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nanofluid flow are reduced to coupled non-linear ordinary differential equations by
employing similarity transformation. Thereafter, numerical solution of the resulting
boundary value problem is obtained using a fourth-order accurate collocation based
solver in MATLAB. A particular case of the present problem is compared with a
previously published study, and the results are found to be in excellent agreement.
The impact of pertinent physical entities on nanofluid velocity, nanofluid
temperature, and nanoparticle concentration are presented graphically, while local
skin friction, heat transfer, and mass transfer rates are recorded in a tabular form. It is
found that melting process increases the thicknesses of momentum, thermal and
solutal boundary layers while it reduces skin friction, heat and mass transfer rates.
Wedge angle and Casson nanofluid parameters enhance the fluid velocity; however,
the impact of the magnetic field and permeability of the medium is opposite to that
of their usual characteristics. This study would be valuable in designing cooling
gadgets and heat sinks of various shapes which will enhance the heat transfer
properties of Casson nanofluids thereby increasing their applications in industrial
perspectives.
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1 Introduction

Boundary layer flow past a wedge is a classic problem in fluid dynamics, and its presence
could be seen almost everywhere wherever general fluid flow takes place, be it industrial
processes, manufacturing units, or the design of prototypes for technological advance-
ments in aerospace or defense laboratories. For example, applications of flows past a wedge
could be found in polymer processing, crude oil extraction, flow of molten metals over
ramped surfaces, liquid metal flows in heat exchangers, throwing of chilled air through
AC panels, nuclear power plants, designing flaps on airplane wings for enhanced lift, drag,
and manoeuvre, modeling of warships, submarines, and in several other domains of sci-
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ence and engineering. In fact, wedge angle plays a crucial role in the study of transonic
flows over airfoils and wings, including flows at Mach 1 as discussed by Jameson [1].

The classical boundary layer problems are expressed in terms of partial differential equa-
tions (PDEs). It is well known that PDEs have very important applications in engineering
and sciences. Their significant impacts in real life problems are exhaustively discussed in
the work of Ghergu and Radulescu [2] and Cavalcanti et al. [3]. The reduction of classi-
cal boundary layer equations into an ordinary differential equation via similarity trans-
formation with exhaustive justification and explanation was made by Hartree [4]. Here,
the equation contains external flow of the form ax™ which is evaluated at the wall, where
x stands for coordinate axis along the wedge wall, and 4 > 0 and m are real constants.
This equation came to be known as Falkner—Skan equation (named after V.M. Falkner and
Sylvia W. Skan). Then, analytical solution with algebraic decay velocity field was found by
Fang [5]. Later, Weyl [6] performed the mathematically rigorous analysis for the Falkner—
Skan equation. Recently, many scholars have demonstrated their distinct fascination in
the investigation of fluid flow past a wedge surface. For instance Ashraf et al. [7], Ahmad
[8], Hossain [9], and Ishak et al. [10] have investigated flows past a wedge with Dirichlet
and Robin or mixed type thermal boundary conditions.

