxt – u –
1
6
(
u3)

xx

]
= 0,

pr X(2)
[

vxt – v –
1
2
(
u2vx

)
x

]
= 0.
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The symbol pr X(2) is the usual 2th-order prolongation of the operator [13, 22]. In this
case,

pr X(2) = X + φ(1)
x

∂

∂ux
+ ϕ(1)

x
∂

∂vx
+ φ(2)

xx
∂

∂uxx
+ ϕ(2)

xx
∂

∂vxx
+ φ

(2)
xt

∂

∂uxt
+ ϕ

(2)
xt

∂

∂vxt
,

where

φ(1)
x = Dxφ – uxDxξ – utDxτ ,

ϕ(1)
x = Dxϕ – vxDxξ – vtDxτ ,

φ(2)
xx = D2

x(φ – ξux – τut) + ξuxxx + τuxxt ,

ϕ(2)
xx = D2

x(ϕ – ξvx – τvt) + ξvxxx + τvxxt ,

φ
(2)
xt = DxDt(φ – ξux – τut) + ξuxxt + τuxtt ,

ϕ
(2)
xt = DxDt(ϕ – ξvx – τvt) + ξvxxt + τvxtt ,

and Dx, Dt are the total derivative operators, e.g.,

Dt =
∂

∂t
+ ut

∂

∂u
+ vt

∂

∂v
+ utx

∂

∂ux
+ vtx

∂

∂vx
+ utt

∂

∂ut
+ vtt

∂

∂vt
+ · · · .

Substituting pr X(2) into Eq. (4) yields the following over-determining equations for the
unknown functions ξ , τ , φ, and ϕ:

ξt = ξu = ξv = 0, ξx = –τt ,

τx = τu = τv = 0, τtt = 0,

φ = –uτt ,

ϕx = ϕt = 0, ϕvv = 0, ϕu =
(1 – v)ϕ

u
.

(6)

Solving Eq. (6), we get

ξ = –c1x + c3, τ = c1t + c2, φ = –c1u, ϕ = c5v + c4u,

where c1, c2, c3, c4, and c5 are arbitrary constants. The Lie algebra of infinitesimal symme-
try of Eq. (4) is spanned by the following vector fields:

X1 = –x∂x + t∂t – u∂u, X2 = ∂t , X3 = ∂x, X4 = u∂v, X5 = v∂v.

Furthermore, in order to classify all the group-invariant solutions, we determine an op-
timal system of one-dimensional subalgebras of Eq. (4) by using the method in [23, 24],
which only relies on the commutator table.

First, the commutator relations of X1, X2, X3, X4, X5 are represented in Table 1 by ap-
plying the commutator operator [Xm, Xn] = XmXn – XnXm.

An arbitrary operator X ∈ L5 is written as

X = l1X1 + l2X2 + l3X3 + l4X4 + l5X5.
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Table 1 Table of Lie brackets

[Xi ,Xj] X1 X2 X3 X4 X5

X1 0 –X2 X3 –X4 0
X2 X2 0 0 0 0
X3 –X3 0 0 0 0
X4 X4 0 0 0 X4
X5 0 0 0 –X4 0

To discuss the linear transformations of the vector l = (l1, l2, l3, l4, l5), we apply the fol-
lowing generator:

Ei = ck
ijlj∂lk , i = 1, 2, 3, 4, 5, (7)

where ck
ij is defined by the formula [Xi, Xj] = ck

ijXk . Based on Eq. (7) and Table 1, E1, E2, E3,
E4, E5 can be represented as

E1 = –l2∂l2 + l3∂l3 – l4∂l4 ,

E2 = l1∂l2 ,

E3 = –l1∂l3 ,

E4 = (l1 + l5)∂l4 ,

E5 = –l4∂l4 .

