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1 Introduction

Quantum calculus, roughly speaking, is ordinary calculus without limits. There are several
types of quantum calculus: /-calculus (also known as the calculus of finite differences), g-
calculus, and Hahn'’s calculus. In this paper we are concerned with the g-calculus. The
q-derivative and the g-integral were first defined by Jackson [1, 2] and had proven to have
important applications in many subjects, like in hypergeometric series, complex analysis,
particle physics, and quantum mechanics. For a general introduction to the g-calculus, we
refer the reader to the book [3].

The origin of the fractional g-difference calculus can be traced back to the works in
[4] by Al-salam and Agarwal. Perhaps due to the development of the fractional differ-
ential equations, an interest has been observed in studying boundary value problems of
fractional g-difference equations, especially, about the existence of the solutions for the
boundary value problems [5-10].

Boundary value problems on a half-line arise quite naturally in the study of radially
symmetric solutions of nonlinear elliptic equations and models of gas pressure in a semi-
infinite porous medium. Though much of the work on fractional calculus deals with finite
domain, there is a considerable development on the topic involving unbounded domain
[11-24].

In 2010, Zhao and Ge considered the following fractional boundary value problem [11]:

DS, u(t) +f(t,u(t)) =0, te(0,00),ac(l,2),

u(0)=0, Jim Di;u(®) = pu(®),
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where 0 < £ < 00, Df, is the standard Riemann-Liouville fractional derivative. By means
of fixed point theorems, sufficient conditions are obtained that guarantee the existence of
solutions to the above boundary value problem.

In 2011, Zhao et al. studied the fractional multi-point boundary value problem [14]

D&, u(e) +f(6,u(t)) =0, € (0,00),

u(0)=0, Di'u(+o0) =) aul(&),

i=1

where 1<a<2,0<& <& <---<§, <00, D§, is the standard Riemann-Liouville frac-
tional derivative. By Leggett—Williams fixed point theorem, sufficient conditions that
guarantee the existence of three positive solutions are obtained.

To the best of our knowledge, there is no paper considering fractional g-difference equa-
tions on the half-line. Theories and applications seem to be just being initiated. In this pa-
per we will fill in the gap to investigate the existence of solutions for the following boundary

value problem of nonlinear fractional g-difference equations on the half-line:
(D’;‘u)(t) +f(t, u(t)) =0, 0<t<oo (1.1)

subject to the boundary conditions

w(0)=0, Di 'u(+o0) =) au(&), (1.2)

i=1

where 0<g<1,1<a<2,0<Y7" a&* " < I(a),f:(0,00),R) — [0,00) is a contin-
uous function. Most results on the solution of boundary value problem of fractional g-
difference equations that have been obtained concern the finite interval. In this paper, the
range of variables is considered on the half-line. Since the Arzela—Ascoli theorem fails to
work in the space Cy, we use a modified compactness criterion to prove T is compact.
We prove the existence and multiplicity results on positive solutions for boundary value
problem (1.1)—(1.2) by utilizing Schauder fixed point theorem and Leggett—Williams fixed
point theorem. Several existence results for solutions on the half-line are obtained. This
work is motivated by papers [11, 14].

The paper is organized as follows. In Sect. 2, we introduce some definitions of g-
fractional integral and differential operator together with some basic properties and
lemmas to prove our main results. In Sect. 3, we investigate the existence of solutions
for boundary value problem (1.1)—(1.2) by Schaefer fixed point theorem and Leggett—

Williams fixed point theorem. In Sect. 4, we give an example to illustrate our main results.

2 Preliminaries

In the following section, we collect some definitions and lemmas about fractional g-
integral and fractional g-derivative for the integrity of the theory, for which we refer to
[25-27].
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Definition 2.1 ([4]) Let @ > 0 and f be a function defined on [0, b]. The fractional g-
integral of the Riemann—Liouville type is defined by (I;f)(x) = f(x) and

(Iof) () = /O (- gt) Vf()dyt, o >0,x€]0,b].