Fluids that contain small nanometer-sized particles (molecules or atoms) suspended in
a base fluid are called nanofluids. Fluids like water, engine oil, and ethylene glycol with
less thermal conductivity are known as base fluids. They are assumed as basic for heat
transfer coefficient between the heat transfer of medium and surface. According to the ex-
perimental demonstrations, nanofluids have more thermal conductivity than base fluids.
Historically, Choi and Eastman [11] invented nanofluids in 1995. They pointed out that
presence of suspended nanoparticles enhanced the effective thermal conductivity of the
base fluid. Convective transport in nanofluids was discussed in detail by Buongiorno [12].
We know that nanofluids with rheological characteristics in shear stress-strain relation-
ship are called Casson nanofluids which belong to the part of non-Newtonian fluids. These
fluids act as an elastic solid at low shear strain and behave as a Newtonian fluid above
the critical stress value. The global existence of classical solution to a compressible non-
Newtonian fluid was discussed by Fang et al. [13]. Some common Casson fluids are orange
juice, soup, tomato sauce, honey, and blood. Furthermore, fluid flows under the influence
of magnetic fields are of high significance in the study of geophysical, astrophysical phe-
nomena and are routinely used in several processes in engineering and technology. Such
flows are called magnetohydrodynamic (MHD) flows and have received phenomenal at-
tention from world researchers owing to their infinitely many possible applications. His-
tory of works and applications in MHD flows can be found in Molokov et al. [14] and
Sutton and Sherman [15]. Significant studies on the Cauchy problem for the generalized
MHD system is carried out by Gala and Ragusa [16, 17]. In recent years, MHD flows with
mass and heat transfer through porous media have been considered widely because of
their crucial applications in various engineering processes such as filtration of liquid met-
als, casting, metallurgy, fusion control, cooling of nuclear reactors, and so on. However,
till date there are too few investigations on MHD Casson nanofluid flows in a porous or
permeable medium. Some of the related literatures are Buryachenko and Skrypnik [18],
Kafoussias and Nanousis [19], Ullah et al. [20], and Mustafa and Khan [21].

It is well known that melting is driven from the physical change of a body by means of
heating process. It results in the phase transition of a substance from a solid state to aliquid
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state. The melting problem has been a subject of highly demanding theoretical and exper-
imental examinations for a long period of time. This is due to its close relationship with a
vast variety of technologically imperative procedures. Some vital real-life applications are
cooling and heating process, melting of permafrost, thermal energy storage, unfreezing
of frozen grounds, setting up of semiconductor-material, casting and welding of manu-
facturing processes, and so on. Accordingly, many studies have been performed based on
the melting. For instance, Roberts [22] studied the melting phenomenon of ice put in a hot
stream of air at a steady state. The relationship between diffusion heat transfer and melting
was initially investigated by Yen and Tien [23]. Epstein and Cho [24] discussed melting in
steady laminar flow on the flat plate. An analysis of melting with natural convection at the
melt region was performed by Sparrow et al. [25]. Recently, many researchers have studied
boundary layer problems with melting heat transfer with different aspects, viz. Ishak et al.
[26], Ibrahim [27], Abdel-Rahman [28], Ahmad and Pop [29], Yacob [30], and so on.

However, in all the above studies, no investigation is conducted on the effects of the com-
bination of both wedge angle and melting process on MHD Casson nanofluid flow through
a porous medium. Due to this reason, the authors were motivated to model and study the
problem. The effects of different physical entities on nanofluid velocity, nanofluid temper-
ature, nanoparticle concentration, local skin friction, heat transfer rate, and mass transfer
rate are illustrated through the graphs and in a tabular form, respectively. All results are
interpreted with physical rationale. Specifically, this investigation would be highly signif-
icant in designing cooling gadgets and heat sinks of various shapes which will enhance
the heat transfer properties of Casson nanofluids thereby increasing their applications in
industrial perspectives.

2 Mathematical formulation

Consider a forced convection steady two-dimensional incompressible Casson nanofluid
flow past a wedge embedded through a porous medium with melting process. The in-
duced magnetic field is assumed to be small and is thus neglected. Nanoparticle volumet-
ric fraction and the temperature at the surface are denoted by C,, and T = T, respectively.
Here T, is the surface temperature due to melting. Further, the external (free stream) ve-
locity of the nanofluid is considered as U(x) = ax™, where a > 0 denotes a real constant.
Moreover, the magnetic field is assumed to be B(x) = B,x™, where B, is the constant mag-
netic field [8, 10] and applied normal to the wedge walls (as shown in Fig. 1). Similarly,
the variable permeability of the medium is assumed as K(x) = K'x™, where K’ is the di-

