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Abstract
We consider the connection problem of the second nonlinear differential equation

Φ ′′(x) = (Φ ′2(x) – 1) cotΦ(x) +
1
x
(1 –Φ ′(x)) (1)

subject to the boundary condition Φ(x) = x – ax2 + O(x3) as x → 0. In view of the fact
that equation (1) is equivalent to the fifth Painlevé (PV) equation after a Möbius
transformation, we are able to study the connection problem of equation (1) by
investigating the corresponding connection problem of PV. Our research technique is
based on the method of uniform asymptotics presented by Bassom et al. The
asymptotic behavior of the monotonic solution as x → ∞ on the real axis of equation
(1) is obtained, the explicit relation (connection formula) between the constants
appearing in the asymptotic behavior and the real number a are also obtained.

Keywords: Connection formulas; Uniform asymptotics; Painlevé V equation;
Parabolic cylinder function

1 Introduction and main results
In the present paper we show how the technique of uniform asymptotics introduced by
Bassom et al. in [1] can be applied to the equation

Φ ′′(x) =
(
Φ ′2(x) – 1

)
cotΦ(x) +

1
x
(
1 – Φ ′(x)

)
, (2)

whose solutions are related to the computation of one particle density matrix of impene-
trable bosons at zero temperature [4, 16].

We focus on the problem of calculating the asymptotic behaviors as x → ∞ of a one-
parameter family of regular solutions to equation (2) defined with the boundary condition

Φ(x) = x – ax2 + O
(
x3), as x → 0, (3)

and on the relevant connection formulas between the different asymptotic parameters
which appeared in the above-mentioned critical expansions.

Introducing the change of variable

y(s) = exp
(
–2iΦ(x)

)
, s =

x
2

, (4)
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in (2), we get for y(s) the special fifth Painlevé equation (PV)

d2y
ds2 =

(
1
2y

+
1

y – 1

)(
dy
ds

)2

–
1
s

dy
ds

– 4i
y
s

+ 8
y(y + 1)

y – 1
, (5)

which appears in the studying of the level spacing functions related to the Fredholm de-
terminant of the sine kernel sinπ (x–y)

π (x–y) on the finite interval (–s, s) [11, 14]. Let s = it and

p(t) =
√y+1√y–1 , then equation (5) is equivalent to a special third Painlevé (PIII) equation

d2p
dt2 =

1
p

(
dp
dt

)2

–
1
t

dp
dt

–
1
t
(
p2 – 1

)
+ p3 –

1
p

, (6)

which is closely related to studying Bonnet surfaces [2, 3], and the mean curvature and the
metric in terms of p(t) (see (3.115) in [2]). If we set w(t) = –p(t), then w(t) satisfies another
special PIII

d2w
dt2 =

1
w

(
dw
dt

)2

–
1
t

dw
dt

+
1
t
(
w2 – 1

)
+ w3 –

1
w

. (7)

We mention that this special PIII can be expressed algebraically in terms of a fifth Painlevé
transcendent and its first derivative. Consider the following pair of equations:

h(τ ) =
w′(t) – w2(t) – 1
w′(t) – w2(t) + 1

, w(t) =
2τh(τ )

τh′(τ ) – h(τ ) + 1
, (8)

where τ = t2

2 . Eliminating h from (8), we get equation (7) for w(t); and eliminating w from
(8), we get for h(τ ) the special PV equation

d2h
dτ 2 =

(
1

2h
+

1
h – 1

)(
dh
dτ

)2

–
1
τ

dh
dτ

–
1
8

(h – 1)2

τ 2h
–

h
τ

, (9)

which admits the Lax representation [15].
With the help of the preceding derivation, we can now see that equation (2) is equivalent

to equation (9) after the transform

h(τ ) = 1 +
2 sin2 Φ(x)

2
Φ ′(x) – 1

, τ = –
x2

8
. (10)

Hence, the connection problem of equation (2) can be studied by studying the correspond-
ing connection problem of equation PV (9) using the isomonodromic deformation tech-
nique [7]. Based on the special Lax pair of (9), the author of [15] studied analytically this
solution to equation (2) with the initial condition (3) for all real-valued a and obtained the
asymptotic expansion of Φ as x → ∞ and explicit connection formulas by virtue of the
isomonodromic deformation technique. Let us summarize the main result of [15] in the
theorem as follows.

