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original solution u as u; = g. A linearized backward Euler finite element method (FEM)
is introduced, and the splitting skill is exploited to get rid of the restriction on the ratio
between h and 7. The boundedness of the solutions about the time-discrete system
in H>-norm is proved skillfully through temporal error. The spatial error is derived
without the mesh-ratio, where some new techniques are utilized to deal with the
problems caused by the new parabolic system. The final unconditional optimal error
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1 Introduction

Consider the following nonlinear hyperbolic equation:

uy — V- (a(u)Vu) =f(u), (X, t)e 2 x(0,T],
u=0, (X,t) €982 x (0,T], (1)
u(X,0) = up(X), u(X,0) =u1(X), Xes2,

where 2 c R?isa rectangle with boundary 92 parallel to the coordinate axes, 0 < T < 0o,
X = (x,9), and a(u) and f(u) are known smooth functions on R, for which we assume that
O<ag<alu) <a.

A nonlinear hyperbolic equation is a kind of important problems on nonlinear vibration,
the permeation fluid mechanics, and so on. Indeed, such partial differential equations
(PDEs) have attracted lots of attention to various methods, especially numerical meth-
ods. For example, the two-grid method was studied for solving a type of nonlinear hyper-
bolic equations, and the error estimate in /! -norm was deduced in [1]. Newton’s modified
method was utilized to a nonlinear wave equation depending on different norms of the ini-
tial conditions in [2], and optimal error results were given in the L?- and H!-norms. The
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interpolation theory and integral identity skill were used to obtain a superclose result for
the nonlinear hyperbolic equations with nonlinear boundary condition in [3]. Moreover,
the global superconvergence was also obtained through the interpolated postprocessing
technique. The Galerkin alternating-direction method was applied to a three-dimensional
nonlinear hyperbolic equation in [4], and the error estimates in the H!- and L?-norms
were deduced. A mixed FEM was discussed in [5] and [6], and optimal error estimates
were derived.

The inverse inequality is usually employed to discuss the boundedness of numerical so-
lution U} in a nonlinear evolution equation, and such an issue usually results in some
time-step restrictions, such as 7 = O(), i = O(r) (1 <r <k +1,k>0),and 7 = O(k?) in
[4] and [6], respectively. To get rid of such a restriction, [7, 8] took advantage of a special
inequality for getting unconditional superclose results for nonlinear Sobolev equations.
In [9] a corresponding time-discrete system to split the error into two parts, the temporal
error and the spatial error, is introduced. Then the spatial error leads to the unconditional
boundedness of a numerical solution in the L*-norm. Subsequently, this so-called split-
ting technique was also applied to the other nonlinear parabolic type equations in [10-18].
Later, in [19] and [20] a second-order scheme for the nonlinear hyperbolic equation and
the unconditional superconvergence analysis by using the splitting skill were given. It can
be seen that constructing a linearized form for a nonlinear hyperbolic equation is not an
easy task in comparison with nonlinear parabolic equations. In fact, there are lots of lit-
erature referring to parabolic equations [21-24]. In [24] a special technique to change
sine-Gordon equation into a parabolic system through u, = g was used, and optimal order
error estimates of the Crank—Nicolson fully discrete scheme were obtained.

Inspired by [24], in this paper, we consider the unconditional convergent estimates for
(1), which is a much more general nonlinear model than that in [24], with a bilinear ele-
ment. First of all, we change a nonlinear hyperbolic equation into a nonlinear parabolic
system. Such a practice can be used to avoid the difficulty in constructing a linearized
scheme for a nonlinear hyperbolic equation and also give the error analysis for # and g = u;
at the same time. Then we develop a linearized backward Euler FE scheme for the non-
linear parabolic system and apply the idea of splitting technique in [10-20] to split the
error into the temporal and spatial errors. We obtain a temporal error, which implies the
regularities of the solutions about the time-discrete equations. The spatial error result is
exploited to get rid of the restriction on the ratio between % and t. The unconditional
optimal error results of # and g are simultaneously deduced. Note that, differently from
[17, 18], we utilize some new tricks such as rewriting some error terms, the new mean-
value technique, and some other skills to handle new difficulties brought by the special
nonlinear parabolic system during the process. Further, the results in this paper also hold
for linear conforming triangular elements but do not hold for some other particular ele-
ments; for example, the biquadratic finite element for Av,|x = 0 cannot be true, where v,
belongs to the FE space. Some numerical results in the last section also show the validity
of the theoretical analysis.

Throughout this paper, we denote the natural inner production in L2(£2) by (-,-) and
the norm by || - [lo, and let H}(£2) = {u € H'(£2) : u|s = 0}. Further, we use the classical
Sobolev spaces W"(£2),1 < p < 0o, denoted by W"?, with norm || - ||, ,. When p = 2, we
simply write || - ||,,.,» as || - ||,». Besides, we define the space L?(a, b; Y) with norm ||f || 12 (a,5;v) =

( fab IFC N5 dt)%, and if p = 0o, the integral is replaced by the essential supremum.
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2 Conforming FE approximation scheme

Let §2 be a rectangle in the (x,y) plane with edges parallel to the coordinate axes, and let
I, be a regular rectangular subdivision. Given K € [, let the four vertices and edges be
ai, i=1~4,and [; = a;a;;1, i =1 ~ 4 (mod 4), respectively. Let V), be the usual bilinear
FE space, and let Vg = {v; € Vi, vilae = 0}. Also, it can be found in [25] that if u € H%(£2),
then

(V(u—Iu),Vvy) =0, vy € Vo, &)

where Ij, be the so-called Ritz projection operator on V.
Set {t, : t, = n7;0 < n < N} be a uniform partition of [0, T] with time step 7 = T/N.

