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1 Introduction
Let 2 C RN (N > 2) be a bounded domain, p > 1,60 >0, f € L}(£2), and g,y € W?(2) N
L*®(£2). We consider the obstacle problem governed by the noncoercive operator

a(x, Vi)

Au =div —————
“ = A b)) D

(1)

associated with (f,v,g), where a : 2 x R¥N — R¥ is a Carathéodory function satisfying:

a(x,é‘)é 20!|§|p» (2)

|a(x,€)| < B(i(x) + 1€, (3)

(a(x, ;) - a(x, 77))(§ - 77) >0, (4)
—plp! if 1 2,

laln &) —am| <y | " pheps (5)

L +IE1+nlP2E —nl ifp=2,

for almost every x € £ and every &,¢,n € RN with ¢ #n, where a, B, y are positive con-
P

stants, j is a nonnegative function in L?-1(£2), and b is an L*°-function satisfying, with

some B >0,

0=<b(x)<B (6)

for almost every x € £2.
If fe W’l'p/(.Q), then the obstacle problem associated with (f,v,g) is formulated in
terms of the inequality

a(x, Vu) .
/_;3—(1+b(x)|u|)9(l’—1) -V(v—u)dx+/9f(v—u)dx20 Vv e Kyy NLT(82) (7)
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whenever K, = {ve W (2);v-g € W/Ol‘p(.Q),v >y a.e. in 2} # . However, the second
integration in (7) is not well defined for f € L!(£2). Following [1, 3, 5], and so on, we are
led to a more general definition of a solution to the obstacle problem with data f € L1(2),
using the truncation function

T(r) = max{—s, min{s, r}}, s,reR.

Definition 1 An entropy solution to the obstacle problem associated with (f,v,g) is a
measurable function u such that u > ¢ a.e. in 2, Ti(u) — Ts(g) € Wol’p(.Q) for every s > 0,
and

/Q % “VTy(v—u)dx + /;szS(V_ wdx>0 YveKg, NL¥(2). (8)
Observe that in the definition a global integrability condition is required neither on u
nor on its gradient. As pointed out in [8], if T(x) € W?(£2) for all s > 0, then there exists
a unique measurable vector field U : 2 — RN such that V(Ti(u)) = x{u<U a.e. in £,
s > 0, which, in fact, coincides with the standard distributional gradient of Vu whenever
ue Whi(Q).
The motivation of this paper comes from the study on the Dirichlet boundary value

problem
Va2V in Q
A+|u)f-1) — ’ 9)
u=0 on ds2.

Indeed, for the p-Laplacian equation, that is, 6 = 0 in (9), the existence and regularity
of solutions when f has a fine regularity have been well studied. However, under weaker
summability assumptions on f, for example, f € L1(£2), the gradient of u (and even u itself)
may not be in L!(£2). In this case, it is possible to give a meaning to solutions of problem (9)
by using the concept of entropy solutions. The works on the theory of entropy solutions
for p-Laplacian equations have been applied to unilateral problems in [5, 7, 17], and so
on and have been extended in [8, 20] to the obstacle problems with L!-data in Sobolev
spaces with variable exponents and Orlicz—Sobolev spaces, respectively. We remark that
the classical obstacle problem for elliptic operators with nonlinear variational energies was
considered in [12] and linear elliptic systems involving Radon measures were considered
in [19]. Parabolic problems with irregular obstacles and nonstandard p(x, t)-growth were
considered in [10] and references therein.

If 0 < 6 <1, then due to the lack of coercivity, the standard Leray—Lions surjectivity
theorem cannot be used for the establishment of existence of solutions even in the case
f € W7 (£2). To overcome this difficulty, “cutting” the nonlinearity and using the tech-
nique of approximation, a pseudomonotone coercive differential operator on Wol P(£2) can
be applied to establish a priori estimates on approximating solutions. Then by the almost
everywhere convergence for the gradients of the approximating solutions, the existence
and regularity of solutions (or entropy solutions) to problems of the form (9) can be ob-
tained by taking limitation (see, e.g., [1]). For different summability of the data f, Alvino,
Boccardo, Ferone, Orsina, Trombetti, et al. have done a lot of work on the existence and
regularity of solutions (or entropy solutions) to problems of the form (9) (see [1, 2, 6,13, 18]
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and references therein). Particularly, a whole range of existence results have been proven
in [6] for p = 2 and f regular enough, showing that solutions are in some Sobolev space
Wol “4(£2) (1 < g <2) (see also [13, 14, 18]). Nevertheless, little literature has considered the
obstacle problem for noncoercive elliptic equations, particularly, for noncoercive elliptic
equations with L!-data.