Figure 1 Geometry of the flow y
4
B(x)
U(x) .
iy o X
. s
°




Sarkar and Endalew Boundary Value Problems (2019) 201943 Page 4 of 14

mensionless permeability and m = ol ﬁ such that B; = £. Here m, f1, and £2 stand for the
wedge angle parameter, Hartree pressure gradient, and wedge angle, respectively [10]. We
assumed that m € [0, 1], in which m = 0 stands for the horizontal plate and m = 1 stands
for the vertical plate. Temperature and the nanoparticle concentration far from the sur-
face are given by T, and C, respectively. Here, T}, < T, and T, > T,. Having in mind
all the above assumptions, nanofluid flow is governed by the following nonlinear partial

differential equations:

8u av
=0, (1)
8x 8y
9 9 au 1) 92 B?
M+V—M=L1(x) (x)+v 1+ )22, (2 (x)+ . (U(x) - u), 2)
“ox dy dx B) 0y? pf K(x)
aT 9T 3T acaT DT aT\?
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aC aC 3°C  Dr 3*T

—t . 4
Bay2 + Too 952 (4)

U— +vV— =
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In the above equations, (u,v) are the velocity components, 7 is the dimensional
nanofluid temperature, C is the dimensional nanoparticle concentration, Dp denotes
the Brownian diffusion, Dy stands for the thermophoresis diffusion coefficient, v is

(pc)p
pc) denotes the thermal diffusivity, 7 = oy
nanoparticle heat capacity to the base fluid, o is the electrical conductivity and $ is the

is the ratio of

the nanofluid viscosity, o =

Casson nanofluid parameter. Equation (1) is the continuity equation of incompressible
nanofluid and Equation (2) describes the nanofluid momentum equation. Equation (3)
states that the transport of heat in the nanofluid occurred by forced convection (first and
second terms of LHS) and behavior of nanoparticle diffusion (second and third terms of
RHS). Equation (4) states that the nanoparticles can not only move homogeneously within
due to the convective terms (first and second term on the LHS), but are also affected by
Brownian diffusion and thermophoresis (second and third term on RHS). Hence, the gov-
erning equations are highly coupled.

The boundary conditions for the nanofluid flow are given as follows [26, 29]:

oT
v=0, u=0, k— = ,o[k + Cy(T,, — To)]v(x, 0),

9 (5a)
T=T,, C=C, aty=0,

u— Ux), v=0, T — T, C— Cyx asy— oo. (5b)
Here, &, A, T,, p, and C; are the thermal conductivity of the nanofluid, latent heat of the

nanofluid, solid surface temperature, density and heat capacity of the solid surface, respec-
tively. We introduce the similarity and dimensionless variables as follows [8, 26, 29]:

200U (x _ [m+ 1)U)
R U R ©
o) = gl =

Too — T C,-Csx
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Let us define the stream function ¥ (x, y) as follows:

oy oy
-— u=—.
ox ay

7)

For this choice of stream function, the continuity equation given in Equation (1) is satisfied.
These stream functions given in Eq. (7) reduce Egs. (2—4) as follows:

1 " 2m 12 1" 1 7\ _
(“E +m+1(1—f)+ﬁ +<M+E)(1—f)_0, (8)
0"+ P.{Ny9'0' + 0’ + N0} =0, (9)
Vi Nt ” 7
¢ +]\_[b9 +Lep'f =0. (10)

The corresponding boundary conditions are given:

BY'(n)+Pf(n)=0,  f(m)=0,  6(n)=0, ¢p(n) =1 atn=0, (11a)

() —1, 0(n) — 1, ¢(n) —> 0 asn— oo. (11b)

Here, the physical parameters that govern the flow are defined as follows:

20 B? aK'(m +1) v G (T = T,)
=, [(pzi, Pr:_) B:—’
pra(m + 1) 2v o A+ C(Ty = Tp) (12)
D (T, — Tso Dg(Cy — Coo
N, PrTn =T DeGu=Co)r v
VT o v Dg

wheref’, 0, ¢, Pr, Le, Nb, Nt, M, and K,, are the dimensionless nanofluid velocity, nanofluid
temperature, nanoparticle concentration, Prandtl number, Lewis number, Brownian pa-

rameter, thermophoresis parameter, magnetic field parameter, and permeability param-
Cof (Trm—To) here Cof (Tm—T))

7+ Co(Tr—To)” ’ A

are the Stefan numbers for the liquid state and solid state, respectively [8,

eter, respectively. The melting parameter B is defined as B =
and 7CS(T‘;”T")
29].