.
Iy()

Definition 2.2 ([26]) The fractional g-derivative of the Riemann-Liouville type of order
@ > 0 is defined by (D)f)(x) = f(x) and

(Dgf)(x) = (Dslé’_“f) (®), a>0,
where p is the smallest integer greater than or equal to «.

As a particular case, it is easily seen that

I(w) a1

Dot /Ll
Ty —a)

(2.1)
Next, we list some properties about g-derivative and g-integral that are already known
in the literature.

Lemma 2.1 ([4, 26]) Let o, 8 > 0 and [ be a function defined on [0, 1]. Then the following
formulas hold:

(i) (F1)@) = Ug ")),

(ii) (D"‘I“f) =f(x).

Lemma 2.2 ([4]) Let o > 0 and p be a positive integer. Then the following equality holds:

p-1 Pl —p+k
o k
(e Dof ) (x) = (DBIES) (%) — ;W( of)(0).

Lemma 2.3 ([25]) Let I and ] be intervals containing zero such that ] C I. Let f,, and f be
functions defined in I, n € N such that

lim f,(¢) =f(t) foralltel, andf, tends uniformly to f on J.
Then
hm fn(t)d t= / f@)dyt forallxel

Lemma 2.4 ([28], Schauder fixed point theorem) Let B be a Banach space with C C B
closed and convex. Assume that U is a relatively open subset of C with0 € U and F : U — C
is a continuous, compact map. Then either

(1) F has a fixed point in U, or

(2) there exists u € OU and X € (0,1) with u = MFu.

Let E = (E,|| - ||) be a Banach space, P C E be a cone, k be a nonnegative continu-
ous concave functional on P, and a, b,c > 0 be constants. Define P, = {x € P : ||x|| < c},
Pk,a,b) ={x € P:a <«k(x),|x| < b}.
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Lemma 2.5 (Leggett—Williams fixed point theorem) Let T : P, — P, be a completely con-
tinuous operator, and let k be a nonnegative continuous concave functional on K such that
Kk (x) < ||x|| for all x € P,. Suppose that there exist 0 < a < b < d < ¢ such that

(A1) {xePk,b,d)|k(x)> b} #0 and k(x) > b for x € P(«k, b, d);

(A2) || Tx|| < afor x| < a;

(A3) k(Ix) > b for x € P(k,b,c) with | Tx| > d.
Then T has at least three fixed points x1, xo, and x3 such that ||x1|| < a, b < k(x3), and
llx3 ]l > a, with k(x3) < b.

Remark 2.1 If there holds d = ¢, then condition (A1) implies condition (A3) in Lemma 2.5.
The next result is important in the sequel.

Lemma 2.6 Let h € C(R") be a given function. Then the boundary value problem
(D5u)(6) + h(t) =0, 0<t<oo, (2.2)

u(0) =0, D;’lu(+oo) = Zaiu(&), (2.3)

i=1
has a unique solution

a-1

= G(t,gs)h i G(&;,q8)h(s)d,s,
u(2) /0 (t, gs)h( > e fo (& as)h(s) dys

d -
S)dgs + @)= 4 4

where

m

§ : a-1
A = ﬂiéj ’

i=1

and

ta’l—(t—qs)(""l)
G(t; ‘IS) = -1 Fq(a)
@’

0<s<t<oo

0<t<s<oq

is the Green function of boundary value problem (2.2)—(2.3).

Proof Let us begin with integrating on both sides of (2.2)
17 Dyu(t) = =17 h(?).

In view of Definition 2.2 and Lemma 2.2, we deduce

1
Iy(a)

t
u(t) = — / (t-— qs)(“‘l)h(s) dgs + 1t 4 et
0

Applying the boundary condition #(0) = 0, thus ¢; = 0, we have

1

“0 =~

t
/ (t- qs)(“’l)h(s) dgs + c v (2.4)
0
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So,

&
/ (& - ) Vhs) d,s,

L) = a-1 —
u(SZ) = Clgl‘ Fq(Ol) o

and

- q9)* Vh(s)dys.