For E1, E2, E3, E4, E5, the Lie equations with parameters a1, a2, a3, a4, a5 and the initial
condition l̃|ai=0 = l, i = 1, 2, 3, 4, 5 are shown as follows:

dl̃1

da1
= 0,

dl̃2

da1
= –l̃2,

dl̃3

da1
= l̃3,

dl̃4

da1
= –l̃4,

dl̃5

da1
= 0,

dl̃1

da2
= 0,

dl̃2

da2
= l̃1,

dl̃3

da2
= 0,

dl̃4

da2
= 0,

dl̃5

da2
= 0,

dl̃1

da3
= 0,

dl̃2

da3
= 0,

dl̃3

da3
= –l̃1,

dl̃4

da3
= 0,

dl̃5

da3
= 0,

dl̃1

da4
= 0,

dl̃2

da4
= 0,

dl̃3

da4
= 0,

dl̃4

da4
= l̃1 + l̃5,

dl̃5

da4
= 0,

dl̃1

da5
= 0,

dl̃2

da5
= 0,

dl̃3

da5
= 0,

dl̃4

da5
= –l̃4,

dl̃5

da5
= 0.

The solutions of these equations give the transformations

T1 : l̃1 = l1, l̃2 = e–a1 l2, l̃3 = ea1 l3, l̃4 = e–a1 l4, l̃5 = l5,

T2 : l̃1 = l1, l̃2 = a2l1 + l2, l̃3 = l3, l̃4 = l4, l̃5 = l5,

T3 : l̃1 = l1, l̃2 = l2, l̃3 = –a3l1 + l3, l̃4 = l4, l̃5 = l5,

T4 : l̃1 = l1, l̃2 = l2, l̃3 = l3, l̃4 = a4(l1 + l5) + l4, l̃5 = l5,

T5 : l̃1 = l1, l̃2 = l2, l̃3 = l3, l̃4 = e–a5 l4, l̃5 = l5.
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The determination of the optimal system demands a simplification of the vector

l = (l1, l2, l3, l4, l5) (8)

by using the transformations T1 – T5. We will obtain the simplest representative of each
class of similar vectors (8). Take two cases into account.

Case 2.1 l1 �= 0
Let a2 = – l2

l1
and a3 = l3

l1
in the transformations T2 and T3, we have l̃2 = l̃3 = 0. Vector (8)

is simplified as the form

l = (l1, 0, 0, l4, l5). (9)

2.1.1 l1 + l5 �= 0
By taking a4 = – l4

l1+l5
in the transformation T4, we have l̃4 = 0. Vector (9) is hence reduced

to the form

l = (l1, 0, 0, 0, l5). (10)

We get the following representatives:

X1, X1 + X5. (11)

2.1.2 l1 + l5 = 0
We get the following representatives:

X1 – X5, X1 – X5 ± X4. (12)

Case 2.2 l1 = 0
We obtain vector (8) of the form

l = (0, l2, l3, l4, l5). (13)

2.2.1 l5 �= 0
Let a4 = – l4

l5
in the transformations T4, we have l̃4 = 0. Vector (13) is simplified as the

form

l = (0, l2, l3, 0, l5). (14)

As a result, we get the following representatives:

X5, X5 ± X2, , X5 ± X3, , X5 ± X2 ± X3. (15)

2.2.2 l5 = 0
We obtain vector (13) of the form

l = (0, l2, l3, l4, 0). (16)
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Considering all the possible combinations, we get the following representatives:

X2, X3, X4, X2 ± X3, X2 ± X4, X3 ± X4, X2 ± X3 ± X4. (17)

Finally, by putting together all the operators (11), (12), (15), and (17), we achieve the
following theorem.

Theorem 2.1 The operators in {X1, X2, X3, X4, X5} create an optimal system:

X1, X1 ± X5, X1 – X5 ± X4, X5, X5 ± X2, X5 ± X3, X5 ± X2 ± X3,

X2, X3, X4, X2 ± X3, X2 ± X4, X3 ± X4, X2 ± X3 ± X4.

3 Similarity reductions and exact solutions
Based on Theorem 2.1, we will discuss the reductions and exact solutions of Eq. (4) in this
section.

