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Abstract
In this paper, we study the existence of ground state solutions to the following
fractional Schrödinger system with linear and nonlinear couplings:

⎧
⎪⎨

⎪⎩

(–�)su + (λ1 + V(x))u + kv =μ1u3 + βuv2, in R3,

(–�)sv + (λ2 + V(x))v + ku =μ2v3 + βu2v, in R3,

u, v ∈ Hs(R3),

where (–�)s denotes the fractional Laplacian of order s ∈ ( 34 , 1). Under some
assumptions of the potential V(x) and the linear and nonlinear coupling constants k,
β , we prove some results for the existence of ground state solutions for the fractional
Laplacian systems by using variational methods.

MSC: 35J50; 35A01; 35B40

Keywords: Fractional Schrödinger system; Variational methods; Ground state
solution; Nehari manifold

1 Introduction
The aim of this paper is to consider the existence of ground state solutions to the following
fractional Schrödinger system with linear and nonlinear couplings:

⎧
⎪⎪⎨

⎪⎪⎩

(–�)su + (λ1 + V (x))u + kv = μ1u3 + βuv2, in R3,

(–�)sv + (λ2 + V (x))v + ku = μ2v3 + βu2v, in R3,

u, v ∈ Hs(R3),

(1.1)

where (–�)s denotes the fractional Laplacian of order s ∈ ( 3
4 , 1), λ1, λ2, μ1, μ2 are positive

constants, k, β are linear and nonlinear coupling constants respectively. The potential
function V (x) will always be assumed to satisfy

(V ) sup
x∈R3

V (x) = lim|x|→+∞ V (x) = Λ > 0, inf
x∈R3

V (x) ≥ 0.
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If V (x) ≡ 0, then (1.1) becomes

⎧
⎪⎪⎨

⎪⎪⎩

(–�)su + λ1u + kv = μ1u3 + βuv2, in R3,

(–�)sv + λ2v + ku = μ2v3 + βu2v, in R3,

u, v ∈ Hs(R3).

(1.2)

It is well known, but not completely trivial, that (–�)s reduces to the standard Laplacian
–� as s → 1. In the local case, that is, when s = 1, the system (1.2) reduces to the following
system:

⎧
⎪⎪⎨

⎪⎪⎩

–�u + λ1u + kv = μ1u3 + βuv2, in R3,

–�v + λ2v + ku = μ2v3 + βu2v, in R3,

u, v ∈ H1(R3).

(1.3)

System (1.3) appears in several physical situations such as in nonlinear optics, in double
Bose–Einstein condensates and in plasma physics, and it has been extensively studied by
many authors in the past ten years; see, for example, [1–3] and the references therein.

In the nonlocal case, that is, when s ∈ (0, 1), there are very few results for the fractional
Laplacian systems. If β = 0, i.e., only linear coupling terms exist, in [4], Dengfeng Lv and
Shuangjie Peng studied the problem

⎧
⎨

⎩

(–�)su + u = f (u) + kv, in RN ,

(–�)sv + v = g(v) + ku, in RN .
(1.4)

They obtained the existence of positive vector solutions and vector ground state solutions
via variational methods. They also proved the asymptotic behavior of these solutions as
the coupling parameter k tends to zero. If k = 0, i.e., only nonlinear coupling terms exist,
in [5], Q. Guo and X. He studied the problem

⎧
⎪⎪⎨

⎪⎪⎩

(–�)su + u = (|u|2p + b|u|p–1|v|p–1)u, in RN ,

(–�)sv + ω2sv = (|v|2p + b|v|p–1|u|p–1)v, in RN ,

u, v ∈ Hs(RN ),

(1.5)

where ω > 0, b > 0 are constants and p satisfies 2 < 2p + 2 < 2∗
s . They obtained the existence

of a least energy solution via Nehari manifold method. They also proved that if b is large
enough, system (1.5) has a positive least energy solution with both nontrivial components.
When k 	= 0 and β 	= 0, i.e., linear coupling terms and nonlinear coupling terms both exist,
to the best of our knowledge, there has been almost no research on this problem. For
the other work on the fractional Laplacian system, we refer the reader to [6–23] and the
references therein. We would also like to mention [24–36] and the references therein for
the information of fractional ordinary differential equations.

A solution (u, v) ∈ Hs(R3) × Hs(R3) to (1.1) is called a nontrivial solution if (u, v) 	= (0, 0).
A solution (u, v) with u > 0 and v > 0 is called a positive solution. A solution (u, v) is called
a ground state solution if (u, v) 	= (0, 0) and its energy is minimal among the energy of all
nontrivial solutions to (1.1).
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Our main theorems of this work read as follows.

Theorem 1.1 Suppose that λ1,λ2,μ1,μ2 > 0, β ∈ R, k ∈ (–
√

λ1λ2, 0) ∪ (0,
√

λ1λ2). Then
problem (1.2) possesses a ground state solution (u, v). Moreover, u > 0, v > 0 as k ∈
(–

√
λ1λ2, 0); u > 0, v < 0 or u < 0, v > 0 as k ∈ (0,

√
λ1λ2).