Theorem 1 There exists a unique solution of (2) which satisfies (3) for any given real num-
ber a.
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(A) If a > 1
π

, this solution exists for positive real x, and

Φ(x, a) = –x + β ln x + γ + o(1), as x → ∞, (11)

where β and γ are real constants. Furthermore, the relationship between the parameters
β ,γ in (11) and the parameter a in (3) is provided by the connection formulas

β = –
1
π

ln(aπ – 1), (12)

γ =
π

2
+ 2 argΓ

(
iβ
2

–
1
2

)
+ β ln 2 + kπ , k ∈ Z. (13)

(B) If a < 1
π

, this solution exists for all real x and increases monotonically as x → ∞,

Φ(x, a) = x + β ln x + γ + o(1), (14)

where β and γ are real constants. Furthermore, the relationship between the parameters
β ,γ in (14) and the parameter a in (3) is provided by the connection formulas

β =
1
π

ln(1 – aπ ), (15)

γ = –2 argΓ

(
iβ
2

)
+ β ln 2 – π signβ , (16)

where β �= 0 and γ (0) = 0.
(C) If a = 1

π
, this solution exists for all real x as x increases monotonically to a finite limit,

and, as x → ∞,

Φ

(
x,

1
π

)
=

π

2
+ o(1). (17)

In the earlier work of the authors of [4], they studied numerically this solution with the
given asymptotic behavior at the origin (3) for the case of a > 1

π
and proposed (11) and (12);

however, they did not obtain the explicit expression (13) for γ . Recently, the connection
formulas in Theorem 1 have been applied for calculations of the Fredholm determinant
of the sine kernel sinπ (x – y)/π (x – y) on the finite interval (t, –t); see [11].

In this paper, we provide a simpler and more rigorous proof of Theorem 1 by using the
uniform asymptotics method proposed in [1]. For our purposes, we first briefly outline
some important properties of the theory of monodromy preserving deformations for the
PV transcendents. The reader is referred to [6, 8] for more details.

One of the Lax pairs for the fifth Painlevé equation (9) is the system of linear ordinary
equations [11]

∂Ψ

∂λ
=

{

–iτσ3 +
1
λ

(
1
4 u
v – 1

4

)

+
1
λ2

(
z q
q –z

)}

Ψ , (18)

∂Ψ

∂τ
=

{

–iλσ3 +

(
g u

τ
v
τ

–g

)}

Ψ , (19)
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where τ = – x2

8 and

z = –
i
8

h + 1
h – 1

, q = –
1
4

√
h

h – 1
, u + v = –

i
2
√

h
,

u – v =
iτhτ

(1 – h)
√

h
, g =

1
8τ

(
1 +

1
h

)
.

(20)

The compatibility condition Ψλτ = Ψτλ implies that h(τ ) satisfies the PV equation (9).
Equation (18) has two irregular points λ = 0 and λ = ∞. There exists a canonical solution

Ψ (∞) defined in a neighborhood of the irregular singular point λ = ∞ with the following
asymptotics behavior:

Ψ (∞)(λ) = E(∞)(τ )
(

I + O
(

1
λ

))
λ

1
4 σ3 exp(–iτλσ3), λ → ∞, argλ = 0, (21)

where

E(∞)(τ ) = τ
1
8 σ3 exp

(
σ3J(τ )

)
:= dσ3 (22)

with J(τ ) = 1
8
∫ τ

–c
dt

th(t) , here c is a positive constant. From (18) and (21) it follows that

Ψ (∞)(λ) = E(∞)(τ )

(
1 + O( 1

λ
) a1

λ
a2
λ

1 + O( 1
λ

)

)

λ
1
4 σ3 exp(–iτλσ3) (23)

with a1 = u
2iτd and a2 = – v

2iτ d.
On the other hand, (18) has another canonical solution Ψ (0) in a neighborhood of the

irregular singular point λ = 0

Ψ (0)(λ) = H(τ )E(0)(τ )
(
I + O(λ)

)
λ

1
4 σ3 exp

(
i
λ

σ3

)
, λ → 0, argλ = 0, (24)

where the coefficients H and E(0) have the form

H(τ ) =
1√

h(τ ) – 1
(iσ3

√
h + σ1), E(0)(τ ) = τ

1
8 σ3 exp

(
–σ3J(τ )

)
= d̃σ3 . (25)

Since Ψ (∞) and Ψ (0) are both fundamental solutions, the connection matrix Q can be
defined by

Ψ (∞)(λ) = Ψ (0)(λ)Q. (26)

Differentiating both sides of equation (26) with respect to x and making use of the fact
that both Ψ (∞) and Ψ (0) satisfy (18), the isomonodromic condition dQ

dx = 0 is easily found;
i.e., Q is a constant matrix.

