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1 Introduction
In this paper, we consider the following Allen—Cahn/Cahn—Hilliard system:

A —aA - A+ kIAPA=Ah, x€(0,1),t>0, (1.1)
dh+ |Alogh =mdn, x€(0,0),t>0, (1.2)
A(x,0) = Ap(x), h(x,0) = ho(x), x€(0,0), (1.3)
A0,0) =AW =0,  3.h(x1)|xm0s = 33X, 8|40, =0, £>0, (1.4)

where = f'(h) — y92h, f'(h) = h* — h, and 0 is a zero vector of RN, mk > 2, mk,a>0
are given numbers, A(x,2) = (A1(x,£),...,An(%, ) is the unknown vector function, 4(x, £)
is the unknown scalar function, Ay (x) and /y(x) are given initial data.

System (1.1)—(1.4) was introduced to model simultaneous order-disorder and phase sep-
aration in binary alloys on a BCC lattice in the neighborhood of the triple point [1]. Here,
h denotes the concentration of one of the components, while A is an order parameter.
The Allen—Cahn equation and the Cahn—Hilliard equation have been intensively stud-
ied [2—5]. Miranville, Saoud, and Talhouk [5] studied the long time behavior, in terms of
finite-dimensional attractors, of a coupled Allen—Cahn/Cahn-Hilliard system. In partic-
ular, they proved the existence of an exponential attractor and, as a consequence, the exis-
tence of a global attractor with finite fractal dimension. Celebi and Kalantarov [6] proved
the decay of solutions and structural stability for the coupled Kuramoto—Sivashinsky—
Ginzburg-Landau equations.
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The large time behavior and the structural stability of solutions are important for the
study of a higher-order parabolic system. Many papers have already been published to
study the decay and the structural stability of solutions [7-9]. In this paper, we consider
the asymptotic behavior of solutions and the continuous dependence of solutions for sys-
tem (1.1)—(1.4). We are going to show the continuous dependence when the coefficient
changes, which helps us to know whether a coefficient in the system can cause a large
change in the solution.

The following is the main result of the paper.

Theorem 1.1 If

A and A Ly 3 (1.5)
o< an m—-—1——>0, .
1 1\v 2)"% 2

then all solutions of problem (1.1)—(1.4) tend to zero with an exponential rate as t — oo.

Theorem 1.1 implies that the concentration of one of the components and the order
parameter will tend to zero as t — co. Hence one of the components will disappear and
the system will become disorder in a background point of view.

To prove Theorem 1.1, the basic a priori estimates are the L? norm estimates on /# and
dxh. The main difficulties are caused by the nonlinearity of both the diffusive and the con-
vective factors in equation (1.2). To overcome such difficulty, we establish two new func-
tionals E;(¢) and E;(£). Our method is based on the global energy estimates and require
some delicate local integral estimates.

This paper is arranged as follows. We first study a priori estimates in Sect. 2, and then
establish the exponential decay of solution in Sect. 3. Subsequently, we discuss the con-
tinuous dependence results in Sect. 4.

2 A priori estimates

Similar to [10], we know that problem (1.1)—(1.4) has a unique global solution. The first
step is to obtain a priori estimates of solutions of system (1.1), (1.2). Applying the operator
P? to both sides of equation (1.2), here P? is the inverse operator of the operator L = —%
with the domain of definition D(L) = H*(0,/) N H3(0,1), we get the following problem:

QA —aA - A+ KAPA=Ah, x€(0,1),t>0, (2.1)
P23k + P*(|Aloxh) = -mp, x€(0,0),t>0, (2.2)
A(x,0) = Ag(x), h(x,0) = ho(x), x¢€(0,0), (2.3)
A(0,0)=A(Lt) =0,  8:h(0,8) = d,h(L,t) =0, t>0. (2.4)

Multiplying equation (2.1) by A and (2.2) by & shows

1d !

