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Abstract
Frictional contact problems in linear elasticity are considered in this paper. The
contact constraint is imposed in the weak sense using the fixed point method, which
leads to a variational equation problem. For solving such a nonlinear variational
problem, we study two projection methods using different self-adaptive rules. Based
on the self-adaptive projection method, we propose a modified self-adaptive rule
which is more effective to update the parameter. The methods can be implemented
easily in conjunction with the boundary element method for the solution. Numerical
experiments are reported to illustrate theoretical results.
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1 Introduction
Frictional contact phenomena among deformable bodies or between deformable and rigid
bodies abound in industry and daily life; they play an important role in many fields of solid
mechanics [1, 2]. Because of the nonlinearity, the exact solution is difficult to be obtained.
Therefore, a considerable effort has been made in modeling and numerical simulations of
contact processes. Most of the time, the mathematical formulation of the frictional con-
tact problem is reformulated as a minimization problem or a variational inequality of the
second kind. Theory of contact problems and their numerical approximations has been
extensively developed during the past decades [3–10]. Among the most popular methods
we mention semi-smooth Newton methods and projection methods. Although the semi-
smooth Newton method is well known as the local superlinear convergence for nonlinear
problems, this method converges fast only if the penalty parameter of this method is big
enough, which may result in a badly conditioned problem; while the projection method
with a fixed penalty parameter will be depredated significantly if the parameter is either
too small or too large. Therefore, the convergence speed of these methods is sensitive to
the choice of parameters. In this paper, we study the numerical solutions of frictional con-
tact problems using the projection method with two self-adaptive rules for the parameter.

The first method, called the self-adaptive projection method in this paper, is applica-
ble for solving monotone variational inequalities of the first kind [9, 11–13]. Using the
equivalence between the frictional contact problem and a variational formulation with
a projection fixed point problem [14–16], our method formulates the contact boundary
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condition into a sequence of Robin boundary conditions. We prove the unconditional con-
vergence in function spaces. The main advantage of the method is that, as compared with
other methods, there is a combination of the projection method and the self-adaptive rule
which uses iterative functions to update the parameter automatically.

The second method, called the modified self-adaptive projection method in this pa-
per, is based on the self-adaptive projection method. This method uses a modified self-
adaptive rule to better adjust the parameter and accelerate the convergence speed of the
method, for any initial function. In addition, we note that the proof of the self-adaptive
projection method for frictional contact problems can be easily extended to the modified
self-adaptive projection method as well.

In these two methods, the key unknowns of frictional contact problems are displace-
ment and stress on the contact boundary, which are considered primary variables and can
be related in a linear system by the boundary element method (BEM) [9, 10, 17, 18]. Be-
sides, the BEM significantly reduces expense mesh generation because the formulation of
the problem is concluded to the boundary of the domain. Therefore the BEM is a natural
numerical tool for the solution of frictional contact problems. In this paper, we apply pro-
jection methods combined with the BEM for the numerical solution of frictional contact
problems.

The rest of the paper is organized as follows. First, we introduce the variational for-
mulation of the classical frictional contact problem via a projection fixed point problem.
Section 3 presents the self-adaptive projection method and the convergence analysis. Sec-
tion 4 describes the implementation detail of the two self-adaptive rules and the boundary
element approximation for the method. In Sect. 5, we give some numerical results that
confirm our theoretical findings. In particular, we show that the modified self-adaptive
projection method has better convergence speed and stability for all parameters. Finally,
Sect. 6 concludes the paper with some remarks.