Next, depending on the above quantities, the skin friction, Nusselt and Sherwood num-

bers are given in a dimensionless form as follows:

/@%=(1+1 "(0), j%he’(ox Ji%hqs/(ox (13)

where Re,, Crx, Nu, C,f, and Sh are the local Reynolds number, skin friction, Nusselt
number, specific heat capacity of convective fluid, and Sherwood number, respectively.

3 Numerical solution

The partial differential Eqs. (1)—(4) that govern the nanofluid flow problem are trans-
formed to nonlinear coupled ordinary differential equations (ODEs) by employing bound-
ary layer theory. These highly nonlinear coupled ordinary differential Egs. (8)—(10) with
respect to the boundary conditions (11a), (11b) are solved numerically by calling the fa-
mous BVP4C solver of MATLAB. The BVPAC solver is based on a 3-stage Lobatto IIla col-
location formula whose collocation polynomial provides a C1-continuous solution which
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Table 1 Comparison of skin friction f”/(0) when P, = 1 for different B with existing result

B Ishak et al. [26] Present result
0(Blasius) 0.4696 0.4696
1 0.2786 0.2790
2 0.2019 0.2022
3 0.1594 0.1598

is fourth-order accurate throughout the entire domain [31]. In order to validate the cor-
rectness of our numerical computation, we have run the same numerical code in the ab-
sence of wedge angle, Casson nanofluid parameter, permeability, and magnetic field. Then
we have extracted the values of skin friction corresponding to € = 0 from Fig. 1 of Ishak et
al. [26]. After that we have compared our values of skin friction with those of Ishak et al.
[26] and have presented them in Table 1. We found that the results are in excellent agree-
ment with maximum percentage error to be only 0.001%. This justifies the correctness of

our numerical results.

4 Results and discussion

In this problem, we propose to study the effects of melting and wedge angle parameters
on the two-dimensional incompressible steady MHD Casson nanofluid flow past a wedge
embedded in a porous medium. In this regard, the impacts of important physical entities
on nanofluid velocity, nanofluid temperature, nanoparticle concentration, skin friction,
heat transfer rate, and mass transfer rate are presented through Figs. 2—-16 and Table 2,
respectively. The values of physical parameters used for the numerical simulations of the
graphs are, unless otherwise stated: Le=1,P, =1, =10, M =1, Nb =Nt =m = K, = 0.5,
B=1.

Figure 2 shows the influence of the magnetic field parameter on nanofluid velocity. Here,
we can see that the thickness of boundary layer diminishes with an increment in the mag-
netic field, i.e., nanofluid velocity tends to free stream velocity earlier for a greater strength
of the field. This means that magnetic field enhances the magnitude of nanofluid velocity
in this case. This is contrary to the usual nature of magnetic field to suppress the flow. This
can be attributed to a positive body force term containing magnetic field on the right of the
momentum Eq. (2). The positive sign of a body force originates from the fact that U(x) > u
in Eq. (2), i.e., free stream (external) velocity (U(x)) is more than the nanofluid velocity (u)
in the boundary layer. The impact of the permeability parameter on the nanofluid velocity
is exhibited in Fig. 3. It is noted that nanofluid velocity reduces with an increment in per-
meability of the medium. This is why the nanofluid velocity reaches free stream velocity
later for a higher value of K,,. The reverse trend of permeability on nanofluid velocity is
akin to the previous effect of magnetic field on it.