Theorem 1.2 Suppose that λ1,λ2,μ1,μ2 > 0, β ∈ (–√
μ1μ2, +∞), k ∈ (–

√
λ1λ2, 0) ∪

(0,
√

λ1λ2) and that (V ) holds. Then problem (1.1) possesses a ground state solution (u, v).
Moreover, u > 0, v > 0 as k ∈ (–

√
λ1λ2, 0); u > 0, v < 0 or u < 0, v > 0 as k ∈ (0,

√
λ1λ2).

The remainder of this paper is organized as follows. In Sect. 2, some notations and pre-
liminaries are presented. The proofs of Theorem 1.1 and Theorem 1.2 are given in Sects. 3
and 4 respectively.

2 Preliminary
In this section, we outline the variational framework for the problem (1.1) and give some
preliminary lemmas which will be used later.

Throughout this paper, C, Ci will denote various positive constants; the strong conver-
gence is denoted by →, and the weak convergence is denoted as ⇀; 2∗

s = 2N
N–2s is the frac-

tional Sobolev critical exponent; on(1) denotes on(1) → 0 as n → ∞; For any ρ > 0 and
z ∈ R3, Bρ(z) := {x ∈ R3 : |x – z| ≤ ρ}; For 1 ≤ p ≤ +∞, and f ∈ Lp(R3), let f + = max{f , 0},
f – = min{f , 0}, and |f |Lp(R3) denotes the usual Lp norm of f . Let Lp(R3) × Lp(R3) be the
Cartesian product of two Lp(R3) spaces, and for (f , g) ∈ Lp(R3) × Lp(R3), |(f , g)|Lp×Lp =
|(f , g)|Lp(R3)×Lp(R3) := (|f |pLp(R3) + |g|pLp(R3))

1
p .

For any s ∈ (0, 1), the fractional Sobolev space Hs(R3) is defined by

Hs(R3) =
{

u ∈ L2(R3) :
|u(x) – u(y)|
|x – y| 3+2s

2
∈ L2(R3 × R3)

}

.

Let us consider a Hilbert space endowed with the scalar product given by

(u, v) =
∫

R3
uv dx +

∫

R3

∫

R3

(u(x) – u(y))(v(x) – v(y))
|x – y|3+2s dx dy.

The corresponding norm is therefore

‖u‖Hs =
(∫

R3
|u|2 dx +

∫

R3

∫

R3

|u(x) – u(y)|2
|x – y|3+2s dx dy

) 1
2

.

It is well known that the fractional Laplacian (–�)s of a function u : R3 → R is defined
by

(–�)su(x) = F–1(|ξ |2s(Fu)
)
(x), ∀ξ ∈ R3,

where F is the Fourier transform, i.e.,

Fu(ξ ) =
1

(2π ) 3
2

∫

R3
exp(–2π iξ · x)u(x) dx,
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i is the imaginary unit. If u is smooth enough, it can be computed by the following singular
integral:

(–�)su(x) = csP.V .
∫

R3

u(x) – u(y)
|x – y|3+2s dy, x ∈ R3,

where cs is normalization constant and P.V. stands for the principal value. Now one can get
an alternative definition of the fractional Sobolev space Hs(R3) via the Fourier transform
as follows:

Hs(R3) =
{

u ∈ L2(R3) :
∫

R3
|ξ |2s|û|2 dξ < ∞

}

,

endowed with the norm

‖u‖s =
(∫

R3

(
1 + |ξ |2s)|û|2 dξ

) 1
2

,

where û = F (u) denotes the Fourier transform of u. It is easy to see that ‖ ·‖Hs is equivalent
to ‖ · ‖s.

The homogeneous Sobolev space Ds,2(R3) is defined by

Ds(R3) =
{

u ∈ L2∗
s
(
R3) : |ξ |sû ∈ L2(R3)},

which is the completion of C∞
0 (R3) under the norm

‖u‖Ds,2 =
(∫

R3

∣
∣(–�)s/2u

∣
∣2 dx

) 1
2

=
(∫

R3
|ξ |2s|û|2 dξ

) 1
2

.

Now we introduce the following lemmata.

Lemma 2.1 (see [13]) For any s ∈ (0, 1), Hs(R3) is continuously embedded into Lp(R3) for
p ∈ [2, 2∗

s ] and compactly embedded into Lp
loc(R3) for p ∈ [1, 2∗

s ).

Lemma 2.2 (see [14]) For any s ∈ (0, 1), Ds,2(R3) is continuously embedded into L2∗
s (R3)

and we define

Ss := inf
u∈Ds,2(R3)\{0}

∫

R3 |(–�)s/2u|2 dx
(
∫

R3 u2∗
s )2/2∗

s
.

Lemma 2.3 (see [15]) If {un} is bounded in Hs(R3) with s ∈ (0, 1) and

lim
n→∞ sup

y∈R3

∫

Br(y)
|un|2 dx = 0,

where r > 0, then we have un → 0 in Lν(R3) for ν ∈ (2, 2∗
s ).