Case 3.1 Reduction by X1.
Solving the characteristic equation for X1, we get similarity variables

z = tx, p =
u
x

, q = v,

and the group-invariant solution is p = f (z), q = g(z), i.e.,

u = xf (z), v = g(z). (18)

Using Eq. (18) in Eq. (4), we have
⎧
⎨

⎩
f + f 3 – 2f ′ + 3zf 2f ′ – zf ′′ + z2ff ′2 + 1

2 z2f 2f ′′ = 0,

g – g ′ + zf 2g ′ – zg ′′ + z2ff ′g ′ + 1
2 z2f 2g ′′ = 0,

(19)

where f ′ = df
dz , g ′ = dg

dz .
Case 3.2 Reduction by X2 + X5.
Similarly, we have z = x, u = f (z), v = g(z)et . The corresponding reduction equation is

⎧
⎨

⎩
f + ff ′2 + 1

2 f 2f ′′ = 0,

g – g ′ + ff ′g ′ + 1
2 f 2g ′′ = 0,

(20)

where f ′ = df
dz , g ′ = dg

dz . Therefore, Eq. (4) has a solution u = 0, v = c1ex+t , where c1 is an
arbitrary constant.

Case 3.3 Reduction by X2 + X3 + X5.
We have u = f (z), v = g(z)ex in which z = x – t. Substituting group invariant solution into

Eq. (4), we get
⎧
⎨

⎩
f + ff ′2 + f ′′ + 1

2 f 2f ′′ = 0,

g + g ′ + g ′′ + 1
2 f 2g + ff ′g + ff ′g ′ + 1

2 f 2g ′′ + f 2g ′ = 0,
(21)

where f ′ = df
dz , g ′ = dg

dz .
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Table 2 Similarity reductions of the Yao–Zeng two-component short-pulse equation

Generators Similarity variables Reduced equations

X1 + X5 z = tx,
u = xf (z),
v = g(z)

x .

f + f 3 – 2f ′ – zf ′′ + 3zf 2f ′ + z2ff ′2 + 1
2 z

2f 2f ′′ = 0,
g – zg′′ – zff ′g + z2ff ′g′ + 1

2 z
2f 2g′′ = 0.

X1 – X5 + X4 z = tx,
u = xf (z),
v = xg(z) – x ln xf (z).

f + f 3 – 2f ′ – zf ′′ – 3zf 2f ′ – z2ff ′2 – 1
2 z

2f 2f ′′ = 0,
g – 3

2 f
3 + f ′ – 2g′ + f 2g – zg′′ – 2zf 2f ′ + 2zf 2g′ + zff ′g + 1

2 z
2f 2g′′ + z2ff ′g′ = 0.

X2 z = x,
u = f (z),
v = g(z).

f + ff ′2 + 1
2 f

2f ′′ = 0,
g + ff ′g′ + 1

2 f
2g′′ = 0.

X2 + X3 z = x – t,
u = f (z),
v = g(z).

f + f ′′ + ff ′2 + 1
2 f

2f ′′ = 0,
g + g′′ + ff ′g′ + 1

2 f
2g′′ = 0.

X2 + X4 z = x,
u = f (z),
v = g(z) + tf (z).

f + ff ′2 + 1
2 f

2f ′′ = 0,
g – f ′ + ff ′g′ + 1

2 f
2g′′ = 0.

X2 + X3 + X4 z = x – t,
u = f (z),
v = g(z) + xf (z).

f + f ′′ + ff ′2 + 1
2 f

2f ′′ = 0,
g + f ′ + g′′ + 2f 2f ′ + ff ′g′ + 1

2 f
2g′′ = 0.

Case 3.4 Reduction by X3 + X4.
We have u = f (z), v = g(z) + xf (z) in which z = t. Substituting group invariant solution

into Eq. (4), we get

⎧
⎨

⎩
f = 0,

g = 0.
(22)

Therefore, Eq. (4) has a solution u = 0, v = 0. Obviously, the solution is not meaningful.
Some of the similarity reductions for the optimal system of one-dimensional subalgebra

are represented in Table 2.