U”—a"_l

We denote 0" = (X, t,). For a sequence of functions {cr”}fy:o, we denote 9;0" = 2

’

n=1,2,...,N. With these notations, setting i, = g, the weak form of (1) is seeking u,q €
H}(£2) such that, for all v € H}(£2),

(B, v) = (q",v) + (RY,v), v e Hy($2),
(3eq",v) + (a@" )T Y0, V', V) + (a@" 1) Vb, Vv) (3)
= (f" 1), v) + (RS + Ry + R}, v), ve H}($2),

where
RY=8u"—u}, Ry=0q"-q;,  Ry=—(f(u"")-f(u")),
n tn
Ry=-V. (a(u”’l)r Z Vq' - a(u") / qus) -V (Vi (a(u") - a(u"))).
i=1 0
We develop the linearized Galerkin FEM to problem (3): seek U}, Q}; € Vjo such that

@ U, vi) = (QF,vi), Vi € Vo,
(0:Qp vir) + (a(Up ™M Y1, VQL, Vv (4)
+ (@ )vup, Vvy) = (F(U),vi), - vi € Vino,

where L12 = Iyug and Q2 = Iyuy. A well-known consequence is that the linear system (4)

may always be solved for U/} and Qj; see [26].

3 Error estimates for the time-discrete system

To get rid of the ratio restriction between / and 7, we introduce a time-discrete system as

follows:
oU" = Q", X, e,
»Q =V - (aU N YL, VQ) -V - (aUu")yvu°)
=f@r, (X,0) € 2, (5)
ur=0, Q'=0, (X, 1) €082,
U° = up(X), Q% = 1 (X), Xe .
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The existence and uniqueness of solutions for this linear elliptic system (5) are obvious.
To show the unconditional results, the regularities of /" and Q" are inevitable, and we
therefore need some estimates for " — U" and ¢” — Q". In what follows, we set e” £ " — LI",
"L g"-Q" (n=1,2,...,N), analyze the temporal errors and give the regularity results
for U" and Q. It is easy to see that € = §° = 0.

Theorem 1 Let u™ and U™ (m =0,1,2,...,N) be solutions of (1) and (5), respectively,
u,q € L*(0, T; H3(82)), s, q: € L®(0, T; HX(82)), and uy € L*(0, T; L*(2)). Then for m =

1,...,N, there exists to such that when T < 19, we have

m

2.8

i=1

1 1
m 2 m 2
||emn2+r(z||étef||§) NP +r(z||ai||§) <G, ®
i=2 =2

[o:e], + | Q7] = Co. 7)

2

where Cy is a positive constant independent of m, h, and t.

Proof Setting Ko = 1+maxi <<y (|8 [lo00 + v/T (X 1024113 o) 7), we begin to prove (6)—
(7) by mathematical induction. When m = 1, by (1) and (5) we have the error equation

el =8 + R,

_ (8)
38t =V - (a(®)TVsl) =R} + R}.

With §° = 0, multiplying the second equation of (8) by A§! and integrating it over §2, we
get

% | V812 + a2 (u0) A8 |2 = —(au (u®) Vilr V5, ASY) - (R} + R}, ASY)
<Cr||vs'|,|as", + Cz|As",. )
Further, since e! € H?(£2) N H}(£2), using the first equation of (8), we get
Jet], = edel], < Ce] 88", + Cel 21 (10
Thus there exist positive constants 7y, 73, C1, Cy such that when 7 < 7, we have
Jetl, + <, '], + o], < Gir, an
which implies

ul_uO
==

+]Q], =G, (12)
2

| € lo00 * 14" 000 = CC1T + [l [0 < Ko (13)

oo = ll€']
0,00 — 0,00

where T < 1, < 1/CC;.

Page 4 of 28
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By mathematical induction we assume that (6) and (7) hold for m < n — 1. Then there

exists 73 such that

1
m 2
i), s ﬁ(zn étufném)

i=1

1 1
m 2 m 2
=Cle”],+cvr (ZH diel ||§) oo+ V7 <ZH atuillf),oo)
i=1

i=1

1
m 2
< CCot + CCo/T + [, + ﬁ(ZH B ||§m) <K, (14)

i=1

where 7 < 73 = min{1/2CCy, 1/4C>C}}.
Then we begin to prove (6) and (7) for m = n. Subtracting (5) from (1), we obtain

d;e" = 8" + R,
38" =V - (a(U" )T YL V) =V - (Y1, Vg (a") —a(U" 1))
=V (Vi (a(@™") - a(U")))
=f(" ) - f(U"") + Ry + RS + R},

(15)

Multiplying the second equation of (15) by A§” and integrating, we get

n
o155 e e St

i=1

= ( (u=Yyvur 1( Zva’) A(S”)
< ( qu —a(U™ 1))),A5")

- (V- (Vi (a(@™) —a(U"™))), 287)

= (f(@"") —f(U""), A8") = (RS + R + R}, AS™). (16)

Observe that (a(U" ')t )" | A8, A§") cannot be bounded directly; we rewrite it as

<a(u"—1)r Z A8, Aé”)

i=1

n-1

= r/ a(U) Y As A8+ t|a (U A
2

i=1

=3 / (ur?) (ZM‘) —lr/ a(ur”1)(2&3”)2

1 _
+ Er“cﬂ(U” I)A(S"”é.

Page 5 of 28
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Then we have

2 2

n-1
a2 (u?) ZAS’

i=1

1 n n-1 l _l
5 (V8" lG =[98 g) + 5o ot

0

2
- (au (utyvur- 1( Zval) AS”)
0

- (rZAq —a(U™1) A(S”) ( Zanu (u")yver 1,A8”>
< qu Vi (a, (u" ) —au(U”_l)),A8”>

a2 (u) ZAS’

i=1

0

1 1,
e Lefat @)

n-1

Z A8

i=1

<ct*||o U ',

— (A’ (a(u) —a(u"™)), A8") — (Vi (au (U") V'), AS")
- (VO a7 (), A5) — () (), A87)
— (Ry + Ry + R, AS") £ A,
In what follows, we will bound A;, i = 2 ~ 10, one by one. Note the particularity of A§”

on the left-hand side, so we have to use new ways to handle A§” on the right-hand side
instead of applying the Young inequality directly. In view of Green’s formula, it follows that

Ao =~(fului ), A)
— uu(//Ll )V,bL -1 e 1 V(Sn) (f(lJLit—l)ven—l’V(Sn)

<C|vefg+clve],

where /= = U1 + 2% e and 0 < A1 < 1.