Remark 1 Similarly, in the case that the sequence {|un|2∗
s } is vanishing, we can prove that

un → 0 in Lν(R3) for ν ∈ (2, 2∗
s ].
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Lemma 2.4 (see [37]; Ekeland variational principle) Let X be a Banach space and let G ∈
C2(X, R) be such that, for every v ∈ V := {v ∈ X : G(v) = 1}, G′(v) 	= 0. Let F ∈ C1(X, R) be
bounded from below on V , v ∈ V and ε, δ > 0. If

F(v) ≤ inf
V

F + ε,

then there exists u ∈ V such that

F(u) ≤ inf
V

F + 2ε, min
λ∈R

∥
∥F ′(u) – λG′(u)

∥
∥ ≤ 8ε

δ
, ‖u – v‖ ≤ 2δ.

3 Proof of Theorem 1.1
In this section, we shall study system (1.2). Suppose that λ1,λ2,μ1,μ2 > 0, β ∈ R, k ∈
(–

√
λ1λ2, 0) ∪ (0,

√
λ1λ2). Let H := Hs(R3) × Hs(R3). We define an inner product on H

as follows:

(
(u1, v1), (u2, v2)

)
=

∫

R3
(–�)s/2u1(–�)s/2u2 + λ1u1(x)u2(x) dx

+
∫

R3
(–�)s/2v1(–�)s/2v2 + λ2v1(x)v2(x) dx

+ k
∫

R3
u1(x)v1(x) dx + k

∫

R3
u2(x)v2(x) dx,

for (u1, v1), (u2, v2) ∈ H . ‖(u, v)‖ = ((u, v), (u, v)) 1
2 is the corresponding norm if |k| <

√
λ1λ2.

This is equivalent to the standard product norm on the product space Hs(R3) × Hs(R3).
For (u, v) ∈ H , the energy functional associated with (1.2) is

I(u, v) =
1
2

∫

R3

∣
∣(–�)

s
2 u

∣
∣2 + λ1u2(x) dx +

1
2

∫

R3

∣
∣(–�)

s
2 v

∣
∣2 + λ2v2(x) dx

+ k
∫

R3
u(x)v(x) dx –

1
4
μ1

∫

R3
u4(x) dx –

1
4
μ2

∫

R3
v4(x) dx

–
1
2
β

∫

R3
u2(x)v2(x) dx

=
1
2
∥
∥(u, v)

∥
∥2 –

1
4
μ1

∫

R3
u4(x) dx –

1
4
μ2

∫

R3
v4(x) dx –

1
2
β

∫

R3
u2(x)v2(x) dx.

Then, under our assumptions, I is well defined on H and I ∈ C1(H , R).
Let us define the Nehari manifold

N :=
{

(u, v) ∈ H \ {
(0, 0)

}
: F(u, v) =

〈
I ′(u, v), (u, v)

〉
= 0

}
.

Now we state some properties of N .

Lemma 3.1 If the assumptions of Theorem 1.1 hold, then the following statements hold.
(1) N 	= ∅;
(2) N is a C1 manifold;
(3) there exists a positive constant ρ0 > 0 such that ‖(u, v)‖ ≥ ρ0 for all (u, v) ∈ N ;
(4) the critical points of I|N are the critical points of I in H ;
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(5) if {(un, vn)} ⊆ H is a P.S. sequence for I|N , then {(un, vn)} is a P.S. sequence for I ;
(6) if β ∈ (–√

μ1μ2, +∞) then, for any (u, v) ∈ H \ {(0, 0)}, there exists a unique tu,v > 0
such that (tu,vu, tu,vv) ∈ N .

Proof (1) The proof of (1) is simple, so we omit the details here.
(2) Since F(u, v) is a C1 functional, in order to prove that N is a C1 manifold, it is sufficient

to prove that F ′(u, v) 	= 0 for all (u, v) ∈ N . For (u, v) ∈ N

〈
F ′(u, v), (u, v)

〉
= 2

∫

R3

∣
∣(–�)

s
2 u

∣
∣2 + λ1u2 dx + 2

∫

R3

∣
∣(–�)

s
2 v

∣
∣2 + λ2v2 dx + 4k

∫

R3
uv dx

– 4μ1

∫

R3
u4 dx – 4μ2

∫

R3
v4 dx – 8β

∫

R3
u2v2 dx

= –2
∥
∥(u, v)

∥
∥2 < 0.

(3) Notice that if (u, v) ∈ N , then

∥
∥(u, v)

∥
∥2 = μ1

∫

R3
u4 dx + μ2

∫

R3
v4 dx – 2β

∫

R3
u2v2 dx.