4 The explicit power series solutions
In Sect. 3, we obtained the reduction equations by using symmetry analysis. The power
series can be used to treat differential equations, including many complicated differential
equations with nonconstant coefficients [25]. In this section, we solve the nonlinear ODE
(19) by the power series method. For other reduction equations, power series solutions
can also be obtained similarly. For more details on power series solutions, see [15, 26].

Now, we seek a solution of Eq. (19) in a power series of the form

f (z) =
∞∑

n=0

pnzn, g(z) =
∞∑

n=0

qnzn, (23)

where the coefficients pn and qn are all constants to be determined.
Substituting (23) into (19), we have

∞∑

n=0

pnzn +
∞∑

n=0

n∑

k=0

k∑

l=0

plpk–lpn–kzn – 2
∞∑

n=0

(n + 1)pn+1zn

+ 3z
∞∑

n=0

n∑

k=0

k∑

l=0

(n – k + 1)plpk–lpn–k+1zn



Gao and Zhang Boundary Value Problems         (2019) 2019:45 Page 8 of 16

– z
∞∑

n=0

(n + 1)(n + 2)pn+2zn

+ z2
∞∑

n=0

n∑

k=0

k∑

l=0

(k – l + 1)(n – k + 1)plpk–l+1pn–k+1zn

+
1
2

z2
∞∑

n=0

n∑

k=0

k∑

l=0

(n – k + 1)(n – k + 2)plpk–lpn–k+2zn = 0, (24)

∞∑

n=0

qnzn –
∞∑

n=0

(n + 1)qn+1zn + z
∞∑

n=0

n∑

k=0

k∑

l=0

(n – k + 1)plpk–lqn–k+1zn

– z
∞∑

n=0

(n + 1)(n + 2)qn+2zn

+ z2
∞∑

n=0

n∑

k=0

k∑

l=0

(k – l + 1)(n – k + 1)plpk–l+1qn–k+1zn

+
1
2

z2
∞∑

n=0

n∑

k=0

k∑

l=0

(n – k + 1)(n – k + 2)plpk–lqn–k+2zn = 0.

From (24), comparing coefficients, we obtain

p1 =
1
2

p0
(
1 + p2

0
)
, q1 = q0;

p2 =
1
6

p1
(
1 + 6p2

0
)
, q2 =

1
4

q1
(
1 + p2

0
)
.

(25)

Generally, for n ≥ 0, we have

pn+3 =
1

(n + 3)(n + 4)

{

pn+2 +
n∑

k=0

k∑

l=0

(n – k + 1)pl

[
(k – l + 1)pk–l+1pn–k+1

+
1
2

(n – k + 2)pk–lpn–k+2

]
+

n+1∑

k=0

k∑

l=0

(3n – 3k + 7)plpk–lpn–k+2

+
n+2∑

l=0

plpn+2–lp0

}

,

qn+3 =
1

(n + 3)2

{

qn+2 +
n∑

k=0

k∑

l=0

[
1
2

(n – k + 2)(n – k + 3)plpk–lqn–k+2

+ (k – l + 1)(n – k + 1)plpk–l+1qn–k+1

]
+

n+1∑

l=0

plpn+1–lq1

}

.

(26)

In view of Eq. (26), we can obtain all the coefficients pi, qi (i ≥ 3) of the power series
(23), e.g.,

p3 =
1

12
(
p2 + 10p2

0p2 + 10p0p2
1
)
,

q3 =
1
9
(
q2 + 3p2

0q2 + 3p0p1q1
)
.

(27)
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Therefore, for arbitrary chosen constant numbers p0 and q0, the other terms of the
sequence {pn}∞n=0 and {qn}∞n=0 can be determined by (25) and (26). This implies that for
Eq. (19), there is a power series solution (23) with the coefficients constructed by (25) and
(26).