5 7 14O —eA0] + [a.A0] + & /0 [AGx, )| dx = (|A@)] (D)) (2.5)
and

1d !

=P + /O (1A, 0|05, 0) PP, £) dx
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=—m /0 l|h(x, 8)|* dx + m|[h(@)|* - ym| k(). (2.6)
Adding the two resulting equations together, we obtain
1d 2 2 2 2 ! 4
3 4O + |PHOT) =A@ + |G +m [ Jhte0)*ax
ik /O A0 da + ym] 8.0

l 1
= m|h(e)|” + / |A(x, )" (e, £) dx — / (|AGx, £)|3.h(x, ) PPh(x, £) dx

< m|h(o)|? +—/|A 50| e+ 2 o) f|A (e, 0| dx
mhy 2
+—/|Phx,) dx + — /|8hx,t)
2 212
< )| /|Ax)| de+ 2”8ht)” +_/\hx, Ydx,  (27)
that is,
1d
s 1A o)« [l + 2 [ ol as
+]ffl|A(x t)’4dx+(ym——>H8 h(t)”2
2 /o ’ 23 )
3
<ala@|” + Sl I”. (2.8)

Due to the Cauchy—Schwarz inequality, we have
IAI1> = (P~ h, Ph) < | P~ k|| I1PhI| < ell:h11* + Ci(e) | PhII*.

Choosing & = £ — ﬁ and Cy(e) = ﬁ for the last inequality and using it in (2.8), we get
1

d !
A1 + [Pr@]7) + 2] aA@)]* + m/ |, )| dox
0
I
+ k/ ‘A(x, t)’4dx + ym” (‘),ch(t)H2
0
< 20| A@®)]* + Caly, m,n) | Ph(D) | (2.9)
Thanks to (2.9), it is true that
|A®)|* + [Ph()|* < Di(¢), VEeRY,

t t pl (2.10)
/ oA ()| ds, k / / |A(x, )| dxds < Dy (),
0 0 Jo

Page 3 of 14
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and

t t !
ym / |8.h(2)||” ds, m / f |h(x,t)|* dxds < Do), VteR', (2.11)
0 0 JoO

where Di (£) = [[|Aol|* + [[Pho||*]e®**%2), Dy(£) = D (2) + [|Aol|* + [|1Pho 1.
Based on (2.9) and (2.10), we use the standard Faedo—Galerkin method to prove the
existence of a global weak solution [A4, 4] of problem (2.1)—(2.4) with the following prop-

erties:
A e C(0,T;L%(0,1)) N L*(0, T; Hy (0, 1)), (2.12)
he C(0,T;H™(0,1)) N L*(0, T; Hy(0,1)). (2.13)

Multiplying (1.2) by / in L%(0, 1), we have

2dt ||h(t)|| :—31/;1/ H2(x, £)0, hz(x,t)dx+m/ |8 h(x,t)| dx
+ymf 8xh(x,t)8§h(x,t)dx—/ \A(x,t)|28xh(x,t)-hdx.
0 0

By Young’s inequality, we see that

1d 2 9 2

5 2 O+ ymlazn@)]

2 1! 4 1! 4 m 2
<mlaho)]*+ - / A e / ) dx+ 2 o)

<2 ah) + L/ |AGx, )" dox + —/ I, )" dx. 214)
2 4 2
Applying (2.11), integrating inequality (2.14) in (0, £) gives the following estimate:
O] + ym / |02h(s) > ds
1 1 m [t 1
= (4mk am )DZ(W —/ |ach(s)]*ds + - ol
<Ds(t), VYtelo,T), (2.15)

where Ds(t) := (5 + 5 + 3 2D, () + 3 L7 ||%. Therefore, we deduce

dmk  4m

t
2 2ym / |82h(s) || ds < 2Ds(T), Ve e [0, T). (2.16)
0

Multiplying equation (1.1) by 8;A in L2(0, 1), we see

d
ol + & 3laacl - S jaol & [acof a]

= ([A®), A®), h(8)). (2.17)



Yang and Liu Boundary Value Problems (2019) 2019:54 Page 5 of 14

Depending on Sobolev’s imbedding theorem and estimates (2.11), (2.16), the term on the
right-hand side of (2.17) can be estimated as follows:

(A, 2A@) hO) | <|AD] 0 1 |34
<[54 + 3[40 2 11O
<2 oa®]* + L [o.A0| o]’

1H8tA @) + D). A®)? Veelo, 1.

