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Abstract
This paper studies Laplace’s equation –�u = 0 in an exterior region U�RN , when
N ≥ 3, subject to the nonlinear boundary condition ∂u

∂ν
= λ|u|q–2u +μ|u|p–2u on ∂U

with 1 < q < 2 < p < 2∗. In the function space H (U), one observes that, when λ > 0
and μ ∈R arbitrary, then there exists a sequence {uk} of solutions with negative
energy converging to 0 as k → ∞; on the other hand, when λ ∈ R and μ > 0
arbitrary, then there exists a sequence {ũk} of solutions with positive and unbounded
energy. Also, associated with the p-Laplacian equation –�pu = 0, the exterior
p-harmonic Steklov eigenvalue problems are described.
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1 Introduction
This paper discusses the existence of infinitely many harmonic functions in an exterior
region U �RN when N ≥ 3, subject to a nonlinear boundary condition on ∂U that com-
bines concave and convex terms with 1 < q < 2 < p < 2∗, described as below

⎧
⎨

⎩

–�u(x) = 0 in U ,
∂u
∂ν

(z) = λ|u(z)|q–2u(z) + μ|u(z)|p–2u(z) on ∂U ,
(1.1)

in the space E1(U) of functions where u ∈ L2∗ (U) and ∇u ∈ L2(U ;RN ). Here, 2∗ := 2N
N–2 is

the critical Sobolev index and ∇u := (D1u, D2u, . . . , DN u) is the weak gradient of u.
A region is a nonempty, open, connected subset U of RN , and is said to be an exterior

region provided that its complement RN \ U is a nonempty, compact subset. Without loss
of generality, we simply assume that 0 /∈ U . The boundary of a set A is denoted by ∂A.

Our general assumption on U is the following condition.

Condition B.1 U �RN is an exterior region, with 0 /∈ U , whose boundary ∂U is the union
of finitely many disjoint, closed, Lipschitz surfaces, each of finite surface area.

One may want to notice here that the prototypical problem

–�u(x) = λ
∣
∣u(x)

∣
∣q–2u(x) + μ

∣
∣u(x)

∣
∣p–2u(x) in Ω
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has originally been investigated by Ambrosetti, Brézis and Cerami [1] in 1994 and then in
1995 by Bartsch and Willem [7], in the function space H1

0 (Ω) on a bounded region Ω with
a smooth boundary ∂Ω . Since then, there have been a large number of papers appearing
on some related problems; nevertheless, the description of the existence of solutions to
problem (1.1) is missing as a reasonable decomposition result of the associated Hilbert
function space is required for application of the dual fountain theorem, as discussed in [7,
28].

The aim of this paper is to solve problem (1.1) using a recent decomposition result by
Auchmuty and Han [3, 12]. To state our result, we first define the energy functional

ϕ(u) :=
1
2

∫

U
|∇u|2 dx –

λ

q

∫

∂U
|u|q dσ –

μ

p

∫

∂U
|u|p dσ . (1.2)

Here, dx is the Lebesgue volume element of RN while dσ is the Hausdorff (N – 1)-
dimensional surface element of ∂U . The main result of this paper is described as below.

Theorem 1.1 Assume condition (B1) holds and 1 < q < 2 < p < 2∗.
(a) When λ ∈R and μ > 0 arbitrary, then problem (1.1) has a sequence {uk} of solutions

in E1(U) such that ϕ(uk) > 0 and ϕ(uk) → ∞ as k → ∞.
(b) When λ > 0 and μ ∈R arbitrary, then problem (1.1) has a sequence {vk} of solutions

in E1(U) such that ϕ(vk) < 0 and ϕ(vk) → 0– as k → ∞.

We recall in Sect. 2 some necessary results to carry out the proofs that are detailed in
Sect. 3; Sect. 4 is devoted to the description of the p-harmonic Steklov eigenvalue prob-
lems on an exterior region U in a Banach space E1,p(U) when 1 < p < N .

We remark all solutions considered in this paper are weak or distributional solutions.
It is interesting to see that some nice properties of the first exterior p-harmonic Steklov

eigenvalue problem are described in Han [12, 13, 15] and he [14] also studied an exterior
harmonic boundary value problem with some oscillating boundary condition. However,
there is no result for the sequence of p-harmonic Steklov eigenvalue problems on an ex-
terior region U , so we will study this in Sect. 4. See Torné [27] for the bounded region
case.