Therefore, using the fact that (u, v) ∈ N , we obtain

I(u, v) =
1
2

∫

R3

∣
∣(–�)

s
2 u

∣
∣2 + λ1u2(x) dx +

1
2

∫

R3

∣
∣(–�)

s
2 v

∣
∣2 + λ2v2(x) dx

+ k
∫

R3
u(x)v(x) dx –

1
4
μ1

∫

R3
u4(x) dx –

1
4
μ2

∫

R3
v4(x) dx

–
1
2
β

∫

R3
u2(x)v2(x) dx

=
1
2
∥
∥(u, v)

∥
∥2 –

1
4
μ1

∫

R3
u4(x) dx –

1
4
μ2

∫

R3
v4(x) dx –

1
2
β

∫

R3
u2(x)v2(x) dx

=
1
2
∥
∥(u, v)

∥
∥2 –

1
4
∥
∥(u, v)

∥
∥2 =

1
4
∥
∥(u, v)

∥
∥2.

On the other hand, from (u, v) ∈ N and the Sobolev embedded theorem we get

μ1

∫

R3
u4(x) dx + μ2

∫

R3
v4(x) dx + 2β

∫

R3
u2(x)v2(x) dx ≤ C

∣
∣(u, v)

∣
∣4
L4(R3)×L4(R3)

≤ C
∥
∥(u, v)

∥
∥4,

and hence

∥
∥(u, v)

∥
∥2 ≤ C

∥
∥(u, v)

∥
∥4,

which implies that the conclusion (3) holds.
(4) Assume that (u, v) ∈ N is a critical point of I|N , then there exists γ ∈ R such that

I ′(u, v) = γ F ′(u, v).
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Multiplying the above equality by (u, v), we have

〈
I ′(u, v), (u, v)

〉
= γ

〈
F ′(u, v), (u, v)

〉
.

Now F(u, v) = 〈I ′(u, v), (u, v)〉 = 0 and 〈F ′(u, v), (u, v)〉 = –2‖(u, v)‖2 ≤ –2ρ0 for any (u, v) ∈ N
imply that γ = 0, which means I ′(u, v) = 0.

(5) Let {(un, vn)} ⊂ H be a Palais–Smale sequence of I|N , that is, {I(un, vn)} is bounded
and I ′|N (un, vn) → 0. In the following, we claim that I ′(un, vn) → 0.

The proof of (3) shows {(un, vn)} is bounded in H . Hence after passing to a subsequence
if necessary, we may assume that (un, vn) ⇀ (u, v) in H . Since {(un, vn)} ⊂ H be a Palais–
Smale sequence of I|N , then there exists a sequence {γn} ⊆ R such that

I|′N (un, vn) = I ′(un, vn) – γnF ′(un, vn).

Multiplying the above equality by (un, vn), we have

on(1) =
〈
I ′(un, vn), (un, vn)

〉
– γn

〈
F ′(un, vn), (un, vn)

〉
= –γn

〈
F ′(un, vn), (un, vn)

〉
.

It follows from 〈F ′(un, vn), (un, vn)〉 ≤ –2ρ0 that γn → 0 as n → +∞. Notice the fact that
{(un, vn)} is bounded in N implies F ′(un, vn) is bounded. Hence

I ′(un, vn) = γnF ′(un, vn) + o(1) = o(1), as n → ∞.

(6) For fixed (u, v) ∈ H \ {(0, 0)} and t > 0, we consider the map h : t �→ I(tu, tv) defined
by

h(t) : =
t2

2

∫

R3

∣
∣(–�)

s
2 u

∣
∣2 + λ1u2(x) dx +

t2

2

∫

R3

∣
∣(–�)

s
2 v

∣
∣2 + λ2v2(x) dx

+ kt2
∫

R3
u(x)v(x) dx – t4

∫

R3

μ1

4
u4(x) +

μ2

4
v4(x) +

1
2
βu2(x)v2(x) dx

=
1
2

t2∥∥(u, v)
∥
∥2 – t4

∫

R3

μ1

4
u4(x) +

μ2

4
v4(x) +

1
2
βu2(x)v2(x) dx.

Using the condition β ∈ (–√
μ1μ2, +∞), one can easily get h(t) → –∞ as t → +∞. Now

we claim that h(t) > 0 for t > 0 small enough. Indeed, by the Sobolev embedding theorem,
we have

h(t) ≥ 1
2

t2∥∥(u, v)
∥
∥2 – Ct4∥∥(u, v)

∥
∥4,

which implies that h(t) > 0 if t > 0 is small enough. Hence there exists tu,v > 0 such that
h(t) has a positive maximum and h′(tu,v) = 0. Notice that F(tu, tv) = th′(t), so we have
F(tu,vu, tu,vv) = 0. Moreover, if F(tu,vu, tu,vv) = 0, then we get

t2
u,v

∥
∥(u, v)

∥
∥2 = t4

u,v

(∫

R3
μ1u4(x) + μ2v4(x) + 2βu2(x)v2(x) dx

)

.

Hence, tu,v = ( ‖(u,v)‖2
∫

R3 μ1u4(x)+μ2v4(x)+2βu2(x)v2(x) dx ) 1
2 , which is the unique critical point of h(t) cor-

responding to its maximum, that is, I(tu,vu, tu,vv) = maxt>0 I(tu, tv). �
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Now we give the proof of Theorem 1.1.