Motivated by this, we study the obstacle problem governed by (1) and (f, ¥, ) with L!-
data. The main ideas in this paper originate from [1, 8], which can be also applied to the
study on a large class of elliptic/parabolic equations [9, 15, 21], potential theory [22], and
Schrédinger equations [11, 16]. Throughout this paper, without special statements, we

always assume that

Np-1)

1, 10
N1 (10)

1
2——<p<N, 0<0(p-1
N <P <Op-1)<

feLX ), ¥,g € W(2) NL¥(R2) satisty (¥ — g)* € Wy”(2), and Ky, # .
Note that (10) implies that
1 4 Ne- 1D(1-6)

N
0<6< - ——, an _— > 1.
N-1 p-1 N-1-6(p-1)

The main result in this paper is the following:

Theorem 1 There exists at least one entropy solution u to the obstacle problem associated
with (f, v, g). In addition, u depends continuously on f, that is, if f, — f in L'(2) and u,
is a solution to the obstacle problem associated with (f,,,V,g), then

W_nlnnWﬂgmwmme<LN@_Da_m>

N-1-6(p-1)

Notations
llull, = l#ll o) is the norm of LP(§2), where 1 < p < oo.
l#ll1p = llellwip(q) is the norm of WP (£2), where 1 < p < 0.
p’:pleith1<p<oo.
u* = max{u, 0}, u~ = (—u)* for a real-valued function u.
C is a constant, which may be different from line to line.
{u>s}={xe Q2;ux)>s}.
{u<s}=02\{u>s}
{u<s}={xe 2;ux)<s}
{u>s}=02\{u<s}
{u=s}={xe 2;ulx) =s}.
{t<u<s}={u=>t}N{u<s}.
LN is the Lebesgue measure in RY.
|E| = LN(E) for a measurable set E.

2 Preliminaries on entropy solutions
It is worth noting that, for any function f,, smooth enough, there exists at least one solution

to the obstacle problem (7). Indeed, we can proceed exactly as in Theorem 1.1 of [1] to
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obtain W”-solutions due to assumptions (2)—(6), which, particularly, are also entropy so-
lutions. In this section, we establish several auxiliary results on convergence of sequences
of entropy solutions as f, — f in L}(§2). The main techniques used in this section come
from [1, 8]. We start with a priori estimate.

Lemma 2 Let vy € K,y NL>(82), and let u be an entropy solution to the obstacle problem
associated with (f,\,g). Then, we have

|Vul? >
———— —dx<C L+ [ Vwoll? + t VYt >0,
/{l oo T By 4= CUIG + IVl W1+ ol V>

where C is a positive constant depending only on «, B8, and p.

Proof For t > 0, taking vy as a test function in (8), we compute

/ a(x,Vu)-Vu Ay < / a(x, Vu) - Vi,
(vo—ul<t) (1+0@)|u)P@=D "= Jo, s 1+ b(x)|u])?@-D

+ /Qf(Tt(vo—u)) dx.

It follows from (2), (3), and Young’s inequality with & > 0 that

| Vup? / B+ [Vup) - [Vl
—_—  _dx < dx + t||f ]|
f“] b0 = ) (Ut b)) D i

<

(vo—ul<ty (1 +b(x)|u])?@-D

/ BC(E)| Vol
+
{

———————dx +t|f]l
vo—ul<t} 1+ b(x)|u|)9(17—1) If 1

[Vul?
<e —G(p—l) X
{lvo—u|<t} (1 + b(x)|u|)

+ CII, + IV vollb) + £lIf -

Thus we have

[Vul? 0
—  _dx < C(IjIZ>, + IVvoll? +t . 11
/{vou|<t} (1 + b(x)|u|)9(p_l) *= (”}”p ’ ” VOHp ’ ”f”l) ( )

Replacing ¢ with ¢ + ||vg]|« in (11) and noting that {|u| < £} C {|vo — u| < £ + [|[vo]leo}, We
obtain the desired result. O

In the rest of this section, let {u,} be a sequence of entropy solutions to the obstacle
problem associated with (f,,, ¥,¢) and assume that

fi—f inL'(2) and |flli < IIfIl + 1.