Finally, one notices that we only wants to simply present an application of some result
in [3, 12]. Theorem 1.1 remains true when the special nonlinearity in (1.1) is replaced by
more general ones as mentioned in [7]. On the other hand, it is very interesting to know
more results like this using the fountain theorems of Yan and Yang [29], Zou [33], Du and
Mao [8], Sun, Liu and Wu [26]. Other important results can be found in Polidoro and
Ragusa [22], Han [16, 17], Feng, Li and Sun [9], and Phung and Minh [21], Mao and Zhao
[18–20], Guan, Zhao and Lin [10, 11], Zhang [30], Zhang, Liu and Wu [31, 32].

2 The function space E1,p(U)
First, let us fix the notations that will be used in this paper. Given p, q ∈ [1,∞], Lp(U) and
Lq(∂U , dσ ) are the usual spaces of extended, real-valued, Lebesgue measurable functions
on U and ∂U , with their standard norms written as ‖ · ‖p,U and ‖ · ‖q,∂U , respectively.

Auchmuty and Han [3, 4, 12] recently introduced a new function space E1,p(U) suitable
for the study of harmonic boundary value problems on an exterior region U which satisfies
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the boundary regularity condition (B1)—that is, each function u ∈ E1,p(U) satisfies u ∈
Lp∗ (U) and |∇u| ∈ Lp(U) with N ≥ 2 and p∗ := Np

N–p when 1 < p < N .
The gradient Lp-norm provides a norm to guarantee E1,p(U) a Banach function space—

that is, E1,p(U) is a Banach function space with respect to the norm

‖u‖p,∇ :=
(∫

U
|∇u|p dx

) 1
p

for all u ∈ E1,p(U). (2.1)

Notice when p ≥ N , Auchmuty and Han [4] showed, with an interesting example, that
E1,p(U) is not complete with respect to the gradient Lp-norm in general.

When N ≥ 3 and p = 2, they instead used the notation E1(U) to denote the associated
Hilbert function space with respect to the gradient L2-inner product

〈u, v〉∇ :=
∫

U
∇u · ∇v dx for all u, v ∈ E1(U), (2.2)

whose norm is thus written as ‖u‖∇ . In addition, one has the direct sum

E1(U) = E1
0(U) ⊕ H (U), (2.3)

where H (U) denotes the Hilbert subspace of E1(U) of all functions u satisfying

〈u, v〉∇ =
∫

U
∇u · ∇v dx = 0 for all v ∈ C1

c (U)

and E1
0(U) denotes the closure of C1

c (U) with respect to this ∇-norm. Here, C1
c (U) is the

set of functions that are continuously differentiable and have compact support in U .
Let us recall some results as regards the space E1,p(U) which will be used later.

Lemma 2.1 Suppose that N ≥ 2, 1 < p < N and condition (B1) holds. Then the embedding
of E1,p(U) into Lp∗ (U) is continuous, where p∗ := Np

N–p is the critical Sobolev index; besides,
the embedding of E1,p(U) into Lq(∂U , dσ ) is continuous when 1 ≤ q ≤ p∗ and also compact
when 1 ≤ q < p∗, where p∗ := (N–1)p

N–p is the trace critical Sobolev index.

Obviously, Lemma 2.1 shows us some concrete function spaces that are contained in the
dual space of E1,p(U). The preceding results can be found, with details, in [3, 4, 12].

Below, we give the fountain theorems. Given a compact group G and a normed vector
space X with norm ‖ · ‖, we say G acts isometrically on X provided ‖gu‖ = ‖u‖ for all
g ∈ G and u ∈ X ; also, a subset X̃ ⊆ X is said to be invariant with respect to G provided
gu ∈ X̃ for every u ∈ X̃ and g ∈ G. On the other hand, given G and a finite dimensional
space V, we say the action of G on V is admissible when each continuous, equivariant
map ℘ : ∂O → Vk has a zero, where O is an open, bounded, invariant (with respect to
G) neighborhood of 0 in Vk+1 for some k ≥ 1; here, the map ℘ is said to be equivariant
provided g ◦ ℘ = ℘ ◦ g for all g ∈ G, with g(v1, v2, . . . , vk) := (gv1, gv2, . . . , gvk) for any v =
(v1, v2, . . . , vk) ∈ Vk .