Proof of Theorem 1.1 We divide the proof into three steps.
Step 1. Existence. We set c = inf(u,v)∈N I(u, v). Then, by the proof of Lemma 3.1, we infer

that c ≥ 1
4ρ0 > 0. In view of Lemma 2.4, we can find a sequence {(un, vn)} ⊆ N such that

{(un, vn)} is a (P.S.)c sequence for I|N . And consequently {(un, vn)} is a (P.S.)c sequence for
I by (5) of Lemma 3.1. Moreover, {(un, vn)} is a bounded sequence in H .

Suppose

lim inf
n→+∞ sup

x∈R3

∫

B1(x)
u2

n(y) dy = 0 and lim inf
n→+∞ sup

x∈R3

∫

B1(x)
v2

n(y) dy = 0,

then, by Lemma 2.3, we get

(un, vn) → (0, 0) in L4(R3) × L4(R3).

Hence, we have

∥
∥(un, vn)

∥
∥2 = μ1

∫

R3
u4

n(x) dx + μ2

∫

R3
v4

n(x) dx + 2β

∫

R3
u2

n(x)v2
n(x) dx → 0,

contrary to ‖(un, vn)‖ > ρ0. Thus, without loss of generality, there is a constant a > 0 such
that

lim inf
n→+∞ sup

x∈R3

∫

B1(x)
u2

n(y) dy = a.

Consequently, going to a subsequence if necessary, we can find a sequence {xn} ⊆ R3 that
satisfies

∫

B1(xn)
u2

n(y) dy ≥ a
2

. (3.1)

Since

I
(
un(· + xn), vn(· + xn)

)
=

1
4
∥
∥un(· + xn), vn(· + xn)

∥
∥2 =

1
4
∥
∥(un, vn)

∥
∥2 → c,

we see that {(un(· + xn), vn(· + xn))} is bounded. Hence, up to a subsequence, there exists
(u, v) ∈ H such that (un(· + xn), vn(· + xn)) ⇀ (u, v) in H , (un(· + xn), vn(· + xn)) → (u, v) in
L2

loc(R3) × L2
loc(R3), un(· + xn) → u, vn(· + xn) → v for a.e. x ∈ R3. We pass to the limit in

(3.1) and we get

∫

B1(0)
u2(y) dy ≥ a

2
, (3.2)

which implies u 	= 0. We use the invariance of N and I by translation to conclude that
{(un(· + xn), vn(· + xn))} ∈ N and ‖I ′(un(· + xn), vn(· + xn))‖ = ‖I ′(un, vn)‖, which shows that
{(un(· + xn), vn(· + xn))} is also a (P.S.)c sequence of I . Consequently

I ′(u, v) = 0, F(u, v) = 0. (3.3)



Du and Mao Boundary Value Problems         (2019) 2019:78 Page 9 of 16

It follows from u 	= 0 that (u, v) ∈ N . Thus, by the weakly lower semi-continuity of ‖ · ‖ we
obtain

c ≤ I(u, v) =
1
4
∥
∥(u, v)

∥
∥2 ≤ 1

4
lim inf

n→∞
∥
∥
(
un(· + xn), vn(· + xn)

)∥
∥2

= lim inf
n→∞ I

(
un(· + xn), vn(· + xn)

)
= c, (3.4)

which implies that I(u, v) = c.
Step 2. If k ∈ (–

√
λ1λ2, 0), then u > 0, v > 0.

It is not difficult to see that

∫

R3
u(x)v(x) dx ≤

∫

R3

∣
∣u(x)

∣
∣
∣
∣v(x)

∣
∣dx,

k
∫

R3
u(x)v(x) dx ≥ k

∫

R3

∣
∣u(x)

∣
∣
∣
∣v(x)

∣
∣dx.

(3.5)

Thus, combining (3.5) and F(u, v) = 0 shows

∥
∥
(|u|, |v|)∥∥2

=
∫

R3

∫

R3

(|u(x)| – |u(y)|)2

|x – y|3+2s dx dy +
∫

R3

∫

R3

(|v(x)| – |v(y)|)2

|x – y|3+2s dx dy

+
∫

R3
λ1u2(x) + λ2v2(x) + 2k

∣
∣u(x)

∣
∣
∣
∣v(x)

∣
∣dx

≤
∫

R3

∫

R3

(u(x) – u(y))2

|x – y|3+2s dx dy +
∫

R3

∫

R3

(v(x) – v(y))2

|x – y|3+2s dx dy

+
∫

R3
λ1u2(x) + λ2v2(x) + 2ku(x)v(x) dx

=
∥
∥(u, v)

∥
∥2 = μ1

∫

R3
u4(x) dx + μ2

∫

R3
v4(x) dx + 2β

∫

R3
u2(x)v2(x) dx. (3.6)

Consider

ϕ(t) = I
(
t|u|, t|v|)

=
t2

2
∥
∥
(|u|, |v|)∥∥2 –

t4

4

(

μ1

∫

R3
u4(x) dx + μ2

∫

R3
v4(x) dx + 2β

∫

R3
u2(x)v2(x) dx

)

.