Thus, according to (2.17),

d !
3AQ)|* —[BxA _ulAa®lP + & | |AG, “d]
la®] + 5 [l - ua)*+k [ lacs.of* ax

<2Ds(1) |0, AQ)|? Veelo,T).

It is easy to obtain the estimate

/ oo s
0

where

%AW <D(T), Vtelo0,T), (2.18)

!
D(T) := 2ID5(T)D(t) + aD1(T) + ||8:A0||* — || Ao + k/ |4o(%) |4 dx.
0
2

Remark 2.1 If A(ym — #) — 3 — 1y > 0, the following uniform estimate holds true:
1

2
lA®|* + [Pr@)|* < [I1 40l + [ Pho|*]e ™" + %3/1 (2.19)

where y; := 211 min {1, ro}.

Proof We deduce from (2.6) the inequality
1d 2
—— || Ph(t
e

1
= _m / e, O] dx + m| )| = ym | ah(0)|

/(|A Xt
§—m/0 ‘h(x,t)4
mAt ! 2
!
5—%/0 |, )] *

)| 0 (x, t))ch(x, t)dx

1 l
@)~ ym| 3O + o /0 |AGe 0| dx

1 !
4a’x+—2/ yaxh(x,t) dx
222 Jo

dx + | (o) - (ym— %}\%)Haxh(t) 2
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I
+i/ |Ax, )| dx
8m 0

* dx.

1
<m|n@)| - <ym _ T;) Jaarcof + L /0 4G 1)
1

From (2.5), we know that

*dx

1d !
5 7 1AO1 + 240 + & /O A, 2)

1 k(! 2l
< —/ A, )| dx + = | 1) + f/ AGe, )| dx + .
2m 0 2 2 0 2k
Adding the above two inequalities, we derive

1d 2 2 2 ! 4
3 PR + A1)+ a4 + & [ a0 as

3m 2 1 2 ! 4 ol
< THh(t)” - ()/m— Z—A%)”axh(t)” +k/(; |AGx, 1)|" dx + o

that is,

1d 1
5 g (2RO |40 )+ (ym- 25 ) oo
3 ’l
- S]] + oA < S

Hence

a?l

1d
S (1Pn@ ] + JAO]) + | + A | < S

Taking y; = 241 min {1, rp}, we have

o?l

d
4 (Pl + A0 ) + n(|Pro | + Ja0)]) = &

We get (2.19) by integrating the last inequality. O

3 Exponential decay of solution

In this section, we are going to prove the exponential decay of solution.

Proof of Theorem 1.1. Multiplying in L2(0,1) (2.1) by A, (2.2) by &, and adding the obtained

relations, we get

d 1
%%(HPh(t) 1%+ [A®]%) + |40 + & /0 A, 0)[* dx—a||A))*

1 2 3m 2 5 ! 4
. (ym _ 27%) Jano | - 2 o - 2 /0 4G 8| dx <0, (3.1)
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that is,

Y dx + rora | Ph(e)|” <0,

1d k 1
5 PO+ [40)]) + doJa@)]* + 5 /0 A1)

which implies
1d k!
5 75 (1Ph() I?+ 4@ %) + o (|Pr@) | + |A®)|?) + 5 fo A, t)|"dx <0, (32

where dg := Ay —a, 19 := M (ym — # _ ng’
1

and yo = min {do, 701 }. Hence, we have
[P |* + |A@)]* < (IPRol> + I AolI?)e ", (3.3)