Lemma 3 For k > 0 large enough, there exists a measurable function u such that u, — u in
measure and Ti(u,) — Ti(u) weakly in WYP(2). Thus Ti(u,) — Ti(u) strongly in LP($2),
and up to a subsequence, Ty(u,) — Tx(u) a.e. in S2.
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Proof Lets,t, & > 0. We can verify that, for all m,n > 1,

LN ({1t = tim| > s}) < LN ({ltn] > £}) + LY ({1st] > £})
+ ﬁN(HTt(un) - Tt(um)| > s}) (12)

and

£ ({l> )= 5 [

{lun|>t}

1
tdx < —/ |Tt(u,,)’p dx. (13)
t Jo

Since vo =g + (¥ — g)* € K,y NL>(£2), by Lemma 2 we have

/ |VTt(un)|pdx=/ |Vu,|? dx
2 {lunl<t}

< C+ B C (11, + IVvolls + If 111 (£ + Ivolloo))- (14)

Note that Ty(u,) — T:(g) € Wol’p(s?). By (13), (14), and Poincaré’s inequality, for every ¢ >
llgllco and for some positive constant C independent of # and ¢, we have

,CN({Iunl > t}) < ;/Q|Tt(u,,)|pdx

271 » o
<— [ |Tuu,)-T, dx + —
< | |Tw) =L@ e+ =gl

<§/|w<u> VI dv+ gl
=w o t\#n t P gp

C P C. »
<= fg T3+ Il
C(1 + t)+o-1)
<\
- tP
Since 0 < 6 < 1, there exists £, > 0 such that

L’N({Iunl >t})< % vVt > t,Yn>1. (15)

Now, as in (13), we have

1
EN({|Tt€(un)—Tt5(um)| >s}) = s7/ P dx
{ITte ()= Tt (um)|>s}
< 5 [ 170 0) = T ) (16)
s Ja

Using (14) and the fact that T} (u,) - T;(g) € Wol’p(.Q) NL*(£2) again, we see that { T}, (1)} is
a bounded sequence in W'#(£2). Thus, up to a subsequence, {T;, (u,)} converges strongly
in LP(£2). By (16) there exists ny = ng(Z,s) > 1 such that

EN({|TtS (u,) — Ttg(um)| > s}) < g VY, m > ng. (17)
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Combining (12), (15), and (17), we obtain
CN({lun — U >s}) <g, Vn,m>ng.

Hence {u,} is a Cauchy sequence in measure, and therefore there exists a measurable
function u such that u, — u in measure. Note that Ty(u,) — Ti(g) € Wol'p (£2). By (14)
and Poincaré’s inequality we conclude that, for fixed k, {Ty(u,)} is a bounded sequence
in W1?(82). Therefore, Ti(u,) — Ti(u) strongly in LP(£2), and, up to a subsequence,
Ti(u,) = Ti(u) a.e. in £2. O

Proposition 4 There exist a subsequence of {u,} and a measurable function u such that,
N(p-1)(1-6)

» NeT0 T ), we have

foreach g € (1
u, — u strongly in W().

Furthermore, if 0 <0 < mm{N T NA_[ = 1} then
a(x, Vu,) a(x,Vu)

. 1 N
(1+ 6) un)?®D (1 + b(x) ]P0 strongly in (L'($2))".

To prove Proposition 4, we need two preliminary lemmas.

Lemma 5 There exists a subsequence of {u,} and a measurable function u such that for
N(p-1)(1-6)

, m), we have that u, — u weakly in W4(2) and u,, — u strongly in

each q € (1
L1(£2).

Proof Let k >0 and n > 1. Define Dy = {|u,| < k} and By = {k < |u,| < k + 1}. Using
Lemma 2 with vo = g + (¥ — )", we get

|Vt |?
/Dk L b, o 4 = €A+, )

where C is a positive constant depending only on «, 8, p, lljlly, fll1, IVvollps and |[vollcc-
Taking the function Ty (u,) with k > {|lg]lee, ¥ |lc} as a test function for the problem
associated with (f,, ¥, g), we obtain

ax, Vu,) - VTi(u, — Ti(u,))
fg (1 + b(x)|uy|)f @D dx = /Q ~fuTh (s = Ti(un)) d,

which, together with (2), gives

o Vi, P
dx < |full1 < 1. 19
ka e < Ul < Uflh + 19)