Next, given a Banach space X , a functional ψ : X → R is said to belong to C1(X ,R),
provided its first Fréchet derivative exists and is continuous on X ; when ψ has a con-
tinuous first Gateaux derivative ψ ′ on X , then one observes ψ ∈ C1(X ,R). Clearly, the
functional ϕ defined in (1.2) is in C1(H (U),R) and we shall assume this from now on.
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Also, ψ : X → R is said to be invariant with respect to G provided ψ ◦ g = ψ for every
g ∈ G.

Now, let X be a Banach space with X =
⊕

j∈NX (j) and write, for each k ∈ N,

Yk :=
k⊕

j=0

X (j) and Zk :=
∞⊕

j=k

X (j). (2.4)

Then one has the following results: the fountain theorem and the dual fountain theorem.

Theorem 2.2 ([1]) Let G be a compact group, X =
⊕

j∈NX (j) a Banach space with norm
‖ · ‖, and ψ ∈ C1(X ,R) an invariant functional; for each k ∈N, let Yk , Zk be defined as in
(2.4), and ρk > �k > 0 some constants. For every k ≥ k0 with a fixed k0 ∈N, we also assume

(a1) G acts isometrically on X , the spaces X (j) are invariant and there is a finite
dimensional space V such that, for all j ∈ N, X (j) � V and the action of G on V is
admissible;

(a2) ak := maxu∈Yk ,‖u‖=ρk ψ(u) < 0;
(a3) bk := infu∈Zk ,‖u‖=�k ψ(u) → ∞ as k → ∞;
(a4) ψ satisfies the (PS)c-condition for every c ∈ (0,∞).

Then ψ has a sequence of critical values {uk} with ψ(uk) > 0 and ψ(uk) → ∞ when k → ∞.

Theorem 2.3 [1] Under the hypotheses of Theorem 2.2, suppose again that condition (a1)
holds. For every k ≥ k1 with a fixed k1 ∈N, we also assume

(b1) ãk := maxu∈Yk ,‖u‖=�k ψ(u) < 0;
(b2) b̃k := infu∈Zk ,‖u‖=ρk ψ(u) ≥ 0;
(b3) c̃k := infu∈Zk ,‖u‖≤ρk ψ(u) → 0– as k → ∞;
(b4) ψ satisfies the (PS)∗c -condition with respect to Yk for each c ∈ [c̃k1 , 0).

Then ψ has a sequence of critical values {vk} with ψ(vk) < 0 and ψ(vk) → 0– when k → ∞.

Remark Notice c̃k ≤ minu∈X (k),‖u‖=�k ψ(u) ≤ maxu∈X (k),‖u‖=�k ψ(u) ≤ ãk < 0 as Yk ∩ Zk =
X (k)—this fact is used in conditions (b3) and (b4) presented above in Theorem 2.3.

A sequence {uk} is said to be a Palais–Smale sequence for the functional ψ ∈ C1(X ,R)
at level c in X , (PS)c-sequence for short, if ψ(uk) → c yet ψ ′(uk) → 0 as k → ∞; ψ satisfies
the (PS)c-condition provided each (PS)c-sequence has a strongly convergent subsequence
inX . On the other hand, a sequence {ũkl }, with ũkl inYkl , is said to be a generalized Palais–
Smale sequence for ψ at level c, (PS)∗c -sequence for short, if ψ(ũkl ) → c yet ψ |′Ykl

(ũkl ) → 0
as l → ∞; ψ satisfies the (PS)∗c -condition with respect to Yk provided each (PS)∗c -sequence
has a subsequence that converges strongly to a critical point of ψ in X .

More details on fountain theorems can be found in [6, 7, 28, 29, 33].

3 Existence results of (1.1)
In this section, we shall present the proofs of Theorem 1.1. Matching with the preced-
ing notations, we can identify G = Z2—the second order quotient group, X = H (U)—the
Hilbert subspace of E1(U) of all finite energy harmonic functions, and ψ = ϕ ∈ C1(X ,R).
One result in [3] shows X =

⊕
j∈NX (j); here, X (j) = span{sj} � V = R, with sj ∈ H (U)

a finite energy harmonic Steklov eigenfunction associated with the jth harmonic Steklov
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eigenvalue δj > 0. Noting that the functional ϕ is even, condition (a1) is trivially satisfied
since a classical result of Borsuk–Ulam says that the antipodal action of Z2 on R is admis-
sible.