Let t∗ = ‖(|u|,|v|)‖
‖(u,v)‖ ∈ (0, 1]. It is easy to check that ϕ(t) is strictly increasing in (0, t∗) and is

strictly decreasing in (t∗, +∞), which shows that ϕ(t) has a unique critical point t∗ > 0. So
(t∗|u|, t∗|v|) ∈ N . Then it follows from c ≤ I(t∗|u|, t∗|v|) = (t∗)2

4 ‖(|u|, |v|)‖2 ≤ 1
4‖(u, v)‖2 = c

that

∥
∥
(|u|, |v|)∥∥ =

∥
∥(u, v)

∥
∥,

(|u|, |v|) ∈ N , I
((|u|, |v|)) = c.

Therefore, we may assume without loss of generality that u ≥ 0, v ≥ 0. By Lemma 3.1, we
know that (u, v) is a critical point of I and hence is a ground state solution.
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Through a similar argument in [17], one can show that |u|L∞ < +∞, |u|L∞ < +∞. By
using the strong maximum principle to each single equation in (1.2), we obtain

u > 0 and v > 0. (3.7)

Hence, Step 2 is proved.
Step 3. If k ∈ (0,

√
λ1λ2), then u > 0, v < 0 or u < 0, v > 0.

It is not difficult to see that

k
∫

R3
u(x)v(x) dx ≥ –k

∫

R3

∣
∣u(x)

∣
∣
∣
∣v(x)

∣
∣dx. (3.8)

Thus, combining (3.8) and F(u, v) = 0 shows

∥
∥
(|u|, –|v|)∥∥2

=
∫

R3

∫

R3

(|u(x)| – |u(y)|)2

|x – y|3+2s dx dy +
∫

R3

∫

R3

(–|v(x)| + |v(y)|)2

|x – y|3+2s dx dy

+
∫

R3
λ1u2(x) + λ2v2(x) – 2k

∣
∣u(x)

∣
∣
∣
∣v(x)

∣
∣dx

≤
∫

R3

∫

R3

(u(x) – u(y))2

|x – y|3+2s dx dy +
∫

R3

∫

R3

(v(x) – v(y))2

|x – y|3+2s dx dy

+
∫

R3
λ1u2(x) + λ2v2(x) + 2ku(x)v(x) dx

=
∥
∥(u, v)

∥
∥2 = μ1

∫

R3
u4(x) dx + μ2

∫

R3
v4(x) dx + 2β

∫

R3
u2(x)v2(x) dx. (3.9)

Consider

ψ(s) = I
(
s|u|, –s|v|)

=
s2

2
∥
∥
(|u|, –|v|)∥∥2 –

s4

4

(

μ1

∫

R3
u4(x) dx + μ2

∫

R3
v4(x) dx + 2β

∫

R3
u2(x)v2(x) dx

)

.

Let s∗ = ‖(|u|,–|v|)‖
‖(u,v)‖ ∈ (0, 1]. It is easy to check that ψ(s) is strictly increasing in (0, s∗)

and is strictly decreasing in (s∗, +∞), which shows that ψ(s) has a unique critical point
s∗ > 0. So (s∗|u|, –s∗|v|) ∈ N . Then it follows from c ≤ I(s∗|u|, –s∗|v|) = (s∗)2

4 ‖(|u|, –|v|)‖2 ≤
1
4‖(u, v)‖2 = c that

∥
∥
(|u|, –|v|)∥∥ =

∥
∥(u, v)

∥
∥,

(|u|, –|v|) ∈ N , I
((|u|, –|v|)) = c.

Therefore, we may assume without loss of generality that u ≥ 0, v ≤ 0. By Lemma 3.1, we
know that (u, v) is a critical point of I and hence is a ground state solution. Similar to the
proof of (3.7), we can prove that u > 0, v < 0.

The proof of Theorem 1.1 is completed. �

4 Proof of Theorem 1.2
Now we turn to the system (1.1). Let λ1,λ2,μ1,μ2 > 0, β ∈ (–√

μ1μ2, +∞), k ∈
(–

√
λ1λ2, 0) ∪ (0,

√
λ1λ2) and (V ) holds. We only consider the case that V (x) 	≡ Λ, oth-

erwise Theorem 1.2 comes down to Theorem 1.1.
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We shall search solutions to the system (1.1) as critical points for the functional

IV (u, v) =
1
2

∫

R3

∣
∣(–�)

s
2 u

∣
∣2 +

(
λ1 + V (x)

)
u2(x) dx

+
1
2

∫

R3

∣
∣(–�)

s
2 v

∣
∣2 +

(
λ2 + V (x)

)
v2(x) dx

+ k
∫

R3
u(x)v(x) dx –

1
4
μ1

∫

R3
u4(x) dx

–
1
4
μ2

∫

R3
v4(x) dx –

1
2
β

∫

R3
u2(x)v2(x) dx,

which is well defined on the Hilbert space Hs(R3) × Hs(R3), equipped with the inner prod-
uct as follows:

(
(u1, v1), (u2, v2)

)

V =
∫

R3
(–�)s/2u1(–�)s/2u2 +

(
λ1 + V (x)

)
u1(x)u2(x) dx

+
∫

R3
(–�)s/2v1(–�)s/2v2 +

(
λ2 + V (x)

)
v1(x)v2(x) dx

+ k
∫

R3
u1(x)v1(x) dx + k

∫

R3
u2(x)v2(x) dx,

for (u1, v1), (u2, v2) ∈ Hs(R3)×Hs(R3). ‖(u, v)‖V = ((u, v), (u, v))
1
2
V is the corresponding norm

if |k| <
√

λ1λ2, this is equivalent to the standard product norm on the product space
Hs(R3) × Hs(R3).