Let q € (1, 3 ) an
O =06(p-1). Slnce B—
N(p-1)(1-6) _ N(p-

q< N1-0p-1) N=

=) Noting that Y000 < p, it fOHOWS q <p- Let

r=
B p-9-1
a for allA > B> 1 we have o7 < &= o

, which implies

_ 49p-1) _
r—q

HH
2._.
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el

Ng ,_ x : .
o g <Ngi=d" For all k > 0, we estimate ka |Vu,|?dx:

[V, |? r
Vunqu:/ ——— (1 4+ b(x)|u,|) dx
b by O )
r—q

[V, P b z =
= (/Bk (1 + b(x)|uy,))? @D dx) (/Bk (1 +b(0) unl) dx)

r—q

pr N
7 dx) by (19) and (6)

r=q
<Cl|B| » +C(
By

r

q* p=q_r
< CiBy 7 +C(/ 0] dx) (BT

Since |Bi| < —

= fB |t |1 dx»forkikozl,wehave

r9q g

1 " 2 1 " 7
|Vu,|Tdx < C| — lun|? dx + C—F— lu,|? dx
kq *(U_L)
By K57 T \IBy

2C %
< %( |t4|” dx) :
kTP By

Summing up from k = ky to k = K and using Holder’s inequality, we have

By

S

r—q
K a
1 .
Z IVun|qu§C(Z T E) <Z 1|7 dx) ) (20)
k=ko k=k P )4 k=ko
Note that

/ |Vun|qu:/ |Vu,,|qu+z |Vun|qu. (21)
{lun|<K} Do

k=ko

To estimate the first integral in the right-hand side of (21), using H6lder’s inequality, (18),
and (6), we obtain

q
Vit P Ef
Vu,|?dx < d
ka' o ’“—( @b ed )\,
0
C,

rq
p

(1 + b(x)|u,,|)1’% dx)

0

IA

(22)

Where C depends Only onc, ﬂ) B’ )2 9: ”j”p/r ”_f”l: ”VVOHp’ ||V0||OO’ and kO

Note that Zk ko W converges since q*(‘% ql)q > 1. Combining (20)—(22),
k P qt'q

we get, for ko large enough,
r—q

" N
/ |Vu,|9dx < C + C(/ [, |1 dx) . (23)
{lunl=<K} {lun=<K}

Since p > q, T (u,) € WH(2) and Tk (g) =g € W4(£2) for K > ||g|00. Hence Tx(u,)—g €
Wol “1(£2). Using the Sobolev embedding Wol’q(.Q) C L7 (£2) and Poincaré’s inequality, we
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obtain
| TicCan) |7, < 277 (|| Tic(a) - g5 + ligl)
< C(|V(Tx(w) - g) |2+ lgl)
< C(HVTK(un)”;I + 11Vl + llgli7)
< C(l + / |Vu,,|qu>. (24)
{lun|<K}
Using the fact that
[ s [ (T ds< T |1 25)
{Jun|<K) {Juen <K 1
from (23)—(24) we obtain
o
/ |Vu,|9dx < C + C<1+/ |Vu,,|qu> . (26)
{lun| <K} {lun|=K}

Note that p < N & %’% < 1. It follows from (26) that, for k; large enough,
f{lun\SK} |Vu,|?dx is bounded independently of » and K. Using (24) and (25), we de-
duce that f{\unlfK

we deduce that ||Vu,|l; and |lu,|, are uniformly bounded independently of #. Partic-

. |,,|7" dx is also bounded independently of # and K. Letting K — oo,

ularly, %, is bounded in W4(£2). Therefore, there exist a subsequence of {u,} and a
function v € W14(2) such that u, — v weakly in W4(£2) and u,, — v strongly in LI(£2)
and a.e. in £2. By Lemma 3, 4, — u in measure in £2, and we conclude that # = v and
ue Whi($). O

Lemma 6 There exist a subsequence of {u,} and a measurable function u such that Vu,
converges to Vu almost everywhere in 2.