We conclude from (3.1) that

I

d
— ([Pn(e) I? + |A@®)[?) + 2dori" || 9A@) |* + 2r0r7" | 0h(2)

Ydx <o. (3.4)

1
+k f |A(x, t)
0
Integrating this inequality over the interval (0, ) and employing estimate (3.3), we obtain
dy [* 2 ro [* 2 1 2 2
— | |6:A@)||"dr + = [ |och(x)| dr < = (IPholl® + lAolI*), VE>O0. (3.5)
A1 Jo A Jo 2

We can know that if Ag, 19 € H}(0,1) then problem (1.1)—(1.4) has a unique weak solution
such that

A,h e C(0, T;Hy(0,0)) N L*(0, T; H*(0,1)), VT >0.
Taking the inner product of (2.2) with —3%4, we have
d 2 1 2 1 ! 2
— | n(e 2— (A —m)|32h@)||" < — [ |A(x,t)| dx. 3.6
GO +25-Gaym-mlazhol = 5 [ a0 ax 6)
Besides, we know

Y dx + 20| (1) | < 0.

d 1
= (lPh() I+ |A@®)|?) + 2o | A@)|* + & /0 |A(x, )

Let us multiply (3.6) by a positive parameter ¢; and add it with the above inequality

2(Aym —m)e;

d
g e+ [PRO+ Ja@) + ===

[ozn)]*

1
¥ (2d0 - 2%) lA@)| + 2r0 | 1(e)|* + k/ A, )| dx < 0.
0
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Choosing &; = 2md,, we obtain the inequality

()»1)/7” m)ey

d
1O +8E(0) + |02h@)|” + k / |Ax,1)|*
<0, Vt>0, (3.7)

where

Ei() = 1| 1) | + | Ph®)|* + |

and &1 := min {do, A170, ;—‘1)}. Then we obtain
E\(t) < E;(0)e™, Vt=>0. (3.8)

Taking the inner product in L2(0,1) of (2.1) with 8,4, we get

2 d (04 2 1 2 Kk !
0. A +$<—§”A(t)“ +§”8xA(t)” *7 /0 |A(x, t)

* dx>

!
< 8@+ i /0 |Ax, )| |hGx, 0)| dx

According to [6],

d

o 2 1 2 k! 4
(2140l + Slaawr 4 [aco dx)

raer LIOL B

i
4
<e, fo D X

Multiplying (3.4) by % and adding with the inequality, we obtain

d K !
T D " Ja.A] + (AT _83) (o) + (% _82) /0 4G )
6

*dx

= 2568383 ”
where
1- 1 k [
Ext) := ( ?) lA@®)|” + = ||Ph(t)||2 +5 |04 I”+ Z/ |Ax,1)|" dx
0
We choose in the last inequality &, = Izi &3 = and obtain the equality

d
S E0) + 82E2(0) < Ao A) I*+ A |r®]°, ve=o,

where

5,1 -« 1
1,2rgAq ¢, Ao = R A= 256e2e.
2¢3

. {2610
8y :=min{ —,
A

1
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Using estimate (3.8), we have

%Eﬂt) +8,E5(t) < Aze™, (3.9)

where Ay = A1E3(0) + AoE;(0). Integrating (3.9) and by Gronwall’s inequality, we get

A
Ey(t) < e,

5 (3.10)

Combining with (3.3), we have
2A
|a.4@)|° < 8—e-52f + Roe 20", (3.11)
1

Multiplying (2.2) by 9,4, we obtain

2 d m 2 ym 2
oo+ 5 (-5 01+ 5 o))

m d ! 4
E_ZE/(; |h(xt)| dx

!
" i / [P(|AGx, 0)|3:h(x, 1) dx + | PO:()||*. (3.12)
0

Adding % (3.6) to (3.12), we get

d

I
= <% |ash(e)|” + % /0 |h(x.t)|4dx) + 200y m —m)| k()|

2
)

I l
<o fo |A(x, )| dx + 4_2»1“ AR |0:h(0)

thus
(ool + 2 [ sl ax) + [2037m-m - o lasnco]
de\ 2 " 4 Jo ar |1
- L /1|A(x t)|2dx.
~ 2m 0 ’
Note that

!
/0 )| dx < @) |2, [n@)|* < 1] )| [ @] < e[ ahio)]".