For A, ~ Ag, Aj, it is not so obvious to be dealt with. We choose to rewrite A§” by
Y ", A3,8" and then try to transfer  from one side in the inner product to the other;
more precisely,

Ay :—(TZVLI(Z LI"1 ”lrzaAé’)

i=1

n-1 n—-1 n-1
= (au(U”I)Ve”IVq”, T Z A(Si) + (r Z Vd'a, (L[”’z)f_)tVe”’l, T Z A(Si)

i=1 i=1 i=1

n-1 n-1
uu uunZ
+<‘L’E VqV"la( - zz( E AS’)

i=1

—8£<IZanu (u™'yve' rZAsl)

i=1

n-1

0 tZA(Si

i=1

n-1

rZA(Si

i=1

=Clave| +C|ve oot

0

0
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n-1
+Cver ]yt as —5t( Zan (u=v “,rZAa‘)
i=1 0
n—-1 2
= Clave o+ [ ver o+ claur g | e 3 ad
i=1 0

rZMl

—8t<TZunM L[” 1 Ve I,TZA(SZ>

Similarly,

n-1 n
A = (5th + O,RS + 0, R, Ty A&") -9, (Rg +RE R TY A@")
i=1

i=1

n-1

IZAS’

i=1

<Cr’+C

2
- 8t<R” +RI+RILT ZASZ>

0 i=1

For A,, we rewrite it as follows:

Ay = —(au (utyvur- 1( Zva’),r ZA@&)
n-1
- (au(U”_Z)VU”_2V3", > A5i>

i=1

n-1
(( szl) (u=2a,vur- 1,12&3!)

i=1

n— n-1
(( sz‘)vu“ﬂ”(u -l 2) ZAal)

i=1

—8;(&1” (u=tyvur 1( szl),rZM)éAzi.

In view of the embedding theorem, this yields

n-1
Ap<C tZAS‘ | At [t As
i=1 0 i=1 0
n 2
ClltY_as| +c|a,
i=1 0

To get round the need of U’ € H3(R2),i=1,2,...,n—1, wesplit U%,i=1,2,...,n - 1, into
two parts; with inductive assumption (14), it reduces to

n-1 n-1
Ay =— (au(u“)w“v(s", Ty Asl‘) + (au(u“)vbt“vs”, Ty Mf)

i=1 i=1

n—-1 n-1
< clae a5, 5] +cfv]|e 3 s
i=1 0 i=1 0
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IZA(S‘

+ Zlae2|g|as g+ clve|;

n-1 2
Cled_as| + Zefas o+ cver|s.
i=1 0

Similarly, we have

Az = Clau™ ]9

n-1
T Z AS
0 i=1 0

2
+ Cllgau]

n 2
Clz Z A8
i=1 0

n-1
2 .
ol® E AS'
i=1

0

We split A3 as
——(‘L’ZAq a(Uu"?) Zatw)
o @@ ™) - aU ) - (@) - a?)
= (1: 21: Aq - Ty A8 )

+ ((a(u”"l) —a(U""))Aq", T nf: Aal’)

i=1

3
- (z > Adi(a a(U"™") Z A8‘> 23 A
i=1

We can see that

n-1 n-1 2
A - <(a(u"‘1) —a(U ) Ag Ty M’) =C|ve s+ Cle ) as
1 i=1 0

Since

(a@"™) - a(U"™)) - (a(u"?) — a(U"?))
T

- (A B @ (57 - (7)),

where

,ug"l =u"%+ rkg"latu"’l, ,ug”l =U"? 4 n\gflatu”*l,

0<A 1t <1,0<5 <1
and

pi =gt = e e AL 0 + T T (A =T,

(17)

Page 8 of 28
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we see that
| [ @@ - a@r ) - (@) - a@ur?) = o
Az < TZAql tZAS’
i-1 04 T 04l ‘o 0
n-1 n-1 n-1
<Clave | |t d_as| +C|ver?| |t Y as| +Cr|r) As
i=1 0 i=1 0 i=1 0
n-1 2
<Ct%+ C|| 9,Ve'! ||§ + CHVe”’2 ||(2) +Cllt Z AS’
i=1 0
whence
n-1 2
A3 <Ct?+ C|| 9,Ve'! ||(2) + C|| Ve"’zni + C|| Vel ||§ +Cllt Z AS'
i=1 0

—8t<tZAq a(U™") ZAS‘)

Rewriting As, Ag, Ag, with (17), we obtain

T

4o e ( 0@ —all' ™) — (a@'?) ~ aU"?) Ti Ml)

—é,(Au"(a( a(u™™?) ZAS‘)

(@@"™") —a(U" ™M) = (a@"?) —a(U"?))

<[ au .

n-1
T Z A8
i=1

*los

0,4

0

—5t<Au°(a( a(u™™) ZAS‘)

n-1
<Clave | |t Y as| +C|ve?|, |t
i=1 0
n-1
+Ct rZASi —5t<Au0(a( a(U™") ZAS’)
i=1 0
n-1 2
<Ct’+ C|| 9, Ve'! ||§ + C|| Ve"’zni +Clt Z A8
i=1 0

—5t<Au°(a( n— 1 un 1 ZA51>
As = —(r > Vg vua (w' ) - a (U") szal)

i=1

T

_ (r ZI? Vv @) —a W) - @) - a, ) | Z‘ A 5,)
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+ ((au(u” Y —a, (U™ Zan Vu'"~ l,tZA(Sl)

+ ((au(unl) —a,(U""))Vu" ' Vgt i A(S’)

i=1
- 5t(‘[ ZtiVu”_l(au(u” 1 au L[” 1 Z AS’)
i=1

(au(u” D = a,(U"™)) = (au(u™2) — ay(

n-1
Z AS!