Proof The proof is similar to that of [1, Thm. 4.1] and can be also found in [4]. Here we
sketch only the main steps due to slight modifications. For r, > 1, let A = -L < 1, where

pr2
. . _ a(xf) . .. .
q is the same as in Lemma 5. Define A(x, u,§) = oD (for simplicity, we omit the

dependence of A(x, %, &) on x) and
I(n) = L((A(u,,, Vu,) - A(u,, Vu)) -V(u, - u))'\ dx.
We fix k > 0 and split the integral in I(#) on the sets {|u| > k} and {|u#| < k}, obtaining
Link) = /{l | k}((A(u,,,Vu,,) — A, V) - Vit — )" dx
ul>

and

L(nk) = f{l ‘ k}((A(un,m)-A(un,W)).V(un-u))*dx.
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For I(n, k), we have
IZ(”;k) = 13(’/1’/() = / ((An(um v”n) _An(unr VTk(u))) ' V(Mrl - Tk(u)))}\dx
Q
Fix /1 > 0 and split I3(n, k) on the sets {|u,, — Tx(u)| > h} and {|u, — Tx(u)| < h}, obtaining
k) = [ (At Vi) = A (16, VTL0) - V(16 = Ti)) dix
{lun—Ty(u)|>h}
and
Iyt ko) = / (At Vi) — A (1, VTe1))) - ¥ (i — Tiw))) dix
{lun—Ty ()| <h}
= / ((An(lxln, Vun) _An(um VT/((M))) ! VTh(Mn - Tk(u))))\ dx
2
A
<|e)* </ (A, Vitg) = Ay (4, VTi(w))) - VT (1t = Tie(w)) dx)
2
= 12" (Ie(n, k, ).
For Is(n, k, h), we can split it as the difference I7(n, k, i) — Is(n, k, k), where
I(n,k,h) = / Aty Vity) - VT (1 — Tic(w)) dix
Q
and
Ig(n, k, ) = / Aty VTi(w)) - V Tip(ut, — Tic()) dx
2

Note that |Vu,| is bounded in L7(§2) and Apr; = q. Due to Lemmas 3 and 5, in the same
way as Theorem 4.1 in [1], we can get that

11m limsupl;(n,k) =0, llm lim sup limsup I4(n, k, k) =
k=00 p—>o0 h—>00 (00 n—o0

lim Ig(n,k, h) = 0.

For I;(n, k, ), let k > max{||g|lc, |V oo} and n > ki + k. Take Ty (1) as a test function for (8),
obtaining

bnk h) < / Tt — Ti(w) dix
2
Using the strong convergence of f;, in L!(£2), we have

lim I;(n,k, h) < / fThu Tr(u ))d

n—00

Note that /2 > 0 and limg_, oo Th(z — Tx(22)) = 0. It follows that

lim lim I;(n,k,h) <O0.

k— 00 n—>00
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Putting together all the limitations and noting that I(n) > 0, we have
lim I(n) =
H—0Q

The same arguments as in [1] give that, up to a subsequence, Vu,(x) - Vu(x) a.e. O

Proof of Proposition 4 We shall prove that Vu, converges strongly to Vu, in L1(£2) for

each g € (1, %) To this end, we will apply Vitalli’s theorem, using the fact that by
Lemma 5, Vu,, is bounded in L7(£2) for each g € (1 M). Letr € (g, M) and

' N-1-0(p-1)
let E C §2 be a measurable set. We have, by Holder’s inequality,

q
fIWnlquS (f|wn|'dx) EIF < CIE|F >0
E E

uniformly in # as |E| — 0. From this and from Lemma 6 we deduce that Vu, converges
strongly to Vu in L1(£2).

N-1-6(p-1)”

Now assume that 0 <0 < min{N_%pH, % - }ﬁ}, Note that since Vu, converges to Vi
a.e. in £2, to prove the convergence
a(x, Vuy,) a(x, Vu)

strongly in (LI(Q))N,

(1+ 60) un)?®D (1 + b(x) ]P0

it suffices, thanks to Vitalli’s theorem, to show that, for every measurable subset E C £2,
N(p-1)(1-0)
N-1-0(p-1)

), we deduce by Holder’s inequality that

Je Hb“ xlj""’g(p 17| dx converges to 0 uniformly in # as |[E| — 0. Note that p — 1 <

N(p-1)1-6)

by the assumptions. Forany g € (p — 1, N0 D)

a(x, Vu,)
£l (1 + b(x)|u,|)0 P~

dx < ,3[(/’+ |V, ™) da
E

p-1
—p+1

1 R
< Blljlly 1EI? +ﬁ</|VMn|qu) |E| 4
E

— 0 uniformly in #n as |E| — 0. a

Lemma 7 There exists a subsequence of {u,} such that, for all k > 0,

ax, V Ti(un)) ax, VTi(u)