The limit system of (1.1) is

⎧
⎪⎪⎨

⎪⎪⎩

(–�)su + (λ1 + Λ)u + kv = μ1u3 + βuv2, in R3,

(–�)sv + (λ2 + Λ)v + ku = μ2v3 + βu2v, in R3,

u, v ∈ Hs(R3).

(4.1)

The energy functional of the limit system (4.1) is given by

IΛ(u, v) =
1
2

∫

R3

∣
∣(–�)

s
2 u

∣
∣2 + (λ1 + Λ)u2(x) dx +

1
2

∫

R3

∣
∣(–�)

s
2 v

∣
∣2 + (λ2 + Λ)v2(x) dx

+ k
∫

R3
u(x)v(x) dx –

1
4
μ1

∫

R3
u4(x) dx –

1
4
μ2

∫

R3
v4(x) dx

–
1
2
β

∫

R3
u2(x)v2(x) dx.

Let

NV :=
{

u ∈ Hs(R3) × Hs(R3) \ {
(0, 0)

}
: FV (u, v) =

〈
I ′

V (u, v), (u, v)
〉

= 0
}

,

cV = inf
(u,v)∈NV

IV (u, v),

and define cΛ to be the constant which corresponds to the c in Sect. 2 when λ1, λ2 is
replaced by λ1 + Λ, λ2 + Λ. The Nehari manifold NV shares the characteristic with N that
has been defined in Sect. 3. In order to prove Theorem 1.2, we need the following lemma.
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Lemma 4.1 If the condition V holds, then cV < cΛ.

Proof Since β ∈ (–√
μ1μ2, +∞), we have

cV = inf
η∈Γ

sup
t∈[0,1]

IV
(
η(t)

)
, (4.2)

where Γ := {η ∈ C([0, 1], Hs(R3) × Hs(R3) : η(0) = (0, 0), IV (η(1)) < 0)}. Let (ū, v̄) be the
ground state solution to (4.1) which was given in Theorem 1.1. In view of

V (x) ≤ Λ, V (x) 	= Λ, ū 	= 0, v̄ 	= 0,

there is a positive constant t∗ > 0 such that

max
t>0

IV (tū, tv̄) = IV (t∗ū, t∗v̄) < IΛ(t∗ū, t∗v̄) ≤ max
t>0

IΛ(tū, tv̄) = cΛ. (4.3)

Hence

cV < cΛ.

The proof of Lemma 4.1 is complete. �

Now we give the proof of Theorem 1.2.

Proof of Theorem 1.2 Our arguments are similar to the ones developed in Theorem 1.4 of
[1] but we give the details for the reader’s convenience.

The definition of cV shows that cV > 0. In view of Lemma 2.4, we can find a se-
quence {(un, vn)} ⊆ NV such that {(un, vn)} is a (P.S.)cV sequence for IV |NV . And conse-
quently {(un, vn)} is a (P.S.)cV sequence for I by (5) of Lemma 3.1. Moreover, {(un, vn)} is
a bounded sequence in Hs(R3) × Hs(R3). Thus, up to a subsequence, there exists (u, v) ∈
Hs(R3) × Hs(R3) such that (un, vn) ⇀ (u, v) in Hs(R3) × Hs(R3). In the following, we claim
that (u, v) 	= (0, 0).

Indeed, if (u, v) = (0, 0), then un ⇀ 0, vn ⇀ 0 in Hs(R3). From lim|x|→+∞ V (x) = Λ we see
that, for any ε > 0, there exists R large enough, such that

∫

Bc
R(0)

∣
∣V (x) – Λ

∣
∣u2

n(x) dx <
ε

2
.

Since V (x) ∈ L∞ and (un, vn) ⇀ (0, 0) we obtain

∫

BR(0)

∣
∣V (x) – Λ

∣
∣u2

n(x) dx <
ε

2
,

for large n, so that

∫

R3

∣
∣V (x) – Λ

∣
∣u2

n(x) dx = on(1), n → +∞. (4.4)
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With the same computation we see that ∀ϕ ∈ Hs(R3)

∫

R3

∣
∣V (x) – Λ

∣
∣v2

n(x) dx = on(1), n → +∞, (4.5)
∫

R3

∣
∣V (x) – Λ

∣
∣un(x)ϕ(x) dx = on(1), n → +∞, (4.6)

∫

R3

∣
∣V (x) – Λ

∣
∣vn(x)ϕ(x) dx = on(1), n → +∞. (4.7)

Consequently,

IΛ(un, vn) = IV (un, vn) + on(1) = cV + on(1), (4.8)

I ′
Λ(un, vn) = I ′

V (un, vn) + on(1) = on(1). (4.9)

Assume

lim inf
n→+∞ sup

x∈R3

∫

B1(x)
u2

n(y) dy = 0 and lim inf
n→+∞ sup

x∈R3

∫

B1(x)
v2

n(y) dy = 0,

then, by Lemma 2.3, we get

(un, vn) → (0, 0) in L4(R3) × L4(R3).