In the framework of the isomonodromic deformation method, one needs to calculate
the monodromy data Q both in terms of the initial condition (3) and asymptotics (14).
Equating then the leading terms of nontrivial monodromy data, one gets connection for-
mulas for the parameters β ,γ , and a. In the limit x → 0, the first term of equation in λ
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(18) vanishes, so the Ψ -functions can be expressed via the Whittaker functions [15], then
the monodromy data as x → 0 is calculated explicitly by use of multiplication formulas of
the Whittaker functions, and we obtain that

(Q)21 = i2–3/4√aπ . (27)

To estimate the connection matrix in the limit τ → +∞, one finds the WKB solution of the
Ψ -function, which demands a standard procedure of matching near the turning points,
involving parabolic cylinder functions (see [15], p. 251). Eventually, one can obtain the
connection matrix for large x as follows by using the asymptotics behavior of parabolic
cylinder functions.

In this paper, we shall provide a hopefully simpler and more rigorous derivation of the
asymptotic behavior and the connection formulas in Theorem 1 by using the uniform
asymptotics method presented in [1]. Along the same lines we may find the work of Olver
[12] and Dunster [5] for coalescing turning points. Initially in [1], the second Painlevé
(PII) equation has been taken as an example to illustrate the method. While the difficulty
in extending the techniques for PII to other transcendents is also acknowledged by the
authors of [1], p. 244, yet the method has been applied to the connection problems by
Wong and Zhang [17, 18], Zeng and Zhao [19], Long, Zeng, and Zhou [10]. Recently, Long
et al. [9] presented a detailed asymptotics analysis of the real solutions of the first Painlevé
(PI) equation by virtue of the uniform asymptotics method.

The rest of the paper is organized as follows. The proof of Theorem 1 is provided in
Sect. 2. In Sect. 3, for the case of a > 1

π
and a < 1

π
, we derive uniform approximations to

the solutions of the second-order differential equation obtained from the Lax pair (18) as
x → +∞ by virtue of the parabolic cylinder functions on the Stokes curves, respectively.
The entry (2, 1) of the connection matrix Q for large x is also computed in the section.

2 Proof of Theorem 1
To prove Theorem 1, we need two lemmas.

Lemma 1 For a > 1
π

, the asymptotics behavior of the entry (2, 1) of the connection matrix
Q is

(Q)21 =
2– 1

4
√

πe– πβ
4

Γ ( 1
2 – i β

2 )
exp

(
iS +

i
2

x –
iβ
2

ln x –
iβ
2

ln 2 +
3π i

4

)
. (28)

Lemma 2 For a < 1
π

, the asymptotics behavior of the entry (2, 1) of the connection matrix
Q is

(Q)21 =
i
√

β2– 3
4
√

πe
πβ
4

Γ ( iβ
2 + 1)

exp

(
–iS +

i
2

x +
iβ
2

ln x +
iβ
2

ln 2
)

. (29)

The rigorous proofs of those results will be given in the next section. With the help of
the preceding two lemmas, we can now prove Theorem 1.

Proof of Theorem 1 We first give the proof when a > 1
π

. Since the connection matrix Q
must be independent of x, it follows that the right-hand sides of (27) and (28) are equal.
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Separating the real and imaginary parts, in view of the standard formulas |Γ ( 1
2 + iy)|2 =

π
cosh yπ (see [13]), gives the asymptotic behaviors (11) and connection formulas (12), (13),
which completes the proof of statement (A) in Theorem 1.

When a < 1
π

, the asymptotic behaviors (14) and connection formulas (15), (16) are ob-
tained straightforward by equating the expressions (27) and (29); here it has been made
of the formulas Γ (z + 1) = zΓ (z) and |Γ (iy)|2 = 2π

y(eyπ –e–yπ ) and the fact that Φ(x, 0) = x is
the solution of the initial problem (2) and (3). Hence the statement (B) in Theorem 1 is
proved.