. 1 N
T+ b Telon) oD (7 bl Teoion S0mey in (L)

Proof Let k be a positive number. It is well known that if a sequence of measurable func-

tions {u,} with uniform boundedness in L?(£2) (p > 1) converges in measure to u, then
) . a(x,V Ty (un))
u, converges strongly to u in L'(£2). First note that the sequence { 000 TxGom 7D

bounded in L¥ (£2). Indeed, we have by (3) and Lemma 2,

}is

ale, VTi(uw) |V o |V Ti (1) P
o T b T d | =PV P | o Tt
/ V Ty (u)1?
< Bl + B RALLL! SN

2 (1+b(x)| Ti(u,)])?@-D
<C
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Next, it suffices to show that there exists a subsequence of {u,} such that

a(x, V Ti(un)) ax, V Ti(u))

(1 + b(x)| Te(u,) )0 P-D - (1 + b()| Te(w)])P @D in measure.

Note that u,, u € W9(2), where g is the same as in Proposition 4. The a.e. convergence
of u,, to u and the fact that Vi, — Vu in measure imply that

VTi(u,) — VTi(u) in measure.

e . _ a(x,Vu)
Let s, t be positive numbers and write V4u = 7(“]?(’6)‘“‘)9([,_ Define

E, = ’VAT;( Uy,) VATk(u)’ >s},

{

{|VTk Uy | > L‘}
>=|{|VTiw)| > ¢},
=E,N

E} = E, N {|VTi(ua)| <t} 0 {|VTi(u)| <t}

Note that E,, C E} U E2 U E3 for each n > 1. Since by Lemma 5 the sequence {u,} and the
function u are uniformly bounded in W4(£2), we obtain

1 1 o
e < o [ VT dr < [ Vutdr< 5
o g ta
1 1 C
LN(E2) < —/ |VTi(w)|" dx < —/ IVulldx < —.
1 Jo o ta
We deduce that, for any ¢ > 0, there exists ¢, > 0 such that
€
LN(EY) + LN(ED) < 3 vzt Vnzl (27)

Note that, for a > b > 0 and 7 > 0, we have the inequality

t(b-a)

T @

’ 1 1

_ 4§ .
A+a)7  (1+b) <t|lb—a| forsomece [b,a]

From (3), (5), and (6) we deduce that, in E3,

§ < |VaTi(thn) = VaTie(u)|

| alx, V Ti(un)) - alx, V Ti(u))
S (L4 b)) Te(uy)])@-D)

1 . V Ty ()
' ((1 + b() | Te(ua))/0D (1 + b(x)|Tk(u)|)9(p—1>>“(x’ K )‘
< 0(p — VB| i) - Te(w)| - B(j + [V ™)

IV Ti () = V Tie(u) [P~ ifl<p<2,
IV Ti(tn) = VTi@)|(1 + |V Tie(n)| + [V T ()2 if p>2
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< Coj| Ti(un) - Tr(w)|

+ Co(1+ 7" + &%) (| Te(un) = Te(w)| + |V Ti(otn) = V T ()

)

which leads to E3 C F; UF, with

N
F = ‘T< n_T( s 61
= i) - T > 5|

F= {ka(un) = 1) + [V Tie) = VI > 5 = = }

In Fi, we have

2C 2
LNE) =2 [ dxe< —°/ 1| Teut) - Te(w)| dx.
N Fp ZC() N Fi

By Lemma 3 we deduce that there exists 1 = 1o(S, Co, €) such that

LN(F) <= Vu>n. (28)

SR

Note that F, C F3 U F, with

N
F3= {’Tk(”n) = Titw)| > 4Co(1+ -1 + 1972) }
Fy= {|VT/<(”") = VTit)| > 4Co(1 + tZ‘l +t2) }

Using the convergence in measure of V Ti(u,) to VTi(u) and of Ti(u,) to Ti(u), for t = ¢,
we obtain the existence of n; = n1(s, &) > 1 such that

LN(Ey) < LV(Fs) + LV (Ey) < g Vi > ny. (29)
Combining (27), (28), and (29), we obtain
LN VaTi(n) = VaTi(w)| > s}) <& Vn > max{ng,n}.