The impact of wedge angle on the nanofluid velocity is shown in Fig. 4. It is noted from
Fig. 4 that nanofluid velocity rises as the wedge angle parameter goes up. An increment in
the wedge angle parameter enhances forced convection, which in turn adds the nanofluid
velocity. The influence of the Casson nanofluid parameter on the nanofluid velocity is
shown in Fig. 5. From this figure, we can see that as the Casson nanofluid parameter rises,
the nanofluid velocity rises, while the thickness of boundary layer reduces. It can be easily
perceived from Equation (2) that, with an increment in the value of Casson nanofluid
parameter, the momentum equation tends to the momentum equation of a Newtonian
fluid. Hence nanofluid velocity increases as the effective viscous drag force decreases with
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Figure 2 Nanofluid velocity for different values of M 1
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Figure 3 Nanofluid velocity for different values of
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Figure 4 Nanofluid velocity for different values of m 1
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the increase in 8, i.e., v(1 + 1/8) < v(1 + 1/B) for higher values of 8. This is why nanofluid
velocity reaches the free stream velocity earlier for a greater value of 8. The increase in S
also causes an increase in the surface shear stress or skin friction (Table 2), which in turn
increases the thickness of boundary layer. This is in compliance with the previous findings
of Mukhopadhyay et al. [32].

The impact of melting (B) on nanofluid velocity is depicted in Fig. 6. It is observed that
melting enhances the thickness of boundary layer, that is, velocity boundary layer, thermal
boundary layer, and solutal boundary thicknesses increase with the increase in the melt-
ing parameter (as seen in Figs. 6, 7, and 12). Also, the melting parameter reduces the skin
friction, Nusselt and Sherwood numbers, i.e., heat and mass transfer rates, are hindered

by the melting process. This reduces forced convection current, and hence the nanofluid

Page 7 of 14
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Figure 5 Nanofluid velocity for different values of 8

Figure 6 Nanofluid velocity for different values of B 1
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Figure 7 Nanofluid temperature for different values
of B

35 4

velocity is also reduced by this process. Physically, the outcome confirms that the lique-
fying under goes about like a blowing boundary condition at the extending wall. Figure 7
exhibits the impact of melting B on the nanofluid temperature graph. When the melting
parameter increases, the graph of nanofluid temperature decreases. Physically speaking,
rising the parameter B results in more acceleration to the nanofluid flow which, in turn,
convects more heat energy into the ambiance and causes a reduction in the nanofluid
temperature.

When the magnetic field increases, the nanofluid temperature increases as portrayed
in Fig. 8. We have seen (see Fig. 2) that nanofluid velocity rises with an increment in the
magnetic field. Hence, nanofluid temperature increases as a result of forced convection.
Thickness of the thermal boundary layer reduces with the increment in the magnetic field.
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Figure 8 Nanofluid temperature for different values 1
of M 09
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Figure 9 Nanofluid temperature for different values
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Figure 10 Nanofluid temperature for different 1
values of Nb
081 1
06} 1
G
@
041 1
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Figure 9 depicts the impact of Prandtl number on the nanofluid temperature. In the anal-
ysis of heat transfer, the relative thermal boundary layer thickness may be controlled by
Prandtl number. Hence, when Prandtl number is large, heat diffuses slowly. This means
that for a larger value of Prandtl number the thermal boundary layer thickness is much
less. Hence, as Prandtl number increases thermal diffusion decreases, thus, inhibiting the
melting process. This results in the increase in nanofluid temperature with Prandtl num-
ber. The influence of Brownian motion on the nanofluid temperature is shown in Fig. 10.
From this figure, we can observe that, as N}, increases, nanofluid temperature decreases.
Physically, Brownian motion is unspecified movement of small particles (molecules or

atoms) suspended in a fluid resulting from their collision with rapid motion of molecules
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Figure 11 Nanofluid temperature for different !
values of Nt 09
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Figure 12 Nanoparticle concentration for different
values of B

Figure 13 Nanoparticle concentration for different
values of Le

Le=1248
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in the nanofluid. Such collision enhances the melting process which yields more nanofluid
into the system resulting in the reduction in nanofluid temperature.