Y amE) =y ag " -
i=1 i=1

Differentiating on both sides of (2.4) and combining (2.1), we get
o—1
D u(t)
T,
=D Ih(E) + Di ey 1" = =Dy VI h(E) + ¢ _G@ r-(@--1
Iyle-—a+1)
= =Dy I I h(t) + e Tyla) = =DyI;h(t) + ey Ty(er) = ~Igh(2) + ¢ Ty(@).
Therefore,

D;‘lu(oo) = _/o h(s)dgs + c1 Ty(@).

Using the boundary condition D‘;’lu(+oo) =Y = au(&;), hence

—q9)* Vh(s)dys.

_ / hs)dygs + i Ty(@) = c1 Y @i~
0 i=1

It is easy to show that

1 +00
= / h(s) d,s

F(a)—zzlﬂt&' 0
a-1)
f (- g9 h(s) d,s. (2.5)

(Ol) 11 lél F()

i=1

For convenience, we denote

m
A= Zﬂislfxil.
i=1

Utilizing (2.4) and (2.5), we get

~ ta—l +00 a— m Sl qs)
u(t)_m fo h(s)dqs— — Za, /0 W h(s)dys

i=

_ ! _ (1)
Fq(oc)/(; (t-gs) h(s)dys

1 A . +00
= o h(s)d
(Fq(a)+Fq(a)(Fq(a)—A)>t fo (5)dgs
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r(a)— Z / r( ) h(s)dqs
1 ‘ (a-1)
_ Fq(ot)./o (£—gs) " h(s)dys

— 1 a-1 oo _; t ~ )
= Fq(ot)t '/0 h(S)qu Fq(a)/o (t—gs) h(S)dqs
A w1 +00
’ Wf f h(s) dys

(& -
r(a)— / r() h()dqs

a-1 m

oo t o0
:]0 G(2,gs)h(s) dgs + ﬁztlifo G(&i qs)h(s)dys

Define

a-1_(p_o\(a-1)

%, 0<s<t<oo,
q

ta—l

L <t<

Ty’ 0<t<s<oo.

G(t,gs) =

The proof is completed.

The following properties of the Green function play important roles in this paper.

Lemma 2.7 Function G defined in Lemma 2.6 satisfies the following properties:
(P1) G(t,qs) > 0and G(t,qs) < G(gs,qs) forall 0 <s, t < 00.
(P2) There exists a function y € C(R*) such that

kmln G(t,gs) > v(gs) sup Gl(¢,qs) = y(qs)G(gs,qs), s € (0,+00),

0<t<oo
where 0 < k < [ < 00 are constants.

Proof It is clear that G(¢,gs) > 0 for s, ¢ € [0, +00). The monotonicity of G(¢, gs) implies

a-1
sup Gt gs) = G(gs, gs) = ﬂ, s € [0, +00). (2.6)
0<t<+o0o Fq(a)

t

ﬁ

o—1
Now we consider the existence of . Setting gi (t,qs) = ——

<
&

a-1) o-1
and gZ(t: 615) = Itwq(a) ’

we have
gl(qu)’ s€E (O,k],
kn<1t1£1 G(t,gs) = { min{g,(/,gs),g2(k,qs)}, s € [k, 1],
&(k,gs), s€[l,00)
la—l_(l_qs)(a—l)
_ B [‘q(a) ’ s 6 (0’ r]’ (2‘7)
Iliq(ot)’ s € [r,00),

Page 6 of 16
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where 0 < 7 < 00 is the unique solution of the equation

ol (- qS)(Dl—l) = kel (2.8)
Hence
E-leg) g oo,
rig)=q @ (2.9)
(Lye-1) r<s<oo.
qs
This completes the proof of Lemma 2.7. d

3 Main results
We are now in a position to state and prove our main results in this paper.
Consider the space C([0,00),R) defined by Cu([0,00),R) = {u € C([0,00),R) :

u(t)

limys 400 Ht(ﬁ exists} with the norm
full = sup 14!
tef0,00) 1 + 2271

Lemma 3.1 ([29]) Cy is a Banach space.