Hence the sequence {V4Ti(u,)} converges in measure to V4 Tx(u), and the lemma fol-
lows. O

3 Proof of the main result

Now we have gathered all the lemmas needed to prove the existence of an entropy solu-
tion to the obstacle problem associated with (f, ¥, g). In this section, let f,, be a sequence
of smooth functions converging strongly to f in L'(£2) with ||f,,|l1 < ||f|l1 + 1. We consider
the sequence of approximated obstacle problems associated with (f;,, ¥, g). The proof orig-
inates from [8]. We provide details for readers’ convenience.

Proof of Theorem 1 Letv € K,,y, NL*°(§2). Taking v as a test function in (8) associated with
(fur ¥, 8), we get

a(x, Vu,)



Zheng and Tavares Boundary Value Problems (2019) 2019:53 Page 13 of 15

Since {|v —u,| <t} C {|u,| < s} with s =£ + ||v||o, the previous inequality can be written as

/ VA To(tn) - Vv = / Ty — )+ / O VaTo(u) - Vo) dx,  (30)
2 2 2

a(x,Vu)
(1+b(x)|u)?@-1)
Moreover, x, converges a.e. to X{jy_u|<zj in £2 \ {|v — u| = t}. It follows that

where X, = X{jv-u,|<y and Vau = . It is clear that x, — x weakly* in L>(£2).

1 in{|lv—u|<t},

0 in{|jv—ul|>t}
Note that we have LN({|v — u| = t}) = 0 for a.e. ¢ € (0,00). So there exists a measurable
set O C (0,00) such that LN({|[v—u| =¢t}) = 0 for all £ € (0,00) \ O. Assume that ¢ € (0,

00) \ O. Then yx, converges weakly* in L*(£2) and a.e. in £2 to x = x{jy—y|<s)- Since V Ty(u,,)
converges a.e. to VTi(u) in §2 (Proposition 4), by Fatou’s lemma we obtain

n—00

liminf/ XnVaTs(u,) - VTs(uy,)dx > / xVaT(u) - VTy(u)dx. (31)
2 2

Using the strong convergence of V4 Ti(u,,) to V4 Ty(u) in L*(£2) (Lemma 7) and the weak*
convergence of x, to x in L*°(£2), we obtain

lim XnVaTs(u,) - Vvdx = f xVaT(u) - Vvdx. (32)
2 o)

n—00

Moreover, since f;, converges to f in L!(£2) and T;(v — u,) converges to T;(v — u) weakly*
in L*°(£2), by passing to the limit in (30) and taking into account (31)—(32) we obtain

f XVATou) - Vvds - / XVATo() - V() de > / v ) d,
fo) 2 o)
which can be written as
/ XVATS(u)-(Vv—Vu)def —fTy(v—u)dx
{lv—ul=<t} 2
or, since X = X{y-ul<t) and V(T (v — 1)) = X{jv-uj<y V(v — 1),
/ Vau - VT (v —u)dx > / —fT;(v-u)dx, Vte(0,00)\ 0.
fo) fo)

For ¢t € O, we know that there exists a sequence {£} in (0,00) \ O such that tx — ¢ due to
|O] = 0. Therefore we have

/ VAu~VTtk(v—u)dx2/ STy, (v—u)dx Vk=>1. (33)
2 o)
Since V(v — u) = 0 a.e. in {|v — u| = t}, the left-hand side of (33) can be written as

/ VAu-VTtk(v—u)dxzf X{jv—ul<tyy Vaut - V(v — u) dx.
2 2\{|v-ul=t}
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The sequence x{j,—u|<y} converges to x{j,—uj<; a.e. in £2 \ {|v — u| = t} and therefore con-
verges weakly* in L% (2 \ {|v — u| = t}). We obtain

lim / VA”'VTtk(V—“)dx=/ Xipv-uj<ty Vath - V(v — u) dx
k=oo o 2\{v-ul=t}
=/ Xilv-ul<ty Vath - V(v —u) dx
Q
:/ Vau - VTi(v—u)dx. (34)
I?)

For the right-hand side of (33), we have

<ltx = t||fIlh =0 ask— oo. (35)

/;Z—thk(V—u)dx—/;z—th(V—u)dx

It follows from (33)—(35) that we have the inequality

‘/VAM~VTt(V—M)de‘/ —fT(v—u)dx Vte(0,00).
2 2

Hence, u is an entropy solution of the obstacle problem associated with (f, ¥, g). The reg-
ularity of the entropy solution u is guaranteed by Proposition 4. O
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