In the following, we shall deduce conditions (a2)–(a4) and (b1)–(b4) to guarantee the
conclusions of the first and the second part of Theorem 1.1, respectively.

To further simplify notations, set ‖ · ‖ := ‖ · ‖∇ and ‖ · ‖s := ‖ · ‖s,∂U in this section. Take
a nonzero u ∈ Yk , and use tu and (1.2) to derive, for some sufficiently large t > 0,

ϕ(tu) :=
t2

2
‖u‖2 –

λtq

q
‖u‖q

q –
μtp

p
‖u‖p

p < 0 (3.1)

in view of the fact that the spaceYk is of finite dimension—so that all norms are equivalent.
As such, condition (a2) is satisfied for every ρk ≥ t‖u‖ > 0 when μ > 0.

Next, define

αk := sup
u∈Zk –{0}

‖u‖p

‖u‖ > 0. (3.2)

Then one observes αk → 0 when k → ∞. Actually, it is readily seen that 0 < αk+1 ≤ αk , so
that αk → α ≥ 0 as k → ∞. By hypotheses, there exists a uk ∈ Zk satisfying ‖uk‖ = 1 and
‖uk‖p ≥ αk/2 for each k; by definition of Zk , one sees uk ⇀ 0, i.e., uk converges weakly to
0, in H (U). Lemma 2.1 then yields ukl → 0 in Lp(∂U , dσ ) as l → ∞, for a subsequence
{ukl } of {uk}. That is, α = 0. On each subspace Zk with a sufficiently large norm, we have

ϕ(u) ≥ 1
2
‖u‖2 –

|λ|cq
1

q
‖u‖q –

μα
p
k

p
‖u‖p ≥ 1

2

(
1
2

+
1
p

)

‖u‖2 –
μα

p
k

p
‖u‖p, (3.3)

where c1 > 0 is such a constant that ‖u‖q ≤ c1‖u‖ for all u ∈ E1(U). Take �k := (μα
p
k )– 1

p–2 .
Then, via the property of αk , there exists a k0 ∈N such that one can always choose ρk = 2�k

in the foregoing estimate (3.1) for every k ≥ k0; in addition, for (3.3), one derives

ϕ(u) ≥ 1
2

(
1
2

–
1
p

)

μ
– 2

p–2 α
– 2p

p–2
k → ∞ (3.4)

when k → ∞. As a consequence, condition (a3) is ensured.
Finally, take a (PS)c-sequence {uk} for the functional ϕ at level c > 0 in H (U); that is,

ϕ(uk) → c yet ϕ′(uk) → 0 as k → ∞. Then one has, for k sufficiently large,

c + 1 + ‖uk‖ ≥ ϕ(uk) –
1
p
ϕ′(uk)(uk)

=
(

1
2

–
1
p

)∫

U
|∇uk|2 dx – λ

(
1
q

–
1
p

)∫

∂U
|uk|q dσ , (3.5)

from which one deduces immediately that

c + 1 + ‖uk‖ + |λ|cq
1

(
1
q

–
1
p

)

‖uk‖q ≥
(

1
2

–
1
p

)

‖uk‖2. (3.6)

As a result, these uk are bounded, and thus, without loss of generality, converge weakly to a
function u ∈ H (U); via result 2.1 again, we may simply suppose that uk → u in Lp(∂U , dσ )
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and Lq(∂U , dσ ) when k → ∞; besides, using (1.2), a routine calculation leads to

‖uk – u‖2 =
(
ϕ′(uk) – ϕ′(u)

)
(uk – u) + λ

∫

∂U

[|uk|q–2uk – |u|q–2u
]
(uk – u) dσ

+ μ

∫

∂U

[|uk|p–2uk – |u|p–2u
]
(uk – u) dσ → 0 (3.7)

when k → ∞. Thus, condition (a4) is also derived so that part (a) of Theorem 1.1 is proved.
On the other hand, apply a parallel idea as shown in (3.1) to prove that condition (b1) is

satisfied for every 0 < �k ≤ t‖u‖, with a nonzero u ∈ Yk and some sufficiently small t > 0,
when λ > 0—since Yk is of finite dimension. Next, define