T
n-1 n
+C||e” 1|| IZAS’ —8t<tZVq Vu*~ 1( (u”_l) —au(U”_l)),tZASi)
i=1 0 i=1 i=1
n-1 2
< Cr?+ C||3, Ve o + C| Ve o + C|Ver 2o+ ClT Y AS
i=1 0

_5t<rZtiVu"1(au(u” ) —a, (U"?) ZA&I)

i=1

and

T

Ay = (VuOVun—z (@ (") = @, (U"Y) = (@u(u™™2) - a, (U"2)) nzlAa)

n-1
+ (wo (@ (') - a (U"))8, V', ey A(sl')

i=1
_E_)t<Vu0Vu”_1(au(u” 1 au LI" 1 ZA(S‘)

<Ct+ C|| 9, Vet ||(2) + C|| Vel Ho + C|| Ve'? ||0

n-1 2

C rZMf

i=1

_E_jt(VuOVu”l(au(u” Y —a, (U"t) ZAS’)

0

Finally, A7 can be bounded as

n-1
A = (Vuoau (U)o, ve 't Z A(Si)

i=1

(WOV o1 (U ) a(U"?) Zl M)
—3,;<Vu a, (U") Ve 1,1:ZA8’)

n—-1 n—1
< clive ], |e S av] +clve i, e S as
i=1 0 i=1 0
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—(‘_L(Vuoa L[" 1 et IZAS’)

n-1 2
<C|ave s+ C|ver o+ Clr > As
i=1

0

n-1 2

Z A8

i=1

+Claar o |

_at<w a,(U" ) Ve I,TZA(Sl)

0

Moreover, because

V3], = V(" + B, = ]98], + I VRT], = v, + C,

|Ade™||, =] A" +RY)|, < C|las”|, + C|AaRy|, < C|as"|, +Cr, (18)

lo lo lo

1

1
2 n 2
ver], <c (vaate ||o) scﬁ(znvsfni) ‘e
i=1

we have

n-1 2

a (U2 As

i=1

> _ VS”‘I +r +7)as|?
0

%(Hva" ar (U ZAS’ —7 12
0

<cr?+C| v+ c|ve |l + o Zuvsfné

i=1

n-1 2
T Z AS"
i=1

0

+Claur|;

n 2
Clt Z A8
i=1 0

1 2
HZM —8t<au (urtyv u”l( ZVS‘),IZAS)
i=1 0

Zan L[”1 ”1IZA8’)
rZAqi(a(u” Y—a(u) ZAS‘)

i=1

Y VgV a, (u" ) - a (U") Z A(S‘)

(
(
(
-0 (w"au(un-l)w”-l, T Z AS’) 3 <R” +RI+RILT Z Aél)
(
(

Page 11 of 28
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Summing this inequality from 2 to n, we get

[ver ]+

2 n
£ [rad];
i=2

0

an:ASi
i=1

< ||V81H§ + 12” A(Sl”(z) +Ct?+Ct ZHVSiné + CtZ

i=1 i=1

IZAS’

Z Aal

0

n i-1

+ CTZZZHVS’HO +Ct Z||atAu1 1||

i=2 j=1
- (au (uyvur- 1( ZW),TZM)

+ (@, (U) VU (V8Y), TASY) - <rZAq”(a a(u"™?) ZAS‘)

i=1

0

—<rZan LI"1 ”ltZAS‘)

i=1

- <Au0(a( L[” 1 ZAS’)
_<Vu0a (u")ver 1,12&3’) <R3+R3+Rz,rZ‘A5f)

i=1

+ (R% + Ré + R}L,‘L’Aﬁl) — (‘L’ ZtiVu”_l(au(u” 1 au LI” 1 Z Aé‘)

i=1

- (VMOVM”‘I(%(M” 1 —a,(U" 1 ZASZ> (19)

Due to

< (u=tyvur 1( Zva),zZM>
( (u) ( Zv&‘),rZAsl>
( (u"?) ( ZV&‘),IZAS’)

§Ct%1 +C

1| < ’
tZASi
i=1 0

+ =
4

riASi
0

i=1

T i Vi
i=1 0

1
<(Crt2

n 2 2 n
) AS rcry |vss, (20)
i=1 0 0 i=1

+ =
2

T Xn: AS'
i=1
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after obvious estimates and a kickback of 7 )", | V§'||3, together with our earlier estimate
for n = 1, we obtain

2 n
[V |2+ 22 223 |as? < e, (21)

0 i=2

Xn: AS'
i=1

Here by (18) we have

1
2

+T (Z“étei ||§> <Ct (22)
i=2

T

n
E 8tel
i=1

2

and, further,

<Cr. (23)
2

le"fl, =+

n
E 3te’
i=1

Then we conclude that there exist 14, 75, C3, Cy such that when t < 74, we have

" 3 n 3
||e"||2+r(2||étef||§) N +r(2||af||§) cor e
i=2 i=2

n
2.0
i=1

2

which leads to

lel, <%, U], <G (25)

1
n 2
], ﬁ(zn s ném)
i=1

1
2

ST

<cle,eeve( D) oty v Llv)

ST

5ameQJ?mem+J%§N&M&J <Ko (26)

i=1

where 7 < 75 = min{1/2CC;, 1/4C*C2}. Clearly, Cs, C4 have nothing to do with Cp, and
thus (6) and (7) hold for m = n if we take Cy > Zil C; and 79 < minj<;<57;. Then the
induction is closed. The proof is completed. d

Remark 1 The special method used to tackle the left-hand side of (16) is important to
deduce the regularities of U” and Q” in the H*-norm. Further, the terms including A§"
on the right-hand side needs innovative technologies to treat.

4 Error estimates for spatial-discrete system and optimal error results
In this section, we will establish 7-independent optimal error results for #” and g” through
the spatial results. We decompose the errors as follows:

u-u=u-nu +n,u -u 2y +&,
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Q-Q,=Q-5Q+L,Q -Q,&r+6, i=12,..,n
and we are now ready for the unconditional spatial results.
Theorem 2 Let u™ and U] be solutions of (3) and (4), respectively, for m = 1,2,...,N.