The impact of thermophoresis on the nanofluid temperature is visualized in Fig. 11.
Here, we can see that the fluid temperature increases as the thermophoresis parameter
increases. It is known that thermophoresis is the movement of molecules in the direction
of positive temperature gradient. So, the suspended nanoparticles will tend to move from
the regions of high temperature, i.e., from the free stream, to low temperature, i.e., the
body of the melting surface. This reverse concentration gradient (from the free steam to-
wards the surface) hinders the melting process by forming a barrier to the heat conduction

process, thus increasing the overall temperature of the system.
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Figure 14 Nanoparticle concentration for different
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values of M
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Figure 15 Nanoparticle concentration for different
values of Nb
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Figure 16 Nanoparticle concentration for different
values of Nt
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Figure 12 shows the impact of the melting parameter on the nanoparticle concentra-
tion. Here, we can see that nanoparticle concentration expands as the melting parameter
rises (similar argument as presented for Fig. 6). Figure 13 depicts the influence of Lewis
number on the nanoparticle concentration. When Lewis number goes up, the nanoparti-
cle concentration diminishes in magnitude throughout the boundary layer region. Physi-
cally speaking, the quotient of thermal diffusivity to the mass diffusivity is known as Lewis
number. Therefore, when Lewis number rises, the concentration of nanoparticles dimin-
ishes. This is due to the inverse proportionality of Lewis number and mass diffusivity.
A reverse flow in nanoparticle concentration is observed at 1 = 2 which may be attributed
to the melting process. The impact of the magnetic parameter on the nanoparticle con-

centration is exhibited in Fig. 14. Here, we can see that the nanoparticle concentration

Page 11 of 14
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Table 2 Variation of skin friction, Nusselt and Sherwood numbers for different parameters. In this
table, the boldface values specify that we are increasing the values of those particular physical
parameters keeping the values of other parameters fixed

m B Pr Nb Nt M Le Kp B ”(0) 6'(0) -¢'(0)

0.5 10 1 0.5 0.5 1 1 0.5 1 1.74873 0.37903 043844
0.6 10 1 0.5 0.5 1 1 0.5 1 1.77412 0.38005 0.44001
0.5 11 1 0.5 0.5 1 1 0.5 1 1.75520 0.37928 043883
0.5 12 1 0.5 0.5 1 1 0.5 1 1.76065 0.37949 043915
0.5 10 2 0.5 0.5 1 1 0.5 1 1.74695 0.38312 040382
0.5 10 3 0.5 0.5 1 1 0.5 1 1.75246 0.37052 0.37780
0.5 10 1 0.6 0.5 1 1 0.5 1 1.75471 0.36538 043145
0.5 10 1 0.7 0.5 1 1 0.5 1 1.76066 0.35183 042844
0.5 10 1 0.5 0.6 1 1 0.5 1 1.74399 0.38990 0.44897
0.5 10 1 0.5 0.7 1 1 0.5 1 1.73915 040103 046249
0.5 10 1 0.5 0.5 2 1 0.5 1 1.96975 0.38605 044948
0.5 10 1 0.5 0.5 3 1 0.5 1 2.17000 0.39165 045838
0.5 10 1 0.5 0.5 1 2 0.5 1 1.75051 0.37498 041723
0.5 10 1 0.5 0.5 1 3 0.5 1 1.75133 0.37311 0.38124
0.5 10 1 0.5 0.5 1 1 0.6 1 1.66917 0.37626 043411
0.5 10 1 0.5 0.5 1 1 0.7 1 161015 0.37410 043076
0.5 10 1 0.5 0.5 1 1 0.5 2 166148 0.29195 0.27905
0.5 10 1 0.5 0.5 1 1 0.5 3 1.60535 0.24056 0.19200