Now we show the convergence of the power series solution (23) of Eq. (19). In fact, from
(26), we have

|pn+3| ≤ M

[

|pn+2| +
n∑

k=0

k∑

l=0

|pl|
(|pk–l+1||pn–k+1| + |pk–l||pn–k+2|

)

+
n+1∑

k=0

k∑

l=0

|pl||pk–l||pn–k+2| +
n+2∑

l=0

|pl||pn+2–l|
]

, n = 0, 1, . . . ,

where M = max{1, 1
2 , 3, p0}. Similarly, from (26), we have

|qn+3| ≤ N

[

|qn+2| +
n∑

k=0

k∑

l=0

(|pl||pk–l||qn–k+2| + |pl||pk–l+1||qn–k+1|
)

+
n+1∑

l=0

|pl||pn+1–l|
]

, n = 0, 1, . . . , (28)

where N = max{1, 1
2 , q1}.

Now, we define two power series R = R(z) =
∑∞

n=0 rnzn and S = S(z) =
∑∞

n=0 snzn by

ri = |pi|, sj = |qj|, i, j = 0, 1, 2,

and

rn+3 = M

[

rn+2 +
n∑

k=0

k∑

l=0

(rlrk–l+1rn–k+1 + rlrk–lrn–k+2)

+
n+1∑

k=0

k∑

l=0

rlrk–lrn–k+2 +
n+2∑

l=0

rlrn+2–l

]

,

sn+3 = N

[

sn+2 +
n∑

k=0

k∑

l=0

(rlrk–lsn–k+2 + rlrk–l+1sn–k+1)

+
n+1∑

l=0

rlrn+1–l

]

,

(29)

where n = 0, 1, . . . . Then, it is easily seen that

|pn|≤rn, |qn|≤sn, n = 0, 1, 2, . . . .

Thus, the two series R = R(z) =
∑∞

n=0 rnzn and S = S(z) =
∑∞

n=0 snzn are majorant series of
(23), respectively. Next, we show that the series R = R(z) and S = S(z) have positive radius
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of convergence.

R(z) = r0 + r1z + r2z2 +
∞∑

n=0

rn+3zn+3 = r0 + r1z + r2z2

+ M

[ ∞∑

n=0

rn+2zn+3 +
∞∑

n=0

n∑

k=0

k∑

l=0

(rlrk–l+1rn–k+1 + rlrk–lrn–k+2)zn+3

+
∞∑

n=0

n+1∑

k=0

k∑

l=0

rlrk–lrn–k+2zn+3 +
∞∑

n=0

n+2∑

l=0

rlrn+2–lzn+3

]

= r0 + r1z + r2z2 + M
[
z(R – r0 – r1z) + zR(R – r0)2 + zR2(R – r0 – r1z)

+ z
(
R2(R – r0) – r2

0r1z
)

+ z
(
(R + r0)(R – r0 – r1z) + r1z(R – r0)

)]
,

and

S(z) = s0 + s1z + s2z2 +
∞∑

n=0

sn+3zn+3

= s0 + s1z + s2z2 + N

[ ∞∑

n=0

sn+2zn+3 +
∞∑

n=0

n∑

k=0

k∑

l=0

(rlrk–lsn–k+2 + rlrk–l+1sn–k+1)zn+3

+
∞∑

n=0

n+1∑

l=0

rlrn+1–lzn+3

]

= s0 + s1z + s2z2 + N
[
z(S – s0 – s1z)

+ zR2(S – s0 – s1z) + zR(RS – r0S – Rs0 + r0s0) + z2(R2 – r2
0
)]

.

Consider now the implicit functional system with respect to the independent variable z:

F(z, R, S) = R – r0 – r1z – r2z2 – M
[
z(R – r0 – r1z) + zR(R – r0)2 + zR2(R – r0 – r1z)

+ z
(
R2(R – r0) – r2

0r1z
)

+ z
(
(R + r0)(R – r0 – r1z) + r1z(R – r0)

)]
,

G(z, R, S) = S – s0 – s1z – s2z2 – N
[
z(S – s0 – s1z) + zR2(S – s0 – s1z)

+ zR(RS – r0S – Rs0 + r0s0) + z2(R2 – r2
0
)]

.