2 Setting of the problem
We consider the classical frictional contact problem with a rigid foundation. Let Ω be
an open and bounded domain in R

2, with a Lipschitz boundary Γ = ∂Ω . The boundary
Γ is partitioned as three mutually disjoint parts ΓD, ΓN , and ΓC �= ∅, where Dirichlet,
Neumann, and frictional contact boundary conditions are prescribed. For simplicity, we
assume that there are no volume forces acting on the body. We use n and t to denote the
outward normal and tangential vectors of Γ , respectively. For given boundary traction t̂ ∈
(L2(ΓN ))2 and obstacle g ∈ L2(ΓC) with g > 0, the problem is to determine the displacement
u such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

divσ (u) = 0 in Ω , (2.1)
u = 0 on ΓD, (2.2)
σ (u)n = t̂ on ΓN , (2.3)
un = 0 on ΓC , (2.4)

and the following friction condition on ΓC

{
if ut = 0 then |σ t(u)| ≤ g, (2.5)

if ut �= 0 then σ t(u) = –g ut
|ut | , (2.6)
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where ut and σ t are the tangential contact displacement and the tangential contact trac-
tion, respectively. In this paper, we adopt the following decomposition for the displace-
ment and the stress vector fields:

u = unn + ut and σ (u)n = σn(u)n + σ t(u).

Let us introduce the following Hilbert space:

V :=
{

v ∈ (
H1(Ω)

)2, v|ΓD = 0, un|ΓC = 0
}

,

and notations

a(u, v) :=
∫

Ω

σ (u) : ε(v) dx,

j(v) :=
∫

ΓC

g|vt|dsx,

L(v) :=
∫

ΓN

t̂(x) · v(x) dsx.

Problem (2.1)–(2.6) is then equivalent to the following variational inequality of the second
kind:

⎧
⎨

⎩

Find u ∈ V satisfying

a(u, v – u) + j(u) – j(v) ≥ L(v – u), ∀v ∈ V,
(2.7)

or a convex minimization problem

⎧
⎨

⎩

Find u ∈ V such that

J(u) = minv∈V J(v) := 1
2 a(v, v) – L(v) + j(v).

(2.8)

It follows from the theory of variational inequalities that problem (2.7), or equivalently
(2.8), admits a unique solution [1, 2]. Let us introduce a projection notation [x]α for α ∈R

+

and vector x ∈R
2

[x]α :=

⎧
⎨

⎩

x if |x| ≤ α,

α x
|x| otherwise.

Then we have the next result for the frictional boundary condition, which has been pointed
out in [15].

Lemma 2.1 For all ρ > 0, the frictional contact condition (2.5)–(2.6) on ΓC is equivalent
to

σ t(u) +
[
ρut – σ t(u)

]

g = 0 on ΓC . (2.9)
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Now, we define the following residual function:

Rρ(ut ,σ t) = σ t + [ρut – σ t]g on ΓC . (2.10)

As a result, the nonsmooth projection equation (2.9) can be rewritten as Rρ(ut ,σ t) = 0.
Then, we propose a new equivalent formulation for the frictional boundary condition
(2.5)–(2.6). For given ω �= 0, Rρ(ut ,σ t) = 0 can be written in the following form:

σ t + ρut = σ t + ρut – ωRρ(ut ,σ t). (2.11)

Next, we apply the Green formula to (2.1)–(2.6) and obtain the variational formulation

a(u, v) –
∫

ΓC

σ t · vt dsx = L(v) ∀v ∈ V. (2.12)

Consequently, we obtain the following variational and projection formulations for the fric-
tional contact problem (2.1)–(2.6):

⎧
⎨

⎩

a(u, v) –
∫

ΓC
σ t · vt dsx = L(v) ∀v ∈ V,

σ t + ρut = σ t + ρut – ωRρ(ut ,σ t) on ΓC .
(2.13)

Using this equivalent formulation, we can suggest a self-adaptive projection method for
the frictional contact problem in the next section.

3 Self-adaptive projection method
In order to solve problem (2.13), we rewrite (2.11) as the following Robin iterative scheme
as in [9–13]:

σ
(k+1)
t + ρu(k+1)

t = σ
(k)
t + ρu(k)

t – ωRρ

(
u(k)

t ,σ (k)
t

)
on ΓC . (3.1)

Then we obtain the projection method for the numerical solution of the frictional contact
problem. In this method, there are two parameters ω ∈ (0, 2) and ρ > 0 which affect the
convergence speed. We note that the good parameter ω should be less than and close to 2
[9–11]. Although the method converges for any fixed parameter ρ > 0, the efficiency of
the method depends on the parameter ρ heavily.