For u € Cy, we define the operator T by

ta—l

Tu(t) = /0 G(t, qs)f(s,u(s)) dys + m ;ai/() G(Ei,qs)f(s, u(s)) dys.

We list some conditions in this section for convenience:

(H1) Let F(t,u) =f(t, (1 + t* VYu), |F(t, u)| < p(®)w(|u|) on [0,00) with w € C([0, 00), R)
nondecreasing and ¢ € C([0, 00)), f0°° @(s)dys < +00.

(H2) There exists a constant p such that, for any ¢ € [0,00), v1,v2 € R,

|F(s,v2(5)) = F(s,v1(5))| < plva = w1l.

Since the Arzela—Ascoli theorem fails to work in the space Cy, we need a modified
compactness criterion to prove T is compact.

Lemma 3.2 ([29]) Let V ={u e Cux: |lul| <1} (I>0), V1 ={ ue) .y e V'}. If V1 is equicon-

L+l
tinuous on any compact intervals of [0, +00) and equiconvergent at infinity, then V is rela-

tively compact on Co.

Remark 3.1 Vj is called equiconvergent at infinity if and only if, for any given ¢ > 0, there
exists N = N (&) > 0 such that

u(ty) a u(tz)
L+ 1+t

<eg forallue Vi,t,t > N.

Define the cone P C Cy by

P= {u € Coo:u(t)>0,t e [0,+oo)}.

Page 7 of 16
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Lemma 3.3 If (H1)—(H2) hold, then T : P — P is completely continuous.
Proof We divide the proof into three steps.
Step 1: We show that T: P — P is continuous.

In view of the continuity and nonnegativity of G and f, we have Tu(t) > 0 for ¢ € [0, 00).

For any u € £2, by (H1) we obtain

/wf(s, u(s)) dys < (L) /OO @(s)dys < 00,
0 0

and

lim (Tw)(®) = Lm 1 £ (s, u(s)) dgs + ﬁ izzlzzi /000 G(&, gs)f (s, u(s)) dgs.

tro0 1 4 01 (@)

So, lim;_, ;o0 ;TQQ exists. Thus, T(P) C P.
Letv(?) = :a 1. Then by (H1), we have f (s, u(s)) = F(s, = = 1) F(s,v(s)). Taking u,, — u

as 1 — +00 in Cy, by (H2) we deduce

u(t)

n(£)
I (& () — £ (8, u(2))| = ‘F(t, 1‘: SH) - F<t, — > ‘ = |E(t,va®) - E(t,v(2))|

< ,o|vn(t) - v(t)| — 0 uniformly on [0, c0).

So f(t, u,(£)) — f(t, u(t)) uniformly on [0, c0). By Lemma 2.3 we have

[e¢]

lim f(s, un(s)) dys = /Ooof(s, u(s)) ds. (3.1)

n—00 0

Then, combining (3.1), we have

Tu, (t) Tu(t)
1+l 14t

/o TGO, (1 (5,0,06) ~ £ (5, 09)) s

1+t

El’
Py 2 [ T o) (o) s

< /0 o qf) (f (s, 14n(5)) = f (s, 4(5))) s

1+¢e-!

G(&, )
s 2o [ TR o) o)

1
=7 / (F (5, 140()) — (5, u(s))) lys
a-1
_ ST / (f (s, un(s)) = f (s, 14(5))) dlgs|.

a)—
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Hence

Tu,,(t) — Tu(t)

I Toy, — Tul| = ‘
te[0,00) 1+t

0, asn— oo.

So, T is continuous.
Step 2: We show that T is uniformly bounded.

Let £2 be any bounded subset of P, i.e., there exists L > 0 such that |u|| < L for each
u € £2. It suffices to show that T'(x) is bounded in P. In fact, for u € £2, we have

Il = sp ( /0 e f’tfﬂf (t,u(s) dys
m i S
/ If (£, (s)) | dys + ZFq(;‘)’faAl /0 N r;a) £ (& u(s)) | d,s
( al) ff)i(a)) [ %sﬂl))
<Fq(a> () —Amrq(a)) /ow’F <S’ %) d

S
w(L) o
< m /(; @(s) dys < 0.

dgs

Hence, T'(£2) is uniformly bounded.