βk := sup
u∈Zk –{0}

‖u‖q

‖u‖ > 0. (3.8)

Similarly, one observes that βk → 0 when k → ∞ again from Lemma 2.1. On each sub-
space Zk with a sufficiently small norm, we have

ϕ(u) ≥ 1
2
‖u‖2 –

λβ
q
k

q
‖u‖q –

|μ|cp
2

p
‖u‖p ≥ 1

4
‖u‖2 –

λβ
q
k

q
‖u‖q, (3.9)

where c2 > 0 is such a constant that ‖u‖p ≤ c2‖u‖ for any u ∈ E1(U). Take ρk := ( 4λβ
q
k

q )
1

2–q

to derive ϕ(u) ≥ 0. Via the property of βk , there exists a k1 ∈N such that we may select the
above �k = ρk

2 to be sufficiently small for all k ≥ k1. As such, condition (b2) is ensured; also,
condition (b3) follows in view of the fact ρk → 0 as k → ∞. Finally, take a (PS)∗c -sequence
{ũkl }, with ũkl in Ykl , for ϕ at level c ∈ [c̃k1 , 0); that is, ϕ(ũkl ) → c whereas ϕ|′Ykl

(ũkl ) → 0 as
l → ∞. So, one infers 1

p |ϕ′(ũkl )(ũkl )| ≤ ‖ũkl‖ for sufficiently large l. Thus, (3.6) holds again.
As a result, these ũkl are bounded, and thus converge weakly without loss of generality
to a function ũ ∈ H (U); via Lemma 2.1 again, we may simply assume that ũkl → ũ in
Lp(∂U , dσ ) and Lq(∂U , dσ ) as l → ∞; by use of (1.2) again, one observes, just like (3.7),
‖ũkl – ũ‖ → 0 when l → ∞. Thus, condition (b4) is also derived so that part (b) of Theorem
1.1 is proved.

All the above discussions finish the proof of Theorem 1.1 completely.
We do not know whether vk → 0 as k → ∞; this is the case if 0 is the only solution of

problem (1.1) with energy 0. However, we can derive the following result.

Proposition 3.1 Assume condition (B1) holds and 1 < q < 2 < p < 2∗.
(a) When λ ∈R arbitrary yet μ ≤ 0, then (1.1) has no solution with positive energy; also,

inf
{‖u‖ : u solves (1.1) with ϕ(u) > 0

} → ∞ as μ → 0+.

(b) When μ ∈R arbitrary yet λ ≤ 0, then (1.1) has no solution with negative energy; also,

sup
{‖v‖ : v solves (1.1) with ϕ(v) < 0

} → 0 as λ → 0+.

Proof Take u ∈ H (U) to be such that ϕ(u) ≥ 0 and ϕ′(u) = 0. Then one has

ϕ(u) –
1
q
ϕ′(u)(u) =

(
1
2

–
1
q

)

‖u‖2 – μ

(
1
p

–
1
q

)

‖u‖p
p ≥ 0. (3.10)
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When μ ≤ 0, then u = 0 follows immediately. Accordingly, we need to assume μ > 0 in
general. In this case, we correspondingly have

μcp
2

(
1
q

–
1
p

)

‖u‖p ≥ μ

(
1
q

–
1
p

)

‖u‖p
p ≥

(
1
q

–
1
2

)

‖u‖2,

from which one can deduce that

‖u‖ ≥
{

μ–1
( 1

q – 1
2 )

cp
2( 1

q – 1
p )

} 1
p–2 → ∞ (3.11)

when μ → 0+. This finishes the proof for part (a) of Proposition 3.1.
In addition, let v ∈ H (U) be such that ϕ(v) ≤ 0 and ϕ′(v) = 0. Similarly, one has

ϕ(v) –
1
p
ϕ′(v)(v) =

(
1
2

–
1
p

)

‖v‖2 – λ

(
1
q

–
1
p

)

‖v‖q
q ≤ 0. (3.12)

When λ ≤ 0, then v = 0 follows immediately. Accordingly, we need to assume λ > 0 in
general. In this case, we correspondingly have

λcq
1

(
1
q

–
1
p

)

‖v‖q ≥ λ

(
1
q

–
1
p

)

‖v‖q
q ≥

(
1
2

–
1
p

)

‖v‖2,

from which one finds readily that

‖v‖ ≤
(

λ
cq

1( 1
q – 1

p )