Here, we propose a projection method with a self-adaptive variable sequence of param-
eters {ρk} [9, 10]. In the following we need a nonnegative sequence {sk} satisfying

+∞∑

k=0

sk < +∞.

Now, we present the following self-adaptive projection method for the frictional contact
problem.

Algorithm 1
Step 0: Choose initial functions u(0)

t ∈ (H1/2(ΓC))2,σ (0)
t ∈ (L2(ΓC))2, ρ ∈R

+, and
ω ∈ (0, 2); set ρ0 = ρ and k := 0.
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Step 1: Compute Rρk (u(k)
t ,σ (k)

t ) according to (2.10).
Step 2: Find (u(k+1),σ (k+1)) such that

⎧
⎪⎨

⎪⎩

a(u(k+1), v) –
∫

ΓC
σ

(k+1)
t · vt dsx = L(v) ∀v ∈ V , (3.2)

σ
(k+1)
t + ρku(k+1)

t = σ
(k)
t + ρku(k)

t – ωRρk (u(k)
t ,σ (k)

t ) on ΓC . (3.3)

Step 3: Use a self-adaptive rule to update the parameter ρk+1 satisfying

1
1 + sk

ρk ≤ ρk+1 ≤ (1 + sk)ρk . (3.4)

Step 4: Stop if some given stopping criterion is satisfied, else set k := k + 1 and go to
Step 1.

Let u∗ and σ ∗ denote the solution of the frictional contact problem and the correspond-
ing contact traction on the boundary Γ , respectively. In order to establish the convergence
analysis of the projection method, we have to consider preliminary results presented in the
form of two lemmas.

Lemma 3.1 If the sequence {sk} satisfies sk ≥ 0 and
+∞∑

k=0
sk < +∞, then

+∞∏

k=0
(1 + sk) < +∞.

Lemma 3.2 Let (u(k),σ (k)) be the sequence generated by the self-adaptive projection
method, we have

‖σ (k+1)
t – σ ∗

t + ρk
(

u(k+1)
t – u∗

t
)‖2

ΓC

≤ ‖σ (k)
t – σ ∗

t + ρk
(

u(k)
t – u∗

t
)‖2

ΓC
– 2ωρk

∫

ΓC

(
σ

(k)
t – σ ∗

t
) · (u(k)

t – u∗
t
)

dsx. (3.5)

Lemma 3.1 is obvious and Lemma 3.2 can refer to Theorem 3.3 in [10]. We donate

Cs :=
+∞∏

k=0

(1 + sk).

Consequently, it follows from Step 3 in Algorithm 1 that the parameter ρk ∈ [ 1
Cs

ρ0, Csρ0]
is bounded. Let

ρL := inf{ρk}+∞
k=0, ρU := sup{ρk}+∞

k=0.

Then, we can prove the following convergence theorem.

Theorem 3.1 Let {(u(k),σ (k))} be the sequence generated by the self-adaptive projection
method, then u(k) converges to u∗ in V and σ (k) converges to σ ∗ in (L2(Γ ))2.

Proof Note that u(k) and u∗ satisfy the same boundary conditions on ΓD and ΓN . We apply
the Green formula to (2.1)–(2.6) and use u(k)

n = u∗
n = 0, it follows that

∫

ΓC

(
σ (k) – σ ∗) · (u(k) – u∗)dsx
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=
∫

ΓC

(
σ

(k)
t – σ ∗

t
) · (u(k)

t – u∗
t
)

dsx

= a
(
u(k) – u∗, u(k) – u∗) ≥ 0. (3.6)

Since 0 < ρk+1 ≤ (1 + sk)ρk , we use (3.5) and (3.6) and have

‖σ (k+1)
t – σ ∗

t + ρk+1
(

u(k+1)
t – u∗

t
)‖2

ΓC

≤ (1 + sk)2‖σ (k+1)
t – σ ∗

t + ρk
(

u(k+1)
t – u∗

t
)‖2

ΓC

≤ (1 + sk)2‖σ (k)
t – σ ∗

t + ρk
(

u(k)
t – u∗

t
)‖2

ΓC

– 2ωρk(1 + sk)2
∫

ΓC

(
σ

(k)
t – σ ∗

t
) · (u(k)

t – u∗
t
)

dsx

≤ (1 + sk)2‖σ (k)
t – σ ∗

t + ρk
(

u(k)
t – u∗

t
)‖

– 2ωρk

∫

ΓC

(
σ

(k)
t – σ ∗

t
) · (u(k)

t – u∗
t
)

dsx.

Then the following estimation is obtained by using ξk := 2sk + s2
k :

‖σ (k+1)
t – σ ∗

t + ρk+1
(

u(k+1)
t – u∗

t
)‖2

ΓC

≤ (1 + ξk)‖σ (k)
t – σ ∗

t + ρk
(

u(k)
t – u∗

t
)‖2

ΓC

– 2ωρk

∫

ΓC

(
σ

(k)
t – σ ∗

t
) · (u(k)

t – u∗
t
)

dsx. (3.7)

From Lemma 3.1, we have
∑+∞

k=0 ξk < +∞ and
∏+∞

k=0(1 + ξk) < +∞. We introduce the fol-
lowing notations:

C0 :=
+∞∑

k=0

ξk , Cp :=
+∞∏

k=0

(1 + ξk),

δ(k)
u := u(k) – u∗, δ(k)

ut := u(k)
t – u∗

t ,

δ(k)
σ := σ (k) – σ ∗, δ(k)

σ t := σ
(k)
t – σ ∗

t .

Then δ(k)
u , δ(k)

ut ∈ V and δ(k)
σ , δ(k)

σ t ∈ (L2(ΓC))2. From (3.5) we have

∫

ΓC

δ(k)
σ t · δ(k)

ut dsx = a
(
δ(k)

u , δ(k)
u

) ≥ α‖δ(k)
u ‖2

V , (3.8)

where α > 0. Combining (3.7) and (3.8) we get

‖δ(k+1)
σ t + ρk+1δ

(k+1)
ut ‖2

ΓC
≤ (1 + ξk)‖δ(k)

σ t + ρ
(k)
2 δ(k)

ut ‖2
ΓC

≤
k∏

i=0

(1 + ξi)‖δ(0)
σ t + ρ0δ

(0)
ut ‖2

ΓC

≤ Cp‖δ(0)
σ t + ρ0δ

(0)
ut ‖2

ΓC
.
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Therefore, there exists a constant C > 0 such that

‖δ(k)
σ t + ρkδ

(k)
ut ‖2

ΓC
≤ C, ∀k ≥ 0. (3.9)

Consequently, both sequences {u(k)
t } and {σ (k)

t } are bounded. From (3.7), we also have

2ω

+∞∑

k=0

ρk

∫

ΓC

(
σ

(k)
t – σ ∗

t
) · (u(k)

t – u∗
t
)

dsx

≤ ‖δ(0)
σ t + ρ0δ

0)
ut ‖2

ΓC
+

+∞∑

k=0

ξk‖δ(k)
σ t + ρkδ

(k)
ut ‖2

ΓC
. (3.10)

We use (3.8), (3.9), and (3.10) and obtain

∞∑

k=0

‖δ(k)
u ‖2

V

≤ (2ωαρL)–1(‖δ(0)
σ t + ρ0δ

0)
ut ‖2

ΓC
+

+∞∑

k=0

ξk‖δ(k)
σ t + ρkδ

(k)
ut ‖2

ΓC

≤ (2ωαρL)–1

(

C + C
+∞∑

k=0

ξk

)

≤ (2ωαρL)–1(1 + C0)C.

Hence, we have

lim
k→∞

‖δ(k)
u ‖2

V = 0,

which means that u(k) converges to u∗ in V . From Step 2 of Algorithm 1 and Lebesgue’s
bounded convergence theorem it follows that σ (k) converges to σ ∗ in L2(ΓC) as k → ∞. �

4 Implementation details of the proposed method
Consider that our method generates a sequence of well-posed variational problems with
the common boundary condition, we can easily obtain their numerical solutions. In this
section, we describe the details of the method numerically.

4.1 The self-adaptive rule
Using the method developed in [9–13], we first suggest a simple rule to adjust the variable
parameter ρk for Step 3 of the self-adaptive projection method. Note that the sequence
{(u(k),σ (k))} generated by Algorithm 1 satisfies (3.5) and (3.8), we obtain

‖σ (k+1)
t – σ ∗

t + ρk
(

u(k+1)
t – u∗

t
)‖2

ΓC
≤ ‖σ (k)

t – σ ∗
t + ρk

(
u(k)

t – u∗
t
)‖2

ΓC
.

For the convergence speed of the method, we hope that

‖σ (k+1)
t – σ

(k)
t ‖ΓC = ρk‖u(k+1)

t – u(k)
t ‖ΓC . (4.1)
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Using this idea, we update the parameter ρk as follows. For a given positive constant τ , if

ρk‖u(k+1)
t – u(k)

t ‖ΓC > (1 + τ )‖σ (k+1)
t – σ

(k)
t ‖ΓC ,

we decrease ρk in the next iteration; conversely, we increase ρk when

ρk‖u(k+1)
t – u(k)

t ‖ΓC <
1

1 + τ
‖σ (k+1)

t – σ
(k)
t ‖ΓC .

Let

wk =
‖σ (k+1)

t – σ
(k)
t ‖ΓC

‖u(k+1)
t – u(k)

t ‖ΓC

,

we obtain the parameter ρk+1 according to the following self-adaptive rule:

ρk+1 =

⎧
⎪⎪⎨

⎪⎪⎩

(1 + sk)ρk if wk > (1 + τ )ρk ,
1

1+sk
ρk if wk < ρk

1+τ
,

ρk otherwise,

(4.2)

where the nonnegative sequence {sk} is generated by

sk =

⎧
⎪⎪⎨

⎪⎪⎩

τ if ck < ck+1 and ck+1 ≤ cmax,
1

(ck+1–cmax)2 if ck < ck+1 and ck+1 > cmax,

0 otherwise.

Let ck be the change times of {ρk}, i.e.,

c0 = 0, ck+1 =

⎧
⎨

⎩

ck if 1
1+τ

≤ wk ≤ 1 + τ ,

ck + 1 otherwise.

For a given constant integer cmax > 0, it follows that the sequence {sk} satisfies Lemma 3.1
automatically.

4.2 The modified self-adaptive rule
Following the above self-adaptive rule, we use the same way to choose ρk+1 when wk > (1 +
τ )ρk and wk < ρk

1+τ
. Different from the self-adaptive rule for the case ρk

1+τ
≤ wk ≤ (1 + τ )ρk ,

we give a new rule to adjust ρk+1 as follows. From (4.1) we have

ρk =
‖σ (k+1)

t – σ
(k)
t ‖ΓC

‖u(k+1)
t – u(k)

t ‖ΓC

= wk ,

then we use ρk+1 = wk to replace ρk+1 = ρk . Consequently, we obtain the following modified
self-adaptive rule:

ρk+1 =

⎧
⎪⎪⎨

⎪⎪⎩

(1 + sk)ρk if wk > (1 + τ )ρk ,
1

1+sk
ρk if wk < ρk

1+τ
,

wk otherwise.

(4.3)
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Obviously, ρk+1 by using the modified self-adaptive rule also satisfies (3.4). Furthermore,
this rule is more flexible to choose a proper parameter and improve the performance of
the self-adaptive rule.

4.3 Boundary element discrete form
Problem (3.2)–(3.3) is the variational formulation of the following linear elasticity prob-
lem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

divσ (u(k+1)) = 0 in Ω , (4.4)
u(k+1) = 0 on ΓD, (4.5)
Tu(k+1) = t̂ on ΓN , (4.6)
u(k+1)

n = 0 on ΓC , (4.7)
σ

(k+1)
t + ρku(k+1)

t = σ
(k)
t + ρku(k)

t – ωRρk (u(k)
t ,σ (k)

t ) on ΓC . (4.8)

Since the main iterative scheme (4.8) is in the boundary of the domain, the BEM is more
appropriate for the methods [9, 10, 17, 18].

The solution u of problem (4.4)–(4.8) can be represented as the Betti–Somigliana rep-
resentation formula

u(y) =
∫

Γ

G(x, y)Tu(x) dsx –
∫

Γ

(
Tx G(x, y)

)T u(x) dsx , (4.9)

where the x in Tx G(x, y) denotes differentiations in (4.6) with respect to the variable x,
and G(x, y) is the fundamental solution of the two-dimensional Lamé equation. The dis-
placements u and tractions Tu satisfy the boundary integral equation

1
2

u(y) =
∫

Γ

G(x, y)Tu(x) dsx –
∫

Γ

(
Tx G(x, y)

)T u(x) dsx ∀y ∈ Γ . (4.10)

The boundary Γ is approximated by N straight line elements. We use constant boundary
elements, and the nodes are located in the middle of each element. Using functions u(k)

t and
σ

(k)
t , we obtain the projection residual function Rρk (u(k)

t ,σ (k)
t ) point-wise on nodes element

by element along ΓC . We apply un = 0 and the Robin boundary condition

σ
(k+1)
t = σ

(k)
t + ρ

(
u(k)

t – u(k+1)
t

)
– ωRρk

(
u(k)

t ,σ (k)
t

)
(4.11)

to (4.10) to eliminate σ
(k+1)
n and obtain the corresponding discrete form at x ∈ ΓC

u(k+1)(yi)
2

+
∫

ΓC

u(k+1)(yj)Tx G(x, yi)
T dsx +

∫

ΓC

ρku(k+1)
t (xj)G(x, yi) dsx

=
∫

ΓC

[
σ

(k)
t (xj) + ρku(k)

t (xj) – ωRρk

(
u(k)

t (xj),σ (k)
t (xj)

)]
G(x, yi) dsx yi ∈ Γ . (4.12)

On the boundary ΓD ∪ ΓN , the discrete form of the boundary integral equation reads as
follows:

u(k+1)(yi)
2

+
∫

ΓD∪ΓN

u(k+1)(xj)Tx G(x, y))T dsx

=
∫

ΓD∪ΓN

Tu(k+1)(xj)G(x, yi) dsx yi ∈ Γ . (4.13)
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Using all the boundary conditions (4.5)–(4.8), we can solve the linear systems (4.12) and
(4.13) to obtain both displacement u(k+1) and stress σ (k+1) at the nodes on Γ . So that we can
reset the parameter and the Robin boundary condition on ΓC according to the method.

5 Numerical experiments
In this section, we present some numerical results to compare the performance of the
projection method with different self-adaptive rules. In all tests, we take ω = 1.8 and τ = 2,

cmax = 10 for our methods. Here, we choose
‖u(k+1)–u(k)‖L2(ΓC )+‖σ (k+1)

t –σ
(k)
t ‖L2(ΓC )

‖u(k+1)‖L2(ΓC )+‖σ (k+1)
t ‖L2(ΓC )

≤ 10–6 as a

stopping criterion and use Matlab codes for our methods.

5.1 Example 1
We consider an elastic body Ω = (0, 8) × (0, 4). The bottom of the rectangle is in contact
with a rigid foundation and the frictional contact part of the boundary is ΓC = (0, 8) ×{0}.
On the part ΓD = (0, 8) × {4} the body is clamped. The Neumann boundary condition is
given by t̂ = (400, 0)� on {0} × (0, 4), and t̂ = 0 on the rest of ΓN . The elasticity parame-
ters are chosen to be Young’s modulus E = 10,000 and Poisson’s ratio v = 0.3, the friction
coefficient is g = 150 daN/mm2 on ΓC .

First we apply our methods to this problem with initial parameter ρ = 1 and step size
h = 0.05, and the initial and deformed configurations of the body are shown in Fig. 1. On
ΓC , the tangential displacement and traction are depicted in Figs. 2 and 3, respectively.
We note that ΓC is divided into a slip part and a stick part with a transition point from slip
to stick near (3.3, 0). It can be seen that our results are in a good agreement with those in
Ref. [5].