Under the conditions of Theorem 1, there exist T, hy such that, for t < t§ and h < hj, we

have
| =]y + 4" - Qi [[y = O(r* + ) (27)
and

[V (=il + V(@ - Q) g = 0+ ). (28)

Proof Before discussing (27) and (28), we shall pause to give the results

le], + |emn0+r(znve ||0) < e o) )

by mathematical induction, where Cj is a positive constant independent of 1, 7, and 4.
Since LU loo + VT T 13:LUZ)? < C, let Ki 2 1 + LU o0 + /T X
(7, 13, 0,LE 1% ) . We begin with 7 = 1:

(30", i) + (a(U°)TVEO', Vvy)
—(0,r",vi) = (a(U°) VI, Vvy)
— ((a(U®) - a(ug)) TV Qy, Vvi) = (a(Up) Vin®, Vv)
= (VU (a(U®) - a(U), Vv) + (F(U°) = (UR), vn)- (30)

Taking v;, = 0! in (30), we get

1 1
—llo* g+ ella® (@) ve[;
=—(3%,0") = (a(U°)xVr',ve')

~((@(u®) -a

- (vU°(a(U®

uy))tvaQ,, ve') - (a(uy)vn®, ve')

( (a
) —a(U), voh) + (F(U°) - (Uy).6%)- (31)

It is easy to see that

(@', 0%) = oL’ ||, = cr*

(VL (a(ut?) - a(t), ¥6") = C|p?], | v6' ], < O

(r(u®) ~f(up).6") < cl®l 6], < cnt + cle' ;.
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Denoting y (X)|x = ﬁ fK y(X) dX and then using the mean-value technique, we obtain

(a(u")zvrl,vel)

_Z a(Uu°))rvrl, ve')
—Z (UO) Ik (r(Ve' = Vie'), V') . + > a(U®)

K

< |||, | V6|, + Che et |, | V61|, < Ch* + CIP? + Cx

k(z(Vu' = VIu'),ve')

(a(UO)VnO, vel)
_Z a(Ud))Vn®, Vo) + Y a(Ul)x(Vn®, vel) .

2

= O[], [ ve! ||0<Chf SCh2f+8%||91||

By Theorem 1 we have
() - a(u))rvQ}, 96)
=~ ((a(us”) - a(u) V0", v6")
 ((a(ut”) - a(u})) TV, V6")  ((a(s?) - a(u) V3", Vo)
+ ((a(U®) - a(U?))2vql, Vo)
<are|u ], |90, . |v8',
e G |, |, |90 |, + RV |6,
cae Ve, V0,
< It + Ch21? + Chr | V6! |2 + Co2| V6! |,

Allocating all the estimates obtained, we have
1, 12 112
Zl6*g+=lve'(,
< Ch*+ Ch*t + ChtHV91 ||(2) + C||01 ||(2) + C7:2||V91 ||§ (32)
Thus there exist t, 73, 4, 1y, C} such that, for T < 7] and & < i}, we have
[6%]5 + =V |, = Cihth + V), (33)
which implies

[tilo0 = CHHE o+ 112

oo oo

<CCih+ CC/T + U, <K, (34)

where 1 < 1, <1/2CCj and t < 7, < 1/2CCj.
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By mathematical induction we assume that (29) holds for m < n — 1. Then there exist 7}
and /5 such that

1

m 2
Jup ||o,m+ﬁ(z|| 5 ||3,m)

i=2

1
m 2
5ch-l(ugmuo+ﬁ(2”@5f”3) )
i=2
m 3
, (ufhum I+ ﬁ(zu étzhwnim) )
i=2

1

m 2
< 2CCHh +2CC) /7 + (||1hu’” low + /7 (leétlhu" !If)m) ) <K, (35)

i=2

where 1 < i} <1/4CC} and T < 7§ < 1/6(CC})*.

Then we prove that (29) also holds for m = n. By (4) and (5) we derive the error equations

(O£, vi) = —(Oen™, vi) + (0", v) + (", vin),
(30", vp) + (a(UI )T Y1 VO, V)
= —(3,",vp) = (U 1) T Y1, VI, V) (36)
= ((a(U™) = a(U;~)T 320 VIRQ', V) = (a(U )V, V)
= (VU (a(U™) = a(U} "), V) + (FU"Y) = (U, vi).

For vj, = 6" in the second equation of (36), we have

T (a(u;;-l) Z Vo', ve”)

i=1

n-1

- 1:/ a(Up )Y Vel vo" v c|az (L)) ve" |
2

i=1
1 A i2 1 i 3 iz
3 L (L) - e Lo (Evv)
wselad @yver|,
and hence we find

1 _ 1 _
(1872 1o ) + Sl sty ver:

n 2 n-1 2
+ lr u%(u,’,’_l)ZVGi - 1'( a%(u;j-z)Zvef
2 i=1 0 2 i=1 0
n-1 2 n
< C1:2H Z_)tL[Z’_l HO,oo Z Vol - (5tr",9") - (u(u”_l)t ZVri, V0”>
i=1 0 i=1
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- <(a(u"‘1) a(Uy™) ZVIhQ’ \Y ) (a(U ") Vn°,ve")

i=1
7
- (VU a(U) - a(u ™)), 6%) - () £ (U )07 2 Y B (37)
i=1
Obviously,
n-1 2
B <Ct*|) Ve
i=1 0

By < at ], o, < ot + cle”|g

(38)
By = Ch* +Cllgm! o+ Cllo”[5:
Similarly to the proof of A, ~ Ag and Ajo, we rewrite 6" by T > -, 30" and then try to

transfer t from one side to the other in the inner product. For simplicity and concreteness,
with the help of (2), we show that

i=1

n-1
Bs = <au(ug-1)étu,’7-1vn°, > VG’)