Now, we show that T'(£2) is equicontinuous on any compact interval.

First, for any given Q > 0, t1, £, € [0, Q], and u € £2, without loss of generality, we assume
that ¢, > 1, we deduce

Tu(ty)  Tu(t)

L+ 1+4470

oo G(t , ) oo G(t , )
= A 1 +2tgq—slf(s’ M(S)) qu - /(; ! q_s f(S, u(s)) qu

1+51

5! G(&igs)
* (1+t§“1 1+tf 1); / r( )— A (s, u(s)) dys

® G(ty,gs) G(t1,45)
f/o Ly ! () das - f Lyt () dos

* G(t1,95) G(t1,95)
+ /0 1 :;:Slf(s, u(s)) dys — /0 ! aqslf(s u(s)) dys

1+

5 £\ v /°° G(&q9)
- l 7 N .. ’ d
+’(1+t§‘1 147 Z}“ A Fq(oz)—Af(s u(s)) dqs

i=
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On the other hand, for all u € §2, t; — &>, we have that

* Glt2,95) G(t1,95)
[ Tl u) = [ T (s ) dys

1+ 0

151
</
0

s u(s

-7 = (k2 — g9)™V = (81 — g5)*" 1)p
F)(1+2571)

ttzx—l _ t(lx—l _ (tz _ qS) (ax-1)
L@+ 57 V@M“D%S

ty
/
51
tg -1 t()t*l

* 1
+ /tz 7111(0[)(1 L&) }/(s,u(s)) dgs

f (el = 2l 4 (£ — gs)@ Y — (8 — gs) @)
) /0 L)1+ 2571 £ (s, u(s)) dys

SQa—l ty tg—l _ ti{—l 0
+ m ; f(S, M(S)) qu + m /;2 f(S,M(S)) qu

B = ) 4 ((t2= 9)° 0 = (0 = g9)° V)
< a)(L)/O )L+ &) @(s)dys
3Qa—l ty _ toz 1 oe]
+ w(L)W , QO(S) qu + a)(L)W / (S) qu
0. (3.2)

Similar to (3.2), for all u € £2, t; — £, we have

G(t1,gs) Gt
[} T s [ 3 i) e

0

< /0 Git,g9)lA+47) -1+ tg_l”f(S, u(s)) dys

A+ DA+

L5~ — 871 [°° G(t1,g5)
< s, u(s)) d,s
+e5hy Jo 148 o (5 u(s)) dg

-1 -1 1 -1
5t - 57 At I

a+5h Fq(a)w(L)q)(s)d w(L)F(a)(1+t"‘ 0 /s

and

5! Gy
‘<1+tg—1_1+ta I)Z / Ol)— SyM(S))qu

Lol el Y R DT i
TN S Tla- ATy

|tg_l - t‘lx_1| o(L)A 00
T+ A+ Tyla - A) (@) /0 @(s)dgs — 0.

£ (s, u(s)) dys

Hence T'(£2) is equicontinuous on any compact intervals of [0, co).
Step 3: We show that T is equiconvergent at co. For any u € £2, by (H1)

‘/Oof(s, u(s)) dgs < w(l) /oo @(s)dgs < oco. (3.3)
0 0

@(s)dys — 0,

Page 10 of 16
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o= 1 .
On the other hand, since lim;_, o, - Ta1=1 there exists 77 > 0 such that, for any £, > t; >
11,
tg—l t(lx—l z21—1 t(lx—l
a-1 a-1 =|1- a-1 + - a-1 (34)
1+ 1+8 1+ 1+4

. . . _anfe-D) .
Similarly, there exists a constant M > 0 such that lim,_, » (tlﬁ%_] =1 and there exists T,

such that, forany t, >t > To and 0 <s < M,

(=) (¢ -s5)" 1 (t =)V (t —s)V
1+ 1+t 1+ 1+t
ty — M)©D t — M)
5‘1—(2 a)_l ’1—(1 a)_l <e. (3.5)
1+ 1+¢