( 1
2 – 1

p )

) 1
2–q → 0 (3.13)

when λ → 0+. This finishes the proof for part (b) of Proposition 3.1. �

Finally, we consider the following analogous problem:

⎧
⎨

⎩

–�u(x) + u(x) = 0 in U ,
∂u
∂ν

(z) = λ|u(z)|q–2u(z) + μ|u(z)|p–2u(z) on ∂U ,
(3.14)

in the standard Hilbert–Sobolev space H1(U), where all u ∈ H1(U) satisfy u, |∇u| ∈ L2(U),
and we define the associated energy functional

φ(u) :=
1
2

∫

U

[|∇u|2 + |u|2]dx –
λ

q

∫

∂U
|u|qdσ –

μ

p

∫

∂U
|u|p dσ . (3.15)

Note that in view of some result in [2], we have the following direct sum:

H1(U) = H1
0 (U) ⊕ N (U), (3.16)

where N (U) is the Hilbert subspace of H1(U) of all functions u satisfying

〈u, v〉1,2 =
∫

U
[∇u · ∇v + uv] dx = 0 for all v ∈ C1

c (U)
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and H1
0 (U) is the closure of C1

c (U) with respect to the standard H1-norm. Applying a sim-
ilar procedure to the proof of Theorem 1.1, we can obtain the following result.

Theorem 3.2 Assume condition (B1) holds and 1 < q < 2 < p < 2∗.
(a) When λ ∈R and μ > 0 arbitrary, then problem (3.14) has a sequence {uk} of solutions

in N (U) such that φ(uk) > 0 and φ(uk) → ∞ as k → ∞.
(b) When λ > 0 and μ ∈R arbitrary, then problem (3.14) has a sequence {vk} of solutions

in N (U) such that φ(vk) < 0 and φ(vk) → 0– as k → ∞.

4 p-Laplacian Steklov eigenvalue problems
As mentioned earlier, the beauty of the paper [3] is the discovery of the generalizations to
high dimensions of the classical 3d Laplace’s spherical harmonics exterior to the unit ball:
the exterior harmonic Steklov eigenvalue problems whose full spectra are derived there.
This section is devoted to the description of the exterior p-harmonic Steklove eigenvalue
problems in the function space E1,p(U) when N ≥ 3 and 1 < p < N . Similar results on
bounded regions may be found in the interesting paper of Torné [27].

Recall the p-Laplacian is defined as �pu := div(|∇u|p–2∇u). The exterior p-harmonic
Steklove eigenvalue problems are to seek weak solutions of the problem below

–�pu(x) = 0 in U ,

subject to
∣
∣∇u(z)

∣
∣p–2 ∂u

∂ν
u(z) = δ

∣
∣u(z)

∣
∣p–2u(z) on ∂U ,

(4.1)

in E1,p(U). This problem has been well developed on bounded regions over a century since
Stekloff [23, 24], yet only been investigated recently in [3–5, 12, 13, 15].

Take ‖ · ‖ := ‖ · ‖p,∇ in this section. Define two functionals on E1,p(U) as

ϕ(u) :=
1
p

∫

∂U
|u|p dσ and ψ(u) :=

1
p

∫

U
|∇u|p dx. (4.2)

Accordingly, given u ∈ E1,p(U), write two linear functionals on E1,p(U) to be

⎧
⎨

⎩

Pu(v) := pϕ(u)ψ ′(u)(v)

Bu(v) := ϕ′(u)(v) – Pu(v)
for each v ∈ E1,p(U). (4.3)

Since E1,p(U) is a reflexive, uniformly convex Banach space when p > 1 (see [4]), there
exists a unique element, say, uB in E1,p(U), from Riesz’s theorem, such that

Bu(uB) = ‖Bu‖2
∗ = ‖uB‖2; (4.4)

therefore, one finds a homeomorphism H : E1,p(U) → E1,p(U) such as H(u) := uB . Noticing
H is odd, and bounded, uniformly continuous on the set S1 := {u ∈ E1,p(U) : ‖u‖ = 1}, there
are constants t0,υ1,υ0 > 0 such that, for all t ∈ [–t0, t0] and u ∈ S1, one has

υ1 ≥ ‖u + tuB‖ ≥ υ0. (4.5)
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Now, define a flow H : S1 × [–t0, t0] → S1 by

H(u, t) :=
u + tuB

‖u + tuB‖ . (4.6)

Then H is odd in u, with H(u, 0) = u, uniformly continuous and verifies the property below.