Hence, we know that

d(ym s m [! 4
E<T||axh(t)|| N /0 )| dx>

!
ym 2 m 4 E»(0) s,
+C<T||8xh(t)|| o /0 Ihx.0) dx) <BO e (3.13)
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Finally, we integrate (3.13) and get

!
m m
Y2 |aehie)|)” + = / h(xt)|" dx < c1e7, (3.14)
2 4 )
where ¢; = —ffn—(&ol)e“slt + Z|0sho||* + 2 fol |ho|* dx — ffn—(sol). The theorem is true. O

4 Continuous dependence results
Assume that [A, /] is the weak solution of the problem

A —aA-02A+klAPA=Ah, x€(0,0),t>0, (4.1)
O +)A|dh = md*i, x€(0,0),t>0, (4.2)
A@x,0)=Aox),  h(x,0)=ho(x), x€(0,0), (4.3)

A(0,8)=A(Lt)=0,  08,h(0,£) = 8h(0,t) = d.h(l,t) = °h(l,£) =0, >0, (4.4)

where ji = f'(h) — y82h, f'(h) = i® - h.

Theorem 4.1 Assume that [A, h] is a solution of problem (1.1)—(1.4) and [A, 1] is a solution
of problem (4.1)—(4.4). Let [a,H] = [A - A, h - h), we have

t
|PH®)| + @) < goe T / oA ds,
0

4
34 4
2k Cy Cy
’
4m3)ffy2

where qo = s
(kabo) 3

Iy ;
Ri(0) = 2C(y,m) + 2Ci(y, m) + 4| h(®) | + 20 + P K0 I? + 1] 92A@)|".
1

Proof Note that [a,H] = [A - A, h - h] is a solution of the following problem:

da—aa—da+klAPA-k|APA=Ah-Ah, x€(0,0),t>0, (4.5)
P*3,H — mH — ymd>H

= —m(h® - I*) + P>(|A|:h) - PX(|Al3:h), x € (0,0),t>0, (4.6)
a(x0)=0, H(x0)=0, x€(0,)),

a(0,t) =a(l,t) =0,  08,H(0,£) = 3,H(0,¢), x€(0,1),¢>0.
By

Ah—Ah=Ah—Ah + Ah - Ah = ah + AH
and

P*(|A|dh) — P*(|Ald:h) = P2(1A|8xh — |A|3.h)
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= P*(|A|9:h — |A1:h + |Al9,5 — |Aldyh)
= P*(~|A|3,H - 3,h(|A| - |A])),

we see that [a, H] satisfies the following system:
da—aa—32a+ky(|APA - |APA) = ki |AI*A + ah + AH,

P?3,H — mH — ymd*H

= —m(h® - I*) - P2(|A8:H + 3,h(1A| - |A])),
where ky = k, ki = k—k.
On the other hand, we know that

i
(|A®)|*A@) - |A@)|PA@), A(t) - A#)) = bo fo |a(x,1)|* do.