1

n n-1
- - / vi® <a(ug—1)r Y Ve -a(Uup?)ry ve")
2 i=1 i=1

_ n-1 )
=Z(<ﬂu<ur>éte"1 —auwz-l)ateﬂl)w‘%rzw)
K

K i=1

+ Y a (7)o 1|,<(vn rnive’) - <au( N1V, vael>

K i=1

n-1
+ Z( au (Wi )3, Uu" ™ - ay (1 g-l)é,unl)vno,rz:ve")
i=1 K
n-1
+ Zau N8, U1k (vn T Zvet)

i=1

n n-1
- % /Q vn° <a(u;;1)r > voi—a(up?)ry vel’)
i=1 i=1

n-1 n-1
< Ch*||o, ", H”O||z,4 T Zve)" + Ch?||t Z Vo'
i=1 0,4 i=1 0
n n-1
_ % / Vi (a(ug—l)r S0 —a(up?) ey ve‘)
2 i=1 i=1

n-1 2

erei

i=1

<Ch*+ C|agm o+ C

0

1

n n-1
- - / vin° (a(u,’z’_l)r Z Vo' —a(U; )T Z V9i>,
2 i=1 i=1
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where 7! = U + T4 19,1 and 0 < 7! < 1. Again transferring t from one part of

the inner product to the other, we have

—(a(U"‘l)tXn:Vri,ti:VZ_)t@i)

i=1 i=1
n-1 n— n— n

- (a(unz)w",era) ¥ (“(u ) -ar® ZVr erel)
i=1

-9 (a(U”_l)t i vr,t 2”: V@’)
i=1 i=1
3
£ ZBBL
i=1

We split B3; and Bs; and estimate them as follows:

By=)Y. ((a(u"-2) —a(Ur?))vr', T i ve”)K

K i=1

—Z (ur2)x

-

n-1
Vel - VI,é, ere)
K

i=1

n-1
+Z (um2) |,<<Vu — VI, tZVGl>
K

i=1

<Ch? + Ch/T

0

n-1
T Zvei

i=1
2

n-1
T Z vo!

i=1

0

n-1

eref

i=1

<Ch*+Ch*r+C

0

n— n-2 n
Bay = (ﬂ(u l)zﬂ(u )TZ( Vlhe Zvel>

i=1

a") —a(U"?) a(U"1) —a(U"?)
(e )
K

x Ty (V' - V'), Z Vo )

i=1

K

Xn:(w - V'), Zve’
{ )

i=1

a(U"-1) —a(U"2)
£y -

K

n—1
T ZV@i

i=1

+Ch?
0

n-1
T ZV@i

i=1

<ChJt

0

n-1 2

rZV@i

i=1

<Ch*+Ch't+C

0
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Then we have

n-1 2

erei

i=1

By<Ch*+Chr+C

n n
-8 (a(U“l)r dovry vei).
i=1 i=1

0

Note that

B = (VUOau( ) (3" +d Zve’)

+(vu°(s”‘1+n” )a”(”5 D- “”(”5 Zvet)

_ 5t<VLI°au( JE + Z ve’)

n-1 2

rZV@i

i=1

<G+ Clem g+ Clagmt g+ C

0
- E_it(VLIOau( )(E" + Z ve’)
where
et ear i ey, 0<al <,

and

n

ﬂu(ﬂ5il) —ay (M?iz)
T

<[+ 227 (36 ).

Rewriting B, and splitting it into several parts, we obtain
By= (( (") —a(uy)) Zw erat )
_ ((a(un—l) un 1 ZVQZ V@ﬂ)

i=1

i=1

n n— n—1 n—-2 n—-2 n-1
_<fzw(“(u b —a(U;™) - (@(U"2) - a(Uy )),TZW’)

- T
i=1

(el - a2y S o
( )

+ét(( (U —a(up™) Zw rZV@‘)
- (<a<u"-1> o(U)r YV, V@”)

i=1
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It is obvious that

— | (a(u"?) —a(u;2))vr',« ni A
( )

i=1

= chlur],(cnfar2], + &2],)

n-1
T Zve"
i=1

0,00
n—-1 2
<cht+Clem?|o+Clr Y Ve
i=1 0
Because
(@U") = a(U;™) - (a(U"™?) - a(U}?))
T
N LR
-4 @+ o)
F AL @ (1) - au(12)), (39)
where
Ty e ut,  pit = Ut ol e U

O<uftuit<l,

and

-1 _ M;—l — &.n—2 + nn—2 + tk;—l (5t&.n—l + étnn—l)

+ 7o U (A =),

it follows that

n— n-1 n-2 n2 n-1
<Zw a(U"t) - a(U)) - (a(U"2) - a(U! ,rZV@l)

T

n-1

< tiQi (@) —a(U™) - (a(U"2) - a(U}~)) v
i=1 2 T ofl =1 0,00
n-1
< (13" o+ [en™ My + €72 + [ [y + ) Ch |z Y Vo'
i=1 0
n-1 2
< Ch*+ CIPT + || 3,0 + |72 g + C[ 2 Y Ve
i=1 0

Page 20 of 28
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The fourth part of B4 can be found:

((a(u"-l) a(Uup™)) ZVQ’ ve”)

i=1

- (au (ug ")y _va, ve") + (au (ng)e" > va, ve”), (40)

i=1 i=1

where ug ™t = U + 25N (U - U ) and 0< AS T < 1.

On one hand,

(ﬂu (Mg—l)nn—lr Z VQi, VG”)

:( a(pa 0" erVQ rZatvel>
n-1 n n-1
= (au (ng )"Vt Z VG‘) + (au (15?7 Z V8o, T Z VG‘)
i=1 i=1

i=1

n— n-1
+< nlfzvgl M(H’S ) au(M 2) ZV@)

i=1

n-1
- <a,, (,ug‘_z)n”_ZVq”, T Z VG’) - (au /LS Z W Z VG’)

i=1

_< - ITZV sa(pg™) - au(u6 nX:vel>

i=1

+ 0, (au(ug’)n”r Z vQi,t Z V@‘)

i=1 i=1

n-1 2 n n
<Ch*+Ch*t +C rZV@i +5t<au(u§’)n"tZVQi,tZV9i).
i=1 0 i=1 i=1

On the other hand,

_(au i h)En ITZVQ zZatve )
n-1 n n-1
- (au (ug2)E vty ve”) - <au (ng2) > vQag" "ty vel‘)
i=1 i=1

i=1

_ <IXH:VQ"$““”(M8 — ™) Zvel)

i=1

+ 0 (au(ug’_l)“g‘"_lr 2”: vQi,t 2”: V@’) 2 ZDi' (41)
-1 -1

i=1
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Now we make use of the mean-value technique:

Di=), ((ﬂu (157) - au(ug )5 v o Z W)