Choose N > max{T1, T>}, then for any u € £2, ¢, > t; > N and t; — £, by (3.4)—(3.5), we

have

G(t2,gs) G(t1,95)
[T [ TR o) ds

1+t
- 1 t tg—l _ (tz _ qs)(a—l) ~ t(lx—l ( qs)(a 1) ( ( ))d
=T, @ Jo 1+ 1+ S 18)) Gas

ty tot 1_ t2 _qs)(a 1) t({l—l
- s, u(s)) d,s
F(a)/ 1+257! 1+t‘;-lp( ©)d

00 toz 1 ta—l
+ — s, u(s)) d,s
Ty(e) ftz T+2870 14487 p( (5)) g
S S =) (=g
T Iya) Jo |1+tsTt 14t 1+t 1+t ’ 1

1 ty ta 1 tiﬂ—l (t2 _qs)(oz—l)
- + s, u(s)) d,s
" @) /1 (1+t°‘1 L+ogt 1+ag! )f( )z
toz 1 tot—l

S - P(s,u(s))dqs

| Y

< 1 /n 28f(S, u(s)) dys + /[2 (e + l)f(s, u(s)) dgs + /00 sf(s, u(s)) dqs>

I (05) t t
L [ee] t
- ;a)((a; (/ o(s)dys +/0 @(s) dqs> +o(l) i @(s)dys
— 0 uniformly as £, > N, (3.6)

and

t21 B\ & / Ez,qS)
_ ) d
(1 BT T Zl: Tya)— & &) dus
o-1

m o éi
;ai/() mf(s, u(s)) dys

ta—l tot—l
< 2 1
I Y

Page 11 0of 16
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tot—l ta—l A
Y B 28— [ o
1+t 1+t (1" (o) = A)Iy(er) Jo

— 0 uniformly as £, > N. (3.7)

It can be easily seen from (3.6) and (3.7) that, for any ¢ > 0, there exists a sufficiently
large N > 0 such that, for any u € £2,

Tu)(t Tu)(t:
( u)(,ll)—( u)(i) <g forall 1,5, > N.
1+ 1+

This implies that 7' : P — P is equiconvergent at co.
By using Lemma 3.2, we obtain that 7' : P — P is completely continuous. This completes
the proof. d

Theorem 3.1 Assume that (H1)—(H2) hold. There exists a constant v > 0 such that w and
@ satisfy the following condition:

V([ (a) - A)

W) fo- @(s)dys

Then boundary value problem (1.1)—(1.2) has an unbounded solution u(t) such that

(3.8)

u(t)
1+t*

0< T <V fort €[0,00).
Proof Let
u= {ueP: [l 51}}.

We claim that u # ATu for u € 90U and A € (0,1). The claim is immediate, since if there
exists u € dU with u = ATy, then for A € (0,1), we have

ATu(t) Tu(t)
lul = sup 1| = o
te[0,00) 1+t te[0,00) 1+t
* G(t,gs)
- sup / £ (s,u(s)) dgs
te[O,oo)( o 1+t ( ) 1

N [ GEgs)
a1
/ If (s, () | dgs + Fq(a)—A/O Fq(a)[f(s,u(s)ﬂdqs
B 1 A Oo‘f u(s)(1 +s*71)
‘< T " (e - A)qu))/o <ST>
_ 1 A o0 u(s)
_( Iy(a) (F (o) - A)Fq(a))/o ‘F(s’1+s"“1) a

S
w(v) 0
< —Fq(a) N fo @(s) dys.

dys
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So, for u € 9U, we obtain

w(v) o
V= m/ﬂ @(s)dys,

that is,

V(Fq(a) -A)
(V) [ p(s)dgs ~

which contradicts with (3.8). By Lemma 2.4, boundary value problem (1.1)—(1.2) has an
unbounded solution u = u(t) such that

<v forte[0,00).