Multiplying (4.7) by 4 and using inequality (4.9), we obtain

1d

)
la 2 2 5, 2 kb , 4y
3 a1 - ala] + [aa@]” koo [ fatwn)]* s

h(x, £) dx

l !
<k / A, 0P (A ), alx, 1)) dx + / |a(x, 1)
0 0

l ~
+ / (AGx, 1), a(x, 0))H (x, t) dx.
0

(4.9)

(4.10)

We are going to estimate the first integral on the right-hand side of (4.10) by the Nirenberg

inequality as follows:

!
’ / |a(x, £)|*hix, t) dx
0

l
< a2, [ s 0]

< Vi|a®|2 |®)]
<2V1||a(®)| |o.a(e) ||| 1) |

< 2@ + 21]ato) |0

(4.11)

We can infer from the Nirenberg inequality and the Friedrichs inequality that the following

estimate of the second term on the right-hand side of (4.10) is true:

l
/ (A (x, 1), alx, t))H (x,8) dx
0

l ~
5/0 |Ax,t)

= 4@ Je@][H®]
1

!a(x, t)

!H(x, t)’ dx
< 1A0I% || + 5l

=

0.4 || a@®)|* + &2 ]| 0H@)|* + Ci(e2) | PHO)|)*.

(4.12)

Page 11 of 14
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Employing Young’s inequality and Sobolev’s inequality, we have

kI/ ’A X, t

<k / |A(x, t)ma(x, t)| dx
0

/ ’A X, b
kzb()

kic
< 1
(kybo)3

t),a(x, t)> dx

<

+k2b0/ ’a(x,t)’ dx

HaA H a’x+k2b0/ ’ax, ! dx.

Then employing the last inequality and (4.11), (4.12), we deduce the following inequality
from (4.10):

al(t ” +H8a ” +k2bo/‘ax, *dx

sl

kG

§a||a(t)H2+ T

I .

[aA@]* + 21|10 |la)]” + S |04 |a@)]

200

+e|a.H®)|” + Cle)| PH®)|”. (4.13)
Multiplying (4.8) in L2(0,[) by H, we get

L2 e - ml | + ymaH|

=—m(K® - i*, H) + (|A19,H + 8:h(|A| - |A]), -P*H) (4.14)
and
(1A13:h + 3:h(|A| - |Al), ~P*H)

! 1
——/ |A|apr2de—/ dch(|A| - |A|)P*H dx
0 0

1 !
< — Alx,
~ 8mBATy? ,/0 ‘ (

4 4 ! V) 4 ym ! 2
t)| dx+mh] |P H(t)| dx + TN |8xH(t)‘ dx
0 0

m [t
2+IT/ |P2H(x,t)|2dx
0

) 1 5 1
<m /0 |, )] 2@ e+ % /0 |, )| dx

!
+m/ {BxH(x,t)2
2 Jo
! 4
§m/ |H(x,t)
0

1 !
+ Ci(y,m)|PH()| + W/o |Ax,1)|" dx
1

dx +
2\

1 ! 4
dx+8;¢n3—)\€‘y2\/o\ |A(x,t)} dx

o2 Ja) | + 22"

l
dx + 2)L%m ”8 H(t H
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Employing Sobolev’s imbedding theorem and the Nirenberg inequality, we get
_ ! o l
(W’ -1 ,H) = / H*(W* + hh+ ) dx > / H*dx, (4.15)
0 0
2 _ym 2 2
ml[H®| < == [oHO|" + Ciom ) [ PHO ] (4.16)

Using (4.15), (4.16), we have

1d
2dt
< Cily,m)|PH® |

[P + 22 om0

l PN 2 1 ! 4
O a0+ s /O A )] d. (4.17)
Taking ¢ = % in (4.13) and adding it to (4.17), we get

d 2 2
ZPHO[" + @)

4
3 4 4
< (Zkl C01 . C04
(kybo) 3 4m3A]

yz) 18,40 + R (|PHO| + @), (4.18)
where

Ri(®) = 2C(y, m) + 2Cy (v, m) + 4| h(®) || + 2a + x%m |92h@)||” + 1] 92A@)|”.
From (4.18) we derive the estimate

t
|PEH®|* + |a@)|* < qoe o R10% f |a.AGs)|* s,
0

4
2% Ch c¢ .
where o = ——% + — . The proof is complete. d
(kabo)3 Y
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