K i=1

n-1
+ Zau(u’g‘z) Fe (E”‘ZVQ”, T Z V@i) .
K K

i=1

Since Q" € H?, we cannot use the mean-value of VQ" directly as before, thus with the first

equation of (36), we try to tackle it as follows:

n-1 ’
> au(ui?) Ik <s“VQ", Ty ve‘)
K i=1

K

n-1 n-1
Zau i |1<<VQ”TZV9’ VQ'T Y VOLE" 2)
K

i=1 i=1

= n-2
- Z(a vQrey vm) Z (1,81,
i=1

i=1

_Z<ﬂu E) rg(w")K

i=1

—Z(ﬂu VQ”tiVG‘) tyfj(l,r")K.

i=1

Because Af|x = 0, with the help of Theorem 1, we have

n-1 =
Zau )k (VQ” Y VO-vQiTY Ve 2)
K

i=1 i=1
n-1
vQ't Y Vo'

i=1

= Ch [l = chll Q]

1

IZVG’

i=1

[

0,00

2

+Clgm2.. (42)
0

n-1

C erei

i=1

Further,

> (au(ug VQrt ni vet)

K i=1

K 1:1

= 2 au (ni? |1<| / V(S”rZVG dxdyrZ/ an' dxdy
+Zau - |K| / vq" tZVG dxdytZ/ o' dxdy
K

Page 22 of 28
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n-2 1
|1<|%rz</|5mf|2dxdy)2|1<|é

iz K
|K|ZIZ(/|3m| dxdy> IK|2
TZHM lo

04 i=1

n-1
T Z Vo'

1 n
sczmnw s

ZIKI

i=1

=cy|el, rZW’ ZW tZHam I
K i=1

-
<ch? s, | +Cn? |y Ve
i=1 0
n-1 2
< Ch*+ Ci 8" + || Y Ve
i=1 0

Similarly, we have

= n-1 2
Z(au(ug VQ”IZV9L> rZ (Lr) < Ch*+ CH||8" |3 + |2 Y ver|
K i=1 K i=1 i=1 0

_

Z(ﬂu(us VQ"IHZV9L> rZ 1 8
K i=1 K i=1

n-2 1
|I(|4r Z(/ |9i|4dxdy)4|1<|%
i-1 K
n-2 ) —
Y [6ps=C|®
0 i=1 =

n-1
IZVG’

Z |K| ” Q”||04

n-1
<Cllt Z vo!
i=1

n-2
rCry | vells.
0 i=1

Thus we have

2
+Cle" g+ Cht+ |53+ CTZIIVG lo

0 i=1

n-1

zZvel

i=1

D, <C

By a similar method we have

n-1 2
Dy+D3<C|t ZV@i + C” 8" ”5 + CHSH_l ”é
i=1 0
n-2
+ Ot R+ Ce | VO
i=1
Altogether,

1 n n— 1 5 n— n
(72~ 1 ) + Selat @y ver

lo
az (U Zve’
i=1

ar (U"?) Zvel

I\J|>—‘

2
——t
0

0
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<Ch'+ G+ e g+ Cllem2 g+ clov [ + clas™ g

2

+ Chrt ”V@"
0

n n-1
n° (a(u,’;l)r > Vo —a(Uup?) ey Vei)
i=1 i=1
n n
a(l,[”’l)r Z vr,t Z V@i)

I
(
+z§t<((u"1 () wazvez)
|
| @

n-1

2 Zv@l

i=

o+ Crlnh + 23) | ver|;

1
T
0

+

N =

(") —a(up™) (Z vel)
-3/ (Uu"?) —a(U;?)) (Zve)
—5t<au( )E + ZVQ erel>

_5t<vu0du( n-1 %-n 1, Zvez>

N =

with 9! estimated earlier. Using the Gronwall lemma, we have

2 n
+ Zrzn V0i||§ < Ch* + Ch?z.

0 =2

2 ivel

i=1

61,

o+

Again using the first equation of (36) with v;, = 555 " for £”, we obtain

86" [lo = =@, 8:87) + (67, 3:8™) + (. ")

_ 1.
< crtur|+ crtlaar|; « clonlg +  lag" s,

which implies
S aE ]2 < Cnt+ Cute A e 6 < ot + i,
i=2 i=2 i=2
or

n 2

QJ |

&g ==*

. 2
2 (ZH ég””o) < CI* + Ch*r.
i=2

i=2

0

(43)

(44)

(45)

(46)

Page 24 of 28
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Then there exist t;, t2, 1}, h, C) such that, for 7 < 7; and & < K}, we have

1 1

n 2 n 2
ﬁ(ZHSté‘WIﬁ) +Hé”||o+H@”HOH(ZHV@"Hi) < Cyh(h+73), (47)
i=2 i=1

from which we deduce

" 3
il ve( Dl )
- " 3
<ol v ( Sl ) )
izzn 3
¢ (1900l (S0 )

1
n 2
< 2CCyh +2CCy /T + <||1hu” loso + VT (ZH étthinm) ) <Ky, (48)

i=2

where 1 < h, <1/2CC} and T < 1, < 1/4(CC})*. Clearly, C; has nothing to do with Cj, and
thus (29) holds for m = n if we take C} > Y2, C/, 7} < miny<,<5 7/, and 4y < min; <, <5 /.
Then the induction is closed.

The desired estimate for #” and ¢” in (27) and (28) are thus consequences of (29) com-
bined with the triangle inequality. The proof is completed. 0

Remark 2 It is precious to point out that to avoid the restriction involved by the regulari-
ties of Q", we try to use the new mean-value technique in the proof of D; ~ Ds.

Remark 3 It can be seen that (27) and (28) do not hold for the elements dissatisfying (42),
such as the biquadratic finite element.

5 Numerical results
In this section, we consider the hyperbolic equation

uy — V- (a(u)Vu) — f(u) = g(X, 1), (X,t)e 2 x(0,T],
u=0, (X,t) €382 x (0, T], (49)
u(X,0) = up(X), u(X,0)=u1(X), Xeg2,

with £ =[0,1] x [0,1], a(u) = sinu + 0.1, f(u) = u?, and g(X, t) chosen corresponding to
the exact solution u = e‘xy(1 — x)(1 — y). Setting g = u;, (49) is changed into a parabolic
system. A uniform rectangular partition with m + 1 nodes in each direction is used in
our computation. We solve the system by the linearized Galerkin method with bilinear
element.