Lemma 4.1 There exists a map �(u, t) : S1 × (–t0, t0) → R such that �(u, t) → 0 as t → 0,
uniformly on S1, and, for each u ∈ S1 and t ∈ (–t0, t0), we have

ϕ
(
H(u, t)

)
= ϕ(u) +

∫ t

0

[‖uB‖2 + �(u, s)
]

ds. (4.7)

Proof Since

ϕ
(
H(u, t)

)
= ϕ(u) +

∫ t

0
ϕ′(H(u, s)

)
(

∂H(u, s)
∂s

)

ds, (4.8)

we can define, in view of (4.4),

�(u, t) := ϕ′(H(u, t)
)
(

∂H(u, t)
∂t

)

– Bu(uB), (4.9)

and we have �(u, 0) = 0 uniformly on S1 via (4.5). Actually, a routine computation leads to

∂H(u, t)
∂t

=
uB

‖u + tuB‖ –
u + tuB

‖u + tuB‖p+1

∫

U

∣
∣∇(u + tuB)

∣
∣p–2∇(u + tuB) · ∇uB dx,

from which one deduces easily that, noticing that ‖u‖ = 1 on S1,

∂H(u, 0)
∂t

= uB – u
∫

U
|∇u|p–2∇u · ∇uB dx; (4.10)

this further implies that, remembering the fact that H(u, 0) = u now,

ϕ′(H(u, 0)
)
(

∂H(u, 0)
∂t

)

= ϕ′(u)(uB) – ϕ′(u)(u)ψ ′(u)(uB) = ϕ′(u)(uB) – Pu(uB),

which together with (4.3) and (4.9) gives the desired result as � is bounded by (4.5). �

Using this result, we can derive a version of deformation lemma.

Proposition 4.2 Given a constant κ > 0, suppose there are constants ς > 0 and τ ∈ (0,κ),
such that ‖uB‖ ≥ ς on Vτ := {u ∈ S1 : |ϕ(u) – κ| ≤ τ }. Then, for every compact, symmetric
subset G of S1, one finds a constant ε ∈ (0, τ ) and an associated odd map Hε : S1 → S1 that
is continuous on Vε ∩ G and Hε(Vε ∩ G) ⊆ ϕκ+ε , where ϕκ+ε := {u ∈ S1 : ϕ(u) ≥ κ + ε}.

Proof As �(u, 0) = 0 uniformly on S1, we can choose t1 ∈ (0, t0) such that |�(u, t)| ≤ ς2/2
for each u ∈ G � S1 and t ∈ [–t1, t1] since G is compact. Write ε := min{τ ,ς2t1/4}. Then
(4.4) and (4.7) implies that, for every u ∈ Vε ∩ G ⊆ Vτ , ϕ(H(u, t1)) ≥ κ – ε + ς2t1

2 ≥ κ + ε;
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that is, H(u, t1) ∈ ϕκ+ε for all u ∈ Vε ∩ G. As such, we define an odd map via (4.6) that is
continuous on Vε ∩G by (because ϕ is even and G = –G so that Vε ∩G again is symmetric)

Hε(u) :=

⎧
⎨

⎩

H(u, t1) when u ∈ Vε ∩ G,

u when u ∈ S1 \ Vε ∩ G,
(4.11)

and have Hε(Vε ∩ G) ⊆ ϕκ+ε , as claimed. This in turn completes the proof. �

Next, define

κn := sup
G∈Gn

min
u∈G

ϕ(u) ≥ 0. (4.12)

Here, Gn := {G � S1 : G compact, G = –G and γ (G) ≤ n}, with γ being the Krasnoselskii
genus (see, for example, section ii.5 of [25] for more detailed descriptions).

Then we can prove the following main results.

Theorem 4.3 For every n ≥ 1, κn > 0 and there exists a function sn ∈ E1,p(U) such that
ϕ(sn) = κn; in addition, sn is a weak solution of (4.1) with δ = δn := 1

pκn
> 0.

Proof As γ (S1) = ∞, κn is well defined in the sense that Gn �= ∅ for each n ∈ N. Select a set
Gn ∈ Gn with u �= 0 σ a.e. on ∂U for all u ∈ Gn to derive κn ≥ minu∈Gn ϕ(u) > 0.