Hence, we have

∥
∥(un, vn)

∥
∥2

V = μ1

∫

R3
u4

n(x) dx + μ2

∫

R3
v4

n(x) dx + 2β

∫

R3
u2

n(x)v2
n(x) dx → 0,

which is contrary to the fact that ‖(un, vn)‖2
V > C > 0. Thus, without loss of generality, there

is a constant such that αV > 0

lim inf
n→+∞ sup

x∈R3

∫

B1(x)
u2

n(y) dy = αV .

Consequently, going if necessary to a subsequence, we can find a sequence {xn} ⊆ R3 that
satisfies

∫

B1(xn)
u2

n(y) dy ≥ αV

2
. (4.10)

Since V (x) ≤ Λ, we deduce from (4.4) and (4.5) that

∥
∥
(
un(· + xn), vn(· + xn)

)∥
∥2

V

≤
∫

R3

∣
∣(–�)s/2un

∣
∣2 + (λ1 + Λ)u2

n(x) dx

+
∫

R3

∣
∣(–�)s/2vn

∣
∣2 + (λ2 + Λ)v2

n(x) dx + 2k
∫

R3
un(x)vn(x) dx

=
∫

R3

∣
∣(–�)s/2un

∣
∣2 +

(
λ1 + V (x)

)
u2

n(x) dx
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+
∫

R3

∣
∣(–�)s/2vn

∣
∣2 +

(
λ2 + V (x)

)
v2

n(x) dx + 2k
∫

R3
un(x)vn(x) dx + o(1)

= 4IV (un, vn) + on(1) = 4cV + on(1), as n → ∞,

so that {(un(· + xn), vn(· + xn))} is bounded. Thus, up to a subsequence, there exists
(u∗, v∗) ∈ Hs(R3) × Hs(R3) such that (un(· + xn), vn(· + xn)) ⇀ (u∗, v∗) in Hs(R3) × Hs(R3),
(un(· + xn), vn(· + xn)) → (u∗, v∗) in L2

loc(R3) × L2
loc(R3), un(· + xn) → u∗, vn(· + xn) → v∗ for

a.e. x ∈ R3. We pass to the limit in (4.10) and we get

∫

B1(0)
u2

∗(y) dy ≥ αV

2
, (4.11)

which implies u∗ 	= 0. From (4.8) and (4.9), we derive that {(un(·+xn), vn(·+xn))} is a (P.S.)cV

sequence for IΛ. We also know that I ′
Λ(u∗, v∗) = 0. Therefore

IΛ(u∗, v∗) =
1
4

∫

R3

∣
∣(–�)

s
2 u∗

∣
∣2 + (λ1 + Λ)u2

∗(x) dx +
1
4

∫

R3

∣
∣(–�)

s
2 v∗

∣
∣2 + (λ2 + Λ)v2

∗(x) dx

+
1
2

k
∫

R3
u∗(x)v∗(x) dx.

Let (ūn, v̄n) = (un(· + xn), vn(· + xn)). Now (ūn, v̄n) ⇀ (u∗, v∗) implies that
∫

R3

∣
∣(–�)

s
2 u∗

∣
∣2 + (λ1 + Λ)u2

∗(x) dx +
∫

R3

∣
∣(–�)

s
2 v∗

∣
∣2 + (λ2 + Λ)v2

∗(x) dx

+ 2k
∫

R3
u∗(x)v∗(x) dx

≤ lim inf
n→∞

∫

R3

∣
∣(–�)

s
2 ūn

∣
∣2 + (λ1 + Λ)ūn

2 dx +
∫

R3

∣
∣(–�)

s
2 v̄n

∣
∣2 + (λ2 + Λ)v̄n

2 dx

+ 2k
∫

R3
ūnv̄n dx

= lim inf
n→∞

∫

R3

∣
∣(–�)

s
2 un

∣
∣2 + (λ1 + Λ)u2

n dx +
∫

R3

∣
∣(–�)

s
2 vn

∣
∣2 + (λ2 + Λ)v2

n dx

+ 2k
∫

R3
unvn dx

= lim inf
n→∞

∥
∥(un, vn)

∥
∥2

V

so that

cΛ ≤ IΛ(u∗, v∗) ≤ lim inf
n→∞

1
4
∥
∥(un, vn)

∥
∥2

V = lim inf
n→∞ IV (un, vn) = cV ,

this contradicts Lemma 4.1. Hence u 	= 0 or v 	= 0.
Then we can prove Theorem 1.2 similarly by using the same method as has been used

in Theorem 1.1. �
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