To confirm our error analysis for (27) and (28), we choose T = 5k for the backward Eu-
ler FEM with bilinear FE. Therefore, from our theoretical analysis, the L>-norm errors for
u and q are O(h? + 7) ~ O(h?), and the H'-norm errors for u and g are O(k + t) ~ O(h).
We present the numerical results with respect to time ¢ = 0.25,0.5,0.75, 1.0 in Tables 1-4,
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Table 1 Results for U and Q) when t=0.25 (t = 5h?)

mxm [lu"=U2]lo Order  [|u" - U1y Order 11" - Q}llo Order  1lg" - Q71 Order
5%x5 29760 x 102 — 39028 x 1072 — 29757 x 1073 - 39028 x 1072 —
10x 10 73473 x10% 20181 19230 102 10211 73473 x10% 20179 19230 x 1072 10211
20x 20 18429 x 104 19952 95818 x 10 1.0050 1.8429x 10°* 1.9953 95818 x 107>  1.0050
40 x40 46110 x 10 19988 47867 x 107 10013 46110 107> 19988 47867 x 107 1.0013
Table 2 Results for U and Q} when t=0.5 (T = 5h%)

mxm  u"=Ujlo Order  |lu" - Ul Order 19" -Q}llo Order 19" - Q]I Order
5x5 38700 x 103 - 50155 x 1072 - 38696 x 103 - 50155 x 1072 -

10x 10 93055 x 10% 20562 24686 x 1072 1.0227 93055 x 107% 20560 24686 x 102 1.0227
20x 20 23338x 1074 19954 12303 x 102 10048 23338x 10* 19954 1.2303x 1072 1.0048
40 x40 58391 x 10 19989 6.1461 x 10 1.0012 58391 x 10° 19989 6.1461 x 10> 1.0012
Table 3 Results for U] and Q] when t =0.75 (T = 5h%)

mxm lu"=Ulllo Order  [lu" = U1y Order  [lg" - Q¥llo Order  [lg" - Qs Order
5%x5 50318 x 103 - 64456 x 1072 - 50313 x 103 - 64456 x 1072 -
10x10 1.1784x 1072 20943 31692 x 1072 1.0242 1.1784x 107> 20941 3.1692 x 102 1.0242
20x 20 29550 x 1074 19956 15796 x 102 1.0045 29549 x 10* 1.9956 1.5796 x 1072 1.0045
40 x40 73929 x 10 1.9989 7.8917 x 107 10012 73929 x 10° 19989 7.8917 x 10> 1.0011
Table 4 Results for U and Q] when t=1.0 (t = 5h%)

mxm  u"=Ullo Order  [lu" - U}y Order 19" - Q}llo Order  llg" - Q71 Order
5x5 58966 x 107 - 82298 x 1072 - 58959 x 107 - 82297 x 1072 -

10x 10 14919 x 1073 19827 40685x 102 10164 14919x 107> 19826 4.0685x 1072 10164
20x 20 3.7407 x 1074 19958 20281 x 1072 1.0043 37407 x 107 1.9958 20281 x 1072 1.0043
40 x40 93585x 10 1.9989 1.0133x 1072 10011 93585x 107 19989 10133 x 102 1.0011
Table 5 Results for [[u” - URlly (h= k5, T = kh)

t k=1 k=5 k=10 k=20 k=40

0.25 2396051 x 1073 2509776 x 1073 2.868899 x 1073 4142662 x 1073 7852834 x 1073
0.50 3.093389 x 103 3652433 x 1073 5.078443 x 1073 8767703 x 1073 1632563 x 1072
0.75 4009582 x 1073 5496080 x 1073 8725847 x 1073 1.598647 x 1072 2.828099 x 1072
1.00 5216721 x 1073 8300234 x 1073 1426017 x 1072 2670072 x 1072 4519938 x 1072
Table 6 Results for [|g" - Qpll1 (h= g5, T =kh)

t k=1 k=5 k=10 k=20 k=40

0.25 2396041 x 1073 2502978 x 103 2774917 x 1073 3.325243 x 1073 7.807021 x 1073
0.50 3.093358 x 1073 3634416 x 1073 4873726 x 1073 7011551 x 1073 6395837 x 1073
0.75 4009512 x 1073 5462226 x 1073 8391812 x 1073 1334560 x 1072 1239224 x 1072
1.00 5216582 x 1073 8244615 x 1073 1376092 x 1072 2292862 x 1072 2.288225 x 1072

respectively. It can be seen that || — U} ||o and ||g" — Q}; || are convergent at rate O(h?) and

ll" — U} |l1 and ||g" — Q}|l1 are convergent at rate O(/), which indicate the optimal conver-

gence rates of the methods. Further, to show the unconditional convergence results, we
test the FEM with /1 = 1/160 and the large time steps t = /4, 5/, 10/, 204, 40k, respectively.
We present the numerical results in Tables 5-6, which suggest that the scheme is stable

for large time steps. All these results are in good agreement with our theoretical analysis.
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6 Conclusion

In this paper, we have established unconditional error estimates for a nonlinear hyperbolic
equation. A striking feature of our analysis is that we transform the nonlinear hyperbolic
equation into a parabolic system. Then a linearized backward Euler FEM is constructed
for the nonlinear parabolic equation. It is shown in this paper that such an idea avoids the
difficulty in constructing a linearized first-order scheme for a nonlinear hyperbolic equa-
tion, and we can also give the error analysis for # and g = u, at the same time. Splitting skill
is exploited to derive the final unconditional convergent results. Some special methods are
utilized to derive the boundedness of the solutions about the time-discrete system in H2-
norm, which may play a crucial role for getting rid of the restriction on the ratio between
h and 7. Since the new parabolic system caused lots of problems for our the spatial errors
analysis, several new techniques, such as rewriting the error equations, are introduced. It
should be noted that the results in this paper also hold for linear conforming triangular
elements but not hold for some other particular elements, such as the biquadratic finite
element.
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