diminishes with an increment in the magnetic field parameter. What is more, magnetic
field in the fluid causes the reduction on the nanoparticle concentration. Effect of Brow-
nian motion on the nanoparticle concentration is shown in Fig. 15. Here, we can see that,
as the Brownian parameter increases, nanoparticle concentration increases throughout
the flow domain. The impact of thermophoresis on the nanoparticle concentration is de-
picted in Fig. 16. Thus we conclude that, when thermophoresis increases, the nanoparticle
concentration decreases.

4.1 Discussion of local skin friction, Nusselt and Sherwood numbers

The effects of all pertinent physical parameters on the local skin friction, Nusselt and
Sherwood numbers are visualized in Table 2. From this table, we can see that the skin
friction (f”(0)) rises as m, B, Pr, Nb, M, Le, and K}, increase, whereas it reduces with the
increment in Nt and B. This implies that skin friction expands with the increment in the
wedge angle parameter, magnetic field, permeability of the medium, Brownian motion,
Casson nanofluid parameter, and Lewis number, while it reduces with the increase in ther-
mophoresis and melting parameters. Nusselt number (6'(0)) increases as m, 8, Nt, and M
increase, whereas it decreases with the increase in Nb, P,, Le, K,,, and B. That is, heat trans-
fer rate increases as the wedge angle, Casson nanofluid parameter, thermophoresis, and
magnetic field increase, whereas it reduces with the increment in the Brownian parameter,
Prandtl number, Lewis number, permeability, and melting parameter. Sherwood number
(—¢'(0)) increases as m, B, Nt, and M increase, whereas it reduces with the increment in
Nb, P,, Le, K,, and B. This implies that mass transfer rate increases as the wedge angle,
Casson nanofluid parameter, thermophoresis, and melting parameter increase. However,
it reduces with increase in Brownian motion, Prandtl number, Lewis number, permeabil-
ity, and melting parameter.

5 Conclusion
A numerical investigation has been carried out to examine the influences of melting and
wedge angle parameters on the two-dimensional steady MHD Casson nanofluid flow with
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heat and mass transfer past a wedge embedded in a porous medium. Employing bound-
ary layer theory, equations that govern the nanofluid flow were reduced to a system of
highly nonlinear ordinary differential equations. Thereafter, the fourth-order accurate col-
location based solver BVP4C is called in MATLAB to obtain the numerical solution of
the resulting boundary value problem. The impacts of pertinent physical entities on the
nanofluid velocity, temperature, nanoparticle concentration, local skin friction, heat trans-
fer rate, and mass transfer rate are presented through graphs and a table. The following
major conclusions are drawn from the investigation.

+ The nanofluid velocity and local skin friction increase with increasing of magnetic
field and decrease with increasing of the permeability parameter. This is due to the
presence of positive body force.

+ The nanofluid velocity increases with the increase in the wedge angle, Casson
nanofluid, and melting parameters.

« The nanofluid temperature diminishes with the increment in the melting parameter,
whereas it rises with the increase in magnetic field and Prandtl number.

« Anincrement in Lewis number causes the reduction in nanoparticle concentration in
the interval 0.5 <n < 2.

«+ Thickness of thermal boundary layer decreases as Prandtl number increases.

+ The nanofluid temperature decreases as Brownian motion rises, whereas it increases
as the thermophoresis parameter goes up.

+ The nanoparticle concentration rises as Brownian motion increases, whereas it
decreases as the thermophoresis parameter rises.

« The local skin friction and Nusselt number rise with increase in the Brownian and
thermophoresis parameters, respectively.

« Nanoparticle (mass) transfer rate increases with increasing values of the
thermophoresis parameter, wedge angle parameter, and Casson fluid, whereas it
reduces with the increment in Brownian motion, permeability, and Lewis number.
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