Next, given n ≥ 1, there exists a sequence {un,k} in S1 such that ϕ(un,k) → κn. Using a
subsequence if necessary, it implies un,k ⇀ sn ∈ E1,p(U) yet un,k → sn ∈ Lp(∂U , dσ ) in view
of Lemma 2.1, when k → ∞. Thus, one deduces that ϕ(un,k) → ϕ(sn) = κn.

Moreover, as linear functionals on E1,p(U), Bun,k → 0 when k → ∞. First, by definition
of κn, one can find a set G̃n ∈ Gn, with κn – ε ≤ ϕ(u) ≤ κn + ε, for each u ∈ G̃n and some
suitably small ε ∈ (0, κn

4 ); now, if we suppose on the contrary ‖Bu‖∗ > ς > 0 uniformly on
{u ∈ S1 : κn

2 ≤ ϕ(u) ≤ 3κn
2 }, Proposition 4.2 provides us with a continuous, odd map Hε on

G̃n such that Hε(G̃n) ∈ Gn and Hε(G̃n) ⊆ ϕκn+ε—a contradiction thus is arrived at.
Since Bun,k → 0 when k → ∞, one infers that, in view of (4.2) and (4.3),

lim
k→∞

∫

U
|∇un,k|p–2∇un,k · ∇v dx = F (v) for all v ∈ E1,p(U),

where F (v) := 1
pκn

∫

∂U |sn|p–2snv dσ is a linear functional on E1,p(U). Using Lemma 2.1
again, plus un,k ⇀ sn ∈ E1,p(U) yet un,k → sn ∈ Lp(∂U , dσ ) as k → ∞, we obtain

∫

U
|∇sn|p–2∇sn · ∇v dx = δn

∫

∂U
|sn|p–2snv dσ for all v ∈ E1,p(U). (4.13)

Here, δn := 1
pκn

> 0. As such, sn ∈ E1,p(U) is a weak solution of problem (4.1). �

Theorem 4.4 Define κn as in (4.12) and δn by 1
pκn

for each n ∈N. Then one has

lim
n→∞ δn = ∞. (4.14)
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Proof The conclusion (4.14) follows if we can show that limn→∞ κn = 0.
For each n ≥ 1, choose En to be a linear subspace of E1,p(U) of dimension n such that

u �= 0 σ a.e. on ∂U for every u ∈ En, and denote its complement in E1,p(U) by E c
n. Without

loss of generality, assume further that E1 � E2 � · · · � En � · · · � E1,p(U). Note that (4.13)
guarantees our choice as clearly sn|∂U �= 0 σ a.e. on ∂U for all n ∈N. Also, we have

⋃

n∈N
En

⋃̇
E1,p

0 (U) = E1,p(U), (4.15)

where E1,p
0 (U) denotes the subspace of E1,p(U) that is the closure of C1

c (U) with respect to
the gradient Lp-norm (2.1) and the notation ∪̇ means disjoint union.

Now, define κ̃n := supG∈Gn minu∈G∩Ec
n ϕ(u) to give κ̃n ≥ κn > 0. Then one proves

limn→∞ κ̃n = 0. Actually, if not, there is a constant ε > 0 such that κ̃n ≥ ε for all n ≥ 1. Thus,
a set Ğn ∈ Gn exists such that κ̃n ≥ minu∈Ğn∩Ec

n
ϕ(u) ≥ ε

2 > 0 for each n ∈N, so that we find
a sequence {un}, with un ∈ Ğn ∩E c

n, satisfying ϕ(un) ≥ ε
2 uniformly. Keep in mind Ğn � S1;

from (4.15) and resorting to a subsequence if necessary, one has un → 0 ∈ Lp(∂U , dσ ), and
thus ϕ(un) → 0, as n → ∞. A contradiction follows and thereby one finishes the proof. �

Finally, it is worth to mention here that the problem

–�pu(x) +
∣
∣u(x)

∣
∣p–2u(x) = 0 in U ,

subject to
∣
∣∇u(z)

∣
∣p–2 ∂u

∂ν
u(z) = δ

∣
∣u(z)

∣
∣p–2u(z) on ∂U ,

(4.16)

can be studied analogically in the space W 1,p(U) by use of some results in [2, 5].
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