Since F , G are analytic in the neighborhood of (0, r0, s0) and F(0, r0, s0) = 0, G(0, r0, s0) = 0.
Furthermore, the Jacobian determinant

∂(F , G)
∂(R, S)

∣∣∣
∣
(0,r0,s0)

= 1 �= 0,

if we choose the parameters r0 = |p0| and s0 = |q0| properly. By the implicit function the-
orem [27], we see that R = R(z) and S = S(z) are analytic in a neighborhood of the point
(0, r0, s0) and with the positive radius. This implies that the two power series (23) converge
in a neighborhood of the point (0, r0, s0). This completes the proof.
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Hence, the power series solution (23) for Eq. (19) is an analytic solution. The power
series solution of Eq. (19) can be written as the following:

f (z) = p0 + p1z + p2z2 +
∞∑

n=0

pn+3zn+3

= p0 +
1
2

p0
(
1 + p2

0
)
z +

1
6

p1
(
1 + 6p2

0
)
z2

+
∞∑

n=0

1
(n + 3)(n + 4)

{

pn+2 +
n∑

k=0

k∑

l=0

(n – k + 1)pl

[
(k – l + 1)pk–l+1pn–k+1

+
1
2

(n – k + 2)pk–lpn–k+2

]
+

n+1∑

k=0

k∑

l=0

(3n – 3k + 7)plpk–lpn–k+2

+
n+2∑

l=0

plpn+2–lp0

}

zn+3,

g(z) = q0 + q1z + q2z2 +
∞∑

n=0

qn+3zn+3

= q0 + q0z +
1
4

q1
(
1 + p2

0
)
z2

+
∞∑

n=0

1
(n + 3)2

{

qn+2 +
n∑

k=0

k∑

l=0

[
1
2

(n – k + 2)(n – k + 3)plpk–lqn–k+2

+ (k – l + 1)(n – k + 1)plpk–l+1qn–k+1

]
+

n+1∑

l=0

plpn+1–lq1

}

zn+3.

Thus, the explicit power series solution of Eq. (4) is

u(x, t) = p0x +
1
2

p0
(
1 + p2

0
)
tx2 +

1
6

p1
(
1 + 6p2

0
)
t2x3

+
∞∑

n=0

1
(n + 3)(n + 4)

{

pn+2 +
n∑

k=0

k∑

l=0

(n – k + 1)pl

[
(k – l + 1)pk–l+1pn–k+1

+
1
2

(n – k + 2)pk–lpn–k+2

]
+

n+1∑

k=0

k∑

l=0

(3n – 3k + 7)plpk–lpn–k+2

+
n+2∑

l=0

plpn+2–lp0

}

tn+3xn+4,

v(x, t) = q0 + q0tx +
1
4

q1
(
1 + p2

0
)
t2x2

+
∞∑

n=0

1
(n + 3)2

{

qn+2 +
n∑

k=0

k∑

l=0

[
1
2

(n – k + 2)(n – k + 3)plpk–lqn–k+2

+ (k – l + 1)(n – k + 1)plpk–l+1qn–k+1

]
+

n+1∑

l=0

plpn+1–lq1

}

tn+3xn+3,
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where p0 and q0 are arbitrary constants, the other coefficients pn, qn (n ≥ 1) depend on
(25) and (26) completely.

Remark 4.1 The power series solutions can greatly enrich the solutions of Eq. (4) and
converge quickly, so it is convenient for computations in both theory and applications.

5 Nonlinear self-adjointness and conservation law
In this section, we prove the nonlinear self-adjointness of Eq. (4) and determine its con-
servation laws.

5.1 Preliminaries
Consider the rth-order system of m PDEs:

Eα(x, u, u(1), . . . , u(r)) = 0, α = 1, 2, . . . , m, (30)

where x = (x1, . . . , xn), u = (u1, . . . , um), uα
i = ∂uα/∂xi, uα

ij = ∂2uα/∂xi∂xj, and u(i) denotes the
collection of all ith-order partial derivatives of u with respect to x.