The proof is completed. d

1 t°‘ ; foru € P,

We define a nonnegative continuous concave functional k () = minex
k, and [ is defined by (2.8). Denote

Ty@)-A 1+ 1N (y(e) = A)
N1 = T o N2 = m 1
[ pls) dys (Fgle) = A+ 37 aikeY) [ v (gs)G(gs, qs) dys

Theorem 3.2 Assume that there exist constants a, b, ¢ with 0 < a < b < ¢ such that f (¢, u)
satisfies (H1)—(H2) and the following conditions:

(H3) w(u) < Nia for all u € [0,al; w(u) < Nic for all u € [0,c].

(H4) F(t, 1a=1) > Nob for all (¢, 15=1) € [k, 1] x [b,c].
Then the boundary value problem (1.1)—(1.2) has at least three solutions ui, us, us such
that |u1|| < a, b < k(ua(t)) and |us|| > a with «(us(t)) < b for t € [0, 00).

Proof Firstly, we show that T': P, — P, is a completely continuous operator.
In fact, for u € P,, then |u| < c, by (H1) and (H3), we get

Tu(t)
te[Ooo) 1+t

LR

F(oe)— Z f lf‘t’ji p( (Si(i ;ﬁjl)>
< (F;a) + Fq(a)(FqA(a)_A)> /OOOF(S,%) ds
< rars ), () e

1 o Nic o0
= Foa /0 6)o () dos = Fn /0 o(s)dys <c.

Hence, || Tu|| < ¢, that is, T : P, — P,. In view of Lemma 3.3, T : P, — P, is completely

(| Toal| =

dys

dys

continuous.

Page 13 0of 16
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In an analogous way, condition (H3) implies that condition (A2) of Lemma 2.5 is sat-
isfied. Let u(t) = M , 0 <t<oo. Then it is easy to see |lu| = b“) (w) =
9 ¢ Pk, b, c), K(M) 29 5 b, so {u € Pk, b,c) |k (u) > b} #@. If u € P(x,b,c),
then b< - <cfortelkl]. By (H4) and Lemma 2.7, we get

ltozl

() = min 4O
telk] 1 + o1
00 G t, 1 a-1
_ n/ (69 (O
telkd|Jo 1+ te-1 1+s2°1

S [ S ()
= /f fiiffif(s, 0
s o T ()
- TR
+ 1",1(/;“7)_1—A éﬂi fo°° V(qf)fl(fl, qS)f(S, u(si(i ;sj—l)) dis
) (1 +11a—1 ’ %n(;‘)lf:) /le(qS)G(qs,qs)FG, %) dys

1 Zyﬁl dl‘ka_l !
1= G(gs,qs)Nabd s = b.
> (1+la1 + Ty — A /k v (95)G(gs, qs)N2b dgs

So condition (A1) of Lemma 2.5 is satisfied.
By Lemma 2.5 and Remark 2.1, there exist three solutions u;, uy, us such that ||u; || < a,
b < k(uy(2)), and ||uz|| > a with k(u3(t)) < b, which completes the proof. O

4 Example

In this section, we will give an example to expound our main results.

Example 4.1 Consider the following boundary value problem:

(D2u)(®) +f(t,u(®) =0, 0, (4.1)
u(0)=0, Diu(+o0)=Y au(s), (4.2)
i=1
here o = %, 0<A=Y" a& "< Fq( St u) = |e‘t, F(t,u) = /lule®

Choose w(u) = /u, p(t) = e, k> (

(i) 0< Z:’; ﬂis;)hl < Fq(a);
(ii) f:[0,+00) x R — [0, +00) is continuous;

rq(j)—A) , we have.
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(iii) |F(t, u)| = p(t)w(|u]) on [0,00) x R with w € C([0, 00), R) nondecreasing and
fooo @(8) dys < +00;
. k(Iy(a)-A) 3y
(iv) o) [ o6)dgs V(I (3) - 8)>1.
Thus, from Theorem 3.1, problem (4.1)—(4.2) has a positive solution u« such that

u(t)
0= 1. /i

<k fortel0,00).
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