Here, we test the problem with different initial positive parameters ρ and mesh sizes h.
In Table 1, we give the number of iterations for the convergence of the self-adaptive pro-
jection and modified self-adaptive projection methods with rules (4.2) and (4.3), respec-
tively. According to these numerical results, as expected, all parameters ρ do not have a
significant effect on the number of iterations for each method. Moreover, the number of

Figure 1 Initial and deformed configurations
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Figure 2 Tangential displacements on ΓC

Figure 3 Tangential tractions on ΓC

iterations for the method depends only weakly on h. In particular, the number of itera-
tions of modified self-adaptive projection method is less than the self-adaptive projection
method.

5.2 Example 2
In this example, we consider a frictional problem of the elastic square body Ω = (0, 10) ×
(0, 2) with ΓC = (0, 10) × {0}. The Neumann boundary condition is given by t̂ = (1700, 0)�

on {0}× (0, 2) and t̂ = (–1100, 0)� on {10}× (0, 2). And the homogeneous Dirichlet condi-
tion (i.e., u = 0) is applied on ΓD := (0, 10) × {2}. The friction is g = 450 daN/mm2 on ΓC .
Young’s modulus and Poisson’s ratio are E = 2500 and v = 0.2, respectively.
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Table 1 Number of iterations for each method

ρ Self-adaptive projection method Modified self-adaptive projection method

h = 0.4 h = 0.2 h = 0.1 h = 0.05 h = 0.4 h = 0.2 h = 0.1 h = 0.05

1 59 81 70 78 46 51 55 62
10 57 68 73 73 44 49 53 60
102 58 68 68 71 43 49 55 49
103 58 62 62 69 43 48 56 43
104 57 66 74 78 45 52 59 57
105 64 75 73 80 47 50 51 59
106 62 83 71 72 47 52 57 51
107 61 71 80 83 50 55 57 63

Figure 4 Initial and deformed configurations

Figure 5 Tangential displacements on ΓC

We choose ρ = 1 and h = 0.05 again and apply our method to this problem. Figure 4
depicts the initial and deformed configurations of the body, and Figs. 5 and 6 show the
surface displacements and stresses on ΓC . These numerical results show that ΓC is di-
vided into two slip parts and a stick part with two transition points from slip to stick near
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Figure 6 Tangential tractions on ΓC

Table 2 Number of iterations for each method

ρ Self-adaptive projection method Modified self-adaptive projection method

h = 0.4 h = 0.2 h = 0.1 h = 0.05 h = 0.4 h = 0.2 h = 0.1 h = 0.05

1 53 64 71 55 43 47 50 51
10 49 62 72 62 42 45 48 38
102 50 55 59 55 40 44 47 49
103 47 58 64 57 39 42 45 46
104 49 59 71 63 41 44 48 48
105 49 57 61 54 42 44 46 48
106 53 63 70 54 45 46 49 49
107 54 65 74 67 46 48 52 54

(2.4, 0) and (8.4, 0). It can be observed that our results are in agreement with conditions
(2.5) and (2.6) again. We also investigate the convergence behavior of our method for this
example. Table 2 displays the number of iterations with respect to the parameter ρ and the
mesh size h. As in the previous example, our modified self-adaptive projection method is
better than the self-adaptive projection method, because this method accelerates the con-
vergence speed.

6 Conclusion
This paper provides the analysis of two projection methods for the solution of frictional
contact problems. Our methods show unconditional convergence and only require solving
a sequence of general linear elasticity problems. In particular, we propose two adjustment
rules to choose the proper parameter ρ automatically. As the main iterative process is
given on the boundary of the domain, the unknowns of the problem are computed easily
by using the boundary element method. Furthermore, the numerical results show that the
modified self-adaptive projection method has better performance than the self-adaptive
projection method. Proposed methods can be extended to frictional contact problems in
three space dimensions (3D).
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