The adjoint equations of Eq. (30) are defined by [28]

E∗
α(x, u, v, u(1), v(1), . . . , u(r), v(r)) =

δL
δuσ

= 0, (31)

where v = (v1, . . . , vm), L = vβEβ (x, u, u(1), . . . , u(r)) is the formal Lagrangian, and δ/δuσ is
the Euler–Lagrange operator defined by [28]

δ

δuσ
=

∂

∂uσ
+

∞∑

s=1

(–1)sDi1 . . . Dis
∂

∂uσ
i1...is

,

where Di denotes the total derivative operators with respect to xi.

Definition 5.1 ([16]) System (30) is said to be nonlinearly self-adjoint if the adjoint system
(31) is satisfied for all solutions u of Eq. (30) upon a substitution

vα = ϕα(x, u), α = 1, . . . , m, (32)

such that ϕ(x, u) = (ϕ1, . . . ,ϕm) �= 0.

Definition 5.1 is identical to the following identities:

E∗
α(x, u, v, u(1), v(1), . . . , u(r), v(r)) = λβ

αEβ (x, u, u(1), . . . , u(r)),α, β = 1, . . . , m, (33)

where λβ
α is a certain function.

The following theorem will be used to obtain conservation laws [17].

Theorem 5.2 Any infinitesimal symmetry (local and nonlocal)

X = ξ i(x, u, u(1), . . . )
∂

∂xi + ηα(x, u, u(1), . . . )
∂

∂uα



Gao and Zhang Boundary Value Problems         (2019) 2019:45 Page 13 of 16

admitted by Eq. (30) gives rise to a conservation law Di(Ci) = 0, where Ci is constructed by
the formula

Ci = W α

[
∂L
∂uα

i
– Dj

(
∂L
∂uα

ij

)
+ DjDk

(
∂L
∂uα

ijk

)
– · · ·

]

+ Dj
(
W α

)[ ∂L
∂uα

ij
– Dk

(
∂L
∂uα

ijk

)
+ · · ·

]

+ DjDk
(
W α

)[ ∂L
∂uα

ijk
– · · ·

]
+ · · · , (34)

with W α = ηα – ξ juα
j . The Lagrangian L should be written in the symmetric form with

respect to all mixed derivatives uα
ij , uα

ijk , . . . .

5.2 Nonlinear self-adjointness
Following Definition 5.1 and Theorem 5.2, we can prove the nonlinear self-adjointness of
Eq. (4) and thus obtain its conservation laws.

Theorem 5.3 Equation (4) is nonlinearly self-adjoint under the substitution

Λ1 = c1v, Λ2 = –c1u,

where c1 is an arbitrary constant.

Proof Let the formal Lagrangian of Eq. (4) be of the form

L = Λ1

(
uxt – u –

1
6
(
u3)

xx

)
+ Λ2

(
vxt – v –

1
2
(
u2vx

)
x

)
,

where Λ1, Λ2 are two new dependent variables.
Using the equivalent formula (33) of the definition of nonlinear self-adjointness, the

identities

δL
δu

= λ1
1

(
uxt – u –

1
6
(
u3)

xx

)
+ λ2

1

(
vxt – v –

1
2
(
u2vx

)
x

)
,

δL
δv

= λ1
2

(
uxt – u –

1
6
(
u3)

xx

)
+ λ2

2

(
vxt – v –

1
2
(
u2vx

)
x

)
,

(35)

are established under the substitution Λ1 = Λ1(x, t, u, v), Λ2 = Λ2(x, t, u, v).
By splitting Eq. (35) with respect to the coefficients of different order derivatives of u

and v, we obtain a system in the unknown variables Λ1, Λ2 whose solutions are

Λ1 = c1v, Λ2 = –c1u,

where c1 is an arbitrary constant. This completes the proof. �
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5.3 Construction of conservation laws
For the infinitesimal operator X = ξ∂x + τ∂t + φ∂u + ϕ∂v, by Theorem 5.2, the conservation
law of Eq. (4) is represented in the form DxCx + DtCt = 0. Moreover, we have