Using the fact that Φ(x, a) is a continuous function of a ([15], Lemma 1, p. 253)
and taking (14) into consideration, according to the definition of L in (98), we obtain
limx→∞ Φ(x, 1

π
) = π

2 , which gives the proof of statement (C) in Theorem 1.
The proof of Theorem 1 is now completed. �

3 Uniform asymptotics and proofs of the lemmas
Make the scaling

ξ = x, η = xλ, (30)

so that (18) becomes

∂Ψ

∂η
=

(
i
8ξ + 1

4η
+ ξ

η2 z u
η

+ ξ

η2 q
v
η

+ ξ

η2 q –( i
8ξ + 1

4η
+ ξ

η2 z)

)

Ψ . (31)

Let (Ψ1,Ψ2)T be an independent solution of (31), and set

φ =
(

v
η

+
ξ

η2 q
)– 1

2
Ψ2, (32)

we get from (3) the second-order linear differential equation for φ(η)

d2φ

dη2 =
{
ξ 2

(
i
8

+
z
η2

)2

+
ξ

2η

(
i
8

+
z
η2

)
+

1
16η2 + ξ 2 q2

η4 +
1
η2

[
uv +

ξ

η
q(u + v)

]

+
1

4η2 + ξ
2z
η3 – ξ

1
η

(
i
8

+
z
η2

)
l1 –

1
4η2 l1 +

3
4η2 l2

1 –
1
η2 l2

}
φ, (33)

where

l1 =
v + 2ξ

η
q

v + ξ

η
q

, l2 =
v + 3ξ

η
q

v + ξ

η
q

. (34)

From (20) it is easy to verify that

z2 + q2 = –
1

64
, q(u + v) =

i
8(h – 1)

. (35)

Substituting (35) into (33) yields

d2φ

dη2 =
{

–
ξ 2

64

(
1 –

1
η2

)2

+
ξ 2

64η2 (16iz – 2) +
ξ

2η

(
i
8

+
z
η2

)
–

ξ

η

(
i
8

+
z
η2

)
l1
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+
uv
η2 + ξ

2z
η3 +

iξ
8η3(h – 1)

+
1
η2

(
5

16
–

1
4

l1 +
3
4

l2
1 – l2

)}
φ. (36)

3.1 Proof of Lemma 1
To prove Lemma 1, we need several lemmas. First, we need to construct the uniform
asymptotics solution of equation (36) as ξ → ∞ for a > 1

π
. When a > 1

π
, according to

[15], (A.71), the solution of boundary value problem (2)–(3) has the following asymptotic
expansion:

Φ ′(ξ , a) = –1 +
ϕ(S)
ξ

+ O
(
ξ–2), as ξ → ∞, (37)

where ϕ(S) = sin 4S + 2k2 sin2 2S with S = 1
2Φ(ξ , a).

It follows from the expression of h in (10) that

h(ξ ) = cos2 S
(

1 –
ϕ(S) tan2 S

2ξ
+ O

(
ξ–2)

)
, as ξ → ∞. (38)

From (38) and (20), we obtain the following asymptotic behaviors as ξ → ∞:

z =
i
8

(
1 + 2 cot2 S –

ϕ(S) csc2 S
ξ

+ O
(
ξ–2)

)
, (39)

uv =
ξ 2

16 sin2 S

(
1 –

2 tan S + ϕ(S)(1 + 1
2 tan2 S)

ξ
+ O

(
ξ–2)

)
, (40)

q
v

=
i cot S

ξ

(
1 + O

(
ξ–1)), (41)

qv = –
iξ cot S

16 sin2 S
(
1 + O

(
ξ–1)). (42)

Then, for large ξ , substituting (39), (40), and (41) into (36), a straightforward calculation
gives

d2φ

dη2 = –ξ 2F(ξ ,η)φ, (43)

where

F(ξ ,η) =
1

64

(
1 –

1
η2

)2

+
F1(ξ ,η)

ξ
+ F2(η)O

(
1
ξ 2

)
, (44)

here

F1(ξ ,η) =
k2

4η2 +
i

8η

(
1 –

1
η2

)(
1
2

+
1

bη – 1

)
(45)

with b = i tan S, and

F2(η) =
1
η2 +

1
η3 . (46)
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For large ξ , it follows from equation (43) that there are two coalescing turning points near
η = 1 and two close to η = –1. In the present paper, we are only concerned with the two
turning points, say η1 and η2, near η = 1. When ηj approach 1, it follows from (45) that

F1(ξ , 1) ∼ k2

4
. (47)

By using (43) and (47), we get the asymptotic formulas for the two turning points

η–1
j = 1 ± 2ξ–1/2

√
k2

(
1 + o(1)

)
, j = 1, 2, (48)

which coalesce to 1 when ξ → ∞, and the Stokes curves defined by

	
(

ξ

(
η +

1
η

))
= 0. (49)

Assume that ξ ∈ R
+, then it follows from (49) that the Stokes lines of the solution φ to (43)

are the positive and the negative real lines in the η plane.
According to the philosophy of uniform asymptotics in [1], we define a number α by

1
2
π iα2 =

∫ α

–α

(
τ 2 – α2)1/2 dτ =

∫ η2

η1

F1/2(ξ , s) ds, (50)

and a new variable ζ by

∫ ζ

α

(
τ 2 – α2)1/2 dτ =

∫ η

η2

F1/2(ξ , s) ds. (51)

Here and in (50), the cut for the integrand on the left-hand side is the line segment joining
–α and α. The path of integration is taken along the upper edge of the cut. With α and ζ

so chosen, the following lemma is a result from [1], Theorem 1.

Lemma 3 Given any solution φ(η, ξ ) of (43), there exist constants c1, c2 such that, uniformly
for η on the Stokes cures defined by (49), as ξ → +∞,

φ(η, ξ ) =
(

ζ 2 – α2

F(ξ ,η)

) 1
4 {[

c1 + o(1)
]
Dν

(
eπ i/4

√
2ξζ

)

+
[
c2 + o(1)

]
D–ν–1

(
e–π i/4

√
2ξζ

)}
, (52)

where Dν(z) and D–ν–1(z) are solutions of the parabolic cylinder equation and ν is defined
by

ν = –
1
2

+
1
2

iξα2 (53)

The next thing to do in calculating the connection matrix Q as ξ → +∞ is to clarify the
relation between ζ and η in (51).
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Lemma 4 For large ξ and η,

1
2
ζ 2 =

α2

2
ln ζ +

1
8

(
η +

1
η

)
–

1
4

+
i

4ξ
lnη –

i
2ξ

ln
(
1 – b–1) + o

(
ξ–1), (54)

where b = i tan S, and

α2 = –
k2

ξ
+ o

(
1
ξ

)
as ξ → ∞. (55)

Remark 1 Coupling (53) and (55) determines the approximate value

ν = –
ik2

2
–

1
2

+ o(1) as ξ → +∞ (56)

for the order of the parabolic cylinder function Dν(eπ i/4√2ξζ ) in (52).

Proof The idea to prove Lemma 4 is to compute the asymptotic behavior of the integrals
on the two sides of (51). A straightforward integration on the left-hand side of (51) yields

∫ ζ

α

(
τ 2 – α2)1/2 dτ =

1
2
{
ζ
(
ζ 2 – α2)1/2 – α2 ln

(
ζ +

(
ζ 2 – α2)1/2) + α2 lnα

}
. (57)

Here, the cut for the integrand is again the line segment joining –α and α, and again we
take the integration path along the upper edge of the cut. Because we are going to calculate
the higher-order part of the both sides of (51), we will simply ignore the lower-order part
in two sides, then we obtain that from (57) for large ζ

1
2
ζ 2 –

1
2
α2 ln(2ζ ) –

1
4
α2 +

1
2
α2 ln(α) + O

(
α4ζ –2) =

∫ η

η2

F1/2(ξ , s) ds. (58)

To calculate the right-hand side of (58), we split the right-hand side into two integrals
respectively:

∫ η

η2

F1/2(ξ , s) ds =
(∫ η∗

η2

+
∫ η

η∗

)
F1/2(ξ , s) ds := I1 + I2, (59)

where

η∗ = 1 + 2Tξ–1/2, (60)

and T is a large parameter to be specified more precisely later. In I1 we take the change
s = 1 + 2tξ–1/2, and ignore F2, then I1 can be evaluated for large ξ as follows:

I1 =
T2

2ξ
+

k2

4ξ
+

k2

2ξ
ln(2T) –

k2

4ξ
ln

(
–k2) + o

(
ξ–1). (61)

Taking T = –
√

–k2 in I1, we obtain (55).
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When |η| → ∞, it follows from (46) that F2 = O(η–2), thus we can ignore F2 in the inte-
gral I2 in (59), by the binomial expansion, then I2 is given by

I2 ≈
∫ η

η∗

1
8

(
1 –

1
s2

)
ds +

4
ξ

∫ η

η∗

F1(ξ , s)
1 – 1

s2
ds (62)

with the error term o(ξ–1).
Since

4F1(ξ , s)
1 – 1

s2
=

k2/2
s – 1

–
k2/2
s + 1

–
i/4
s

+
ib/2

bs – 1
, (63)

then the second term in (62) is equal to

4
ξ

∫ η

η∗

F1(ξ , s)
1 – 1

s2
ds =

1
ξ

{
i
4

lnη –
k2

2
ln

(
2Tξ– 1

2
)

+
k2

2
ln 2 –

i
2

ln
(
1 – b–1)

+ O
(
η–1) + O

(
Tξ– 1

2
)
}

(64)

whilst the first term in I2 is equal to

∫ η

η∗

1
8

(
1 –

1
s2

)
ds =

1
8

(
η +

1
η

)
–

1
4

–
T2

2ξ
+ O

(
T3ξ– 3

2
)
. (65)

Combining (59), (61), (62), (64), and (65) yields

∫ η

η2

F1/2(ξ , s) ds =
1
8

(
η +

1
η

)
–

1
4

+
k2

4ξ
+

i
4ξ

lnη –
i

2ξ
ln

(
1 – b–1) +

k2

2ξ
ln 2

–
k2

2ξ
ln

√
–k2

ξ 1/2 + O
(
T3ξ– 3

2
)

+ O
(
Tξ–2) + o

(
ξ–1) (66)

and so, choosing T < ξ
1
6 and using (55) and (58), we obtain (54), which completes the proof

of Lemma 4. �

Lemma 5 When η → 0, for large ξ , such that ξη = o(1), the following holds:

1
2
ζ 2 =

α2

2
ln ζ +

1
8

(
η +

1
η

)
–

1
4

–
i

4ξ
lnη –

i
2ξ

ln(1 – b) –
1
2
π iα2 + o

(
ξ–1). (67)

Proof The idea to prove Lemma 5 is to compute the asymptotic behavior of the integral
on the right-hand side integral in (58). When η → 0, let η∗ = 1 – 2Tξ– 1

2 , where T is a large
parameter, and split the right-hand side integral in (58) into two parts:

∫ η

η2

F1/2(ξ , s) ds =
(∫ η∗

η2

+
∫ η

η∗

)
F1/2(ξ , s) ds = J1 + J2. (68)

The integral J1 can be calculated by the similar manner as in computing I1 (61), it follows
that

J1 =
T2

2ξ
+

k2

4ξ
+

k2

2ξ
ln(–2T) –

k2

4ξ
ln

(
–k2) + O

(
ξ–1T–2) + O

(
Tξ–2). (69)
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For the second integral J2, according to the expressions of F1 and F2 in (45) and (46), re-
spectively, we have F1 ∼ η–3, F2(ξ ,η) ∼ η–3 as η → 0. Thus we have

J2 =
∫ η

η∗

[
1

64

(
1 –

1
s2

)2

+
1
ξ

F1(ξ , s) + s–3O
(
ξ–2)

] 1
2

ds

=
∫ η

η∗

1
8

(
1 –

1
s2

)
ds +

4
ξ

∫ η

η∗

F1(ξ , s)
1 – 1

s2
ds + O

(
ξ–2 lnη

)
+ O

(
ξ–1T–2) + O

(
ξ–3/2T–1)

=
1
8

(
η +

1
η

)
–

1
4

–
i

4ξ
lnη –

i
2ξ

ln(1 – b) +
k2

2ξ
ln 2 –

k2

2ξ
ln

(
2Tξ 1/2)

–
T2

2ξ
+ O

(
T3ξ– 3

2
)

+ O
(
Tξ–2) + o

(
ξ–1). (70)

Combining (68), (69), and (70) and choosing T < ξ
1
6 , we have

∫ η

η2

F1/2(ξ , s) ds =
1
8

(
η +

1
η

)
–

1
4

+
k2

4ξ
–

i
4ξ

lnη –
i

2ξ
ln(1 – b) +

k2

2ξ
ln 2

–
1
2
π iα2 –

k2

4ξ
ln

–k2

ξ
+ o

(
ξ–1). (71)

Substituting this into (58) yields (67). The proof is completed. �

We are now turning to the proof of Lemma 1.

Proof of Lemma 1 We will concentrate on evaluating the connection matrix Q, for which
we need the uniform asymptotic behaviors of φ. From the definition of Q (26) it follows
that

Ψ
(∞)

21 = (Q)11Ψ
(0)

21 + (Q)21Ψ
(0)

22 . (72)

Hence, the first task is to find the expressions of Ψ
(∞)

21 ,Ψ (0)
21 , and Ψ

(0)
22 , respectively. For large

ξ , it follows from Lemma 3 that two linearly independent asymptotic solutions of equation
(43) are φ̃ν and φ̃–ν–1 which are uniform with respect to η on the Stokes curves. Here

φ̃ν =
(

ζ 2 – α2

F(ξ ,η)

) 1
4

Dν

(
eπ i/4

√
2ξζ

)
(73)

and

φ̃–ν–1 =
(

ζ 2 – α2

F(ξ ,η)

) 1
4

D–ν–1
(
e–π i/4

√
2ξζ

)
. (74)

By virtue of (32), we have

Ψ
(∞)

21 =
(

v
η

+
ξq
η2

)1/2

(f1φ̃ν + f2φ̃–ν–1), (75)

where fj (j = 1, 2) are undetermined constants which can be determined by (23).
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Similarly, we obtain

Ψ
(0)

21 =
(

v
η

+
ξq
η2

)1/2

(δ1φ̃ν + δ2φ̃–ν–1), (76)

Ψ
(0)

22 =
(

v
η

+
ξq
η2

)1/2

(δ3φ̃ν + δ4φ̃–ν–1), (77)

where δj (j = 1, 2, 3, 4) are undetermined constants which can be determined by (24).
Substituting (75), (76), and (77) into (72), then comparing with the coefficients of φ̃ν and

φ̃–ν–1, respectively, we get

⎧
⎨

⎩
δ1(Q)11 + δ3(Q)21 = f1,

δ2(Q)11 + δ4(Q)21 = f2,

which gives us that

(Q)21 =
δ1f2 – δ2f1

δ1δ4 – δ2δ3
. (78)

To calculate f1, f2, and δj (j = 1, . . . , 4), we proceed as follows. We shall be interested in
finding the asymptotic behavior of φ̃ν and φ̃–ν–1 in (73) (74) for η on the Stokes line argη = 0
as η → ∞ and η → 0, respectively. Then, substituting the obtained results into (75), (76),
and (77), we will obtain the asymptotic behavior of Ψ

(∞)
21 , Ψ (0)

21 , and Ψ
(0)

22 , respectively, which
contain the constants f1, f2, and δj (j = 1, . . . , 4). Combining with the boundary conditions
(23) and (24) for Ψ (∞) and Ψ (0), one can determine the constants f1, f2, and δj (j = 1, . . . , 4).

From [13], we have the asymptotic behavior of Dν(z) for |z| → ∞ as follows:

Dν(z) ∼

⎧
⎪⎪⎨

⎪⎪⎩

zνe– 1
4 z2 , arg z ∈ (– 3

4π , 3
4π ),

zνe– 1
4 z2 –

√
2π

Γ (–ν) eiπνz–ν–1e 1
4 z2 , arg z = 3

4π ,

e–2π iνzνe– 1
4 z2 –

√
2π

Γ (–ν) eiπνz–ν–1e 1
4 z2 , arg z = 5

4π .

(79)

For η on the Stokes line argη = 0 and η → ∞, from (54) it immediately follows that ζ 2 ∼
1
4η, then we have arg ζ ∼ 0. Therefore, arg(eπ i/4√2ξζ ) ∼ π

4 and arg(e–π i/4√2ξζ ) ∼ – π
4 for

ξ > 0. From (43) we have F–1/4 ∼ 2 3
2 as η → ∞ for large ξ . Since (ζ 2 – α2)1/4 ∼ ζ 1/2 as

η → ∞, by using the appropriate asymptotic formulas of Dν(z) in (79), we obtain from
(73) and (54) that

φ̃ν ∼ A0η
1
4 e– 1

8 iξη, as η → ∞, (80)

from (53), we have

A0 = 2
ν+3

2 e
π i
4 νe

1
4 ξ+ ν

2 ln ξ
(
1 – b–1)– 1

2 . (81)

Similarly, from (74) and (54) it follows that

φ̃–ν–1 ∼ B0η
– 1

4 e
1
8 iξη, as η → ∞, (82)
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where

B0 = 21– ν
2 e

π i
4 (ν+1)e– i

4 ξ– ν+1
2 ln ξ

(
1 – b–1) 1

2 . (83)

Substituting (80) and (82) into (75) yields

Ψ
(∞)

21 (η) ∼ v
1
2 η– 1

2
(
f1A0η

1
4 e– 1

8 iξη + f2B0η
– 1

4 e
1
8 iξη

)
as η → ∞. (84)

Moreover, it has the asymptotic behavior prescribed in (23) when η → ∞. Thus, we have

v
1
2 η– 1

2
(
f1A0η

1
4 e– 1

8 iξη + f2B0η
– 1

4 e
1
8 iξη

) ∼ –
d

2iτ
vλ– 3

4 exp(–iτλ). (85)

Comparing the coefficients of e 1
8 iξη and e– 1

8 iξη on both sides of the above asymptotic equa-
tion, we get

f1 = 0, f2 = –i22ξ– 5
4 dv

1
2 B–1

0 . (86)

For η on the Stokes line argη = 0 and η → 0, from (67) it immediately follows that ζ 2 ∼ 1
4η

,
then we have arg ζ ∼ π . Therefore, arg(eπ i/4√2ξζ ) ∼ 5π

4 and arg(e–π i/4√2ξζ ) ∼ 3π
4 for

ξ > 0. From (43) we have F–1/4 ∼ 2 3
2 η as η → 0 for large ξ . Since (ζ 2 – α2)1/4 ∼ ζ 1/2 as

η → 0, by using the appropriate asymptotic formulas of Dν(z) in (79), we obtain from (73)
and (67) that

φ̃ν ∼ η

(
C0η

– 1
4 e– i

8η ξ –
√

2π

Γ (–ν)
eiπνD0η

1
4 e

i
8η ξ

)
, as η → 0, (87)

where

C0 = 2
ν+3

2 exp

(
5π i

4
ν +

1
2
π i

)
exp

(
i
4
ξ +

ν

2
ln ξ

)
(1 – b)– 1

2 , (88)

D0 = 21– ν
2 exp

(
–

5π i
4

ν –
3
4
π i

)
exp

(
–

i
4
ξ –

ν + 1
2

ln ξ

)
(1 – b)

1
2 . (89)

Similarly, from (74) and (67) it follows that

φ̃–ν–1 ∼ η

(
D0e

π i
2 (ν+1)η

1
4 e

i
8η ξ –

√
2π

Γ (ν + 1)
e– 3π i

2 ν–π iC0η
– 1

4 e– i
8η ξ

)
, as η → 0. (90)

Substituting (87) and (90) into (76) and (77), respectively, we obtain

Ψ
(0)

21 ∼ ξ
1
2 q

1
2

[(
δ1 – δ2

√
2π

Γ (ν + 1)
e– 3π i

2 ν–π i
)

C0η
– 1

4 e– i
8η ξ

+
(

δ2e
π i
2 (ν+1) – δ1

√
2π

Γ (–ν)
eπ iν

)
D0η

1
4 e

i
8η ξ

]
, as η → 0, (91)

Ψ
(0)

22 ∼ ξ
1
2 q

1
2

[(
δ3 – δ4

√
2π

Γ (ν + 1)
e– 3π i

2 ν–π i
)

C0η
– 1

4 e– i
8η ξ
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+
(

δ4e
π i
2 (ν+1) – δ3

√
2π

Γ (–ν)
eπ iν

)
D0η

1
4 e

i
8η ξ

]
, as η → 0. (92)

By using the boundary condition (24), we have

d̃√
h – 1

λ
1
4 e

i
8λ ∼ ξ

1
2 q

1
2

[(
δ1 – δ2

√
2π

Γ (ν + 1)
e– 3π i

2 ν–π i
)

C0η
– 1

4 e– i
8η ξ

+
(

δ2e
π i
2 (ν+1) – δ1

√
2π

Γ (–ν)
eπ iν

)
D0η

1
4 e

i
8η ξ

]
, (93)

–i
√

h
d̃
√

h – 1
λ– 1

4 e– i
8λ ∼ ξ

1
2 q

1
2

[(
δ3 – δ4

√
2π

Γ (ν + 1)
e– 3π i

2 ν–π i
)

C0η
– 1

4 e– i
8η ξ

+
(

δ4e
π i
2 (ν+1) – δ3

√
2π

Γ (–ν)
eπ iν

)
D0η

1
4 e

i
8η ξ

]
. (94)

From (93) and (94) it follows that

δ2

δ1
=