Cx = W u
[

∂L
∂ux

– Dt

(
∂L
∂uxt

)
– Dx

(
∂L
∂uxx

)]
+ Dt

(
W u) ∂L

∂uxt
+ Dx

(
W u) ∂L

∂uxx

+ W v
[

∂L
∂vx

– Dt

(
∂L
∂vxt

)
– Dx

(
∂L
∂vxx

)]
+ Dt

(
W v) ∂L

∂vxt
+ Dx

(
W v) ∂L

∂vxx
,

Ct = W u
[

–Dx

(
∂L
∂uxt

)]
+ Dx

(
W u) ∂L

∂uxt

+ W v
[

–Dx

(
∂L
∂vxt

)]
+ Dx

(
W v) ∂L

∂vxt
,

where W u = φ – ξux – τut , W v = ϕ – ξvx – τvt , the Lagrangian L = Λ1(uxt – u – 1
6 (u3)xx) +

Λ2(vxt – v – 1
2 (u2vx)x) = c1v(uxt – u – 1

6 (u3)xx) – c1u(vxt – v – 1
2 (u2vx)x).

By simplifying Cx, Ct , we have

Cx =
(

–c1uvux +
3
2

c1u2vx – c1vt

)
W u + c1vDt

(
W u) –

1
2

c1u2vDx
(
W u)

+
(

–
1
2

c1u2ux + c1ut

)
W v – c1uDt

(
W v) +

1
2

c1u3Dx
(
W v), (36)

Ct = –c1vxW u + c1vDx
(
W u) + c1uxW v – c1uDx

(
W v). (37)

Case 5.1 For the generator X1 = –x∂x + t∂t – u∂u, we obtain W u = –u + xux – tut , W v =
xvx – tvt . According to Eqs. (36) and (37), we have

Cx =
(

–c1uvux +
3
2

c1u2vx – c1vt

)
(–u + xux – tut) + c1v(–2ut + xutx – tutt)

–
1
2

c1u2v(xuxx – tutx) +
(

–
1
2

c1u2ux + c1ut

)
(xvx – tvt) – c1u(–vt – tvtt + xvxt)

+
1
2

c1u3(vx – tvtx + xvxx),

Ct = –c1vx(–u + xux – tut) + c1v(xuxx – tutx) + c1ux(xvx – tvt) – c1u(vx – tvtx + xvxx).

Case 5.2 For the generator X2 = ∂t , we obtain W u = –ut , W v = –vt . According to
Eqs. (36) and (37), we have

Cx = –
(

–c1uvux +
3
2

c1u2vx – c1vt

)
ut – c1vutt +

1
2

c1u2vutx

–
(

–
1
2

c1u2ux + c1ut

)
vt + c1uvtt –

1
2

c1u3vtx,

Ct = c1vxut – c1vutx – c1uxvt + c1uvtx.
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Case 5.3 For the generator X3 = ∂x, we obtain W u = –ux, W v = –vx. According to
Eqs. (36) and (37), we have

Cx = –
(

–c1uvux +
3
2

c1u2vx – c1vt

)
ux – c1vuxt +

1
2

c1u2vuxx

–
(

–
1
2

c1u2ux + c1ut

)
vx + c1uvxt –

1
2

c1u3vxx,

Ct = c1vxux – c1vuxx – c1uxvx + c1uvxx.

Case 5.4 For the generator X4 = u∂v, we obtain W u = 0, W v = u. According to Eqs. (36)
and (37), we have

Cx =
(

–
1
2

c1u2ux + c1ut

)
u – c1uut +

1
2

c1u3ux,

Ct = c1uxu – c1uux.

Case 5.5 For the generator X5 = v∂v, we obtain W u = 0, W v = u. According to Eqs. (36)
and (37), we have

Cx =
(

–
1
2

c1u2ux + c1ut

)
v – c1uvt +

1
2

c1u3vx,

Ct = c1uxv – c1uvx.

6 Conclusions
In this paper, the Lie symmetry analysis is applied for the Yao–Zeng two-component short-
pulse equation. New invariant solutions are constructed based on the optimal system.
Moreover, we use the properties of nonlinear self-adjointness of Eq. (4) to obtain general
formulae of conservation law. Our results can be applied to describe the propagation of
polarized ultrashort light pulses in cubically nonlinear anisotropic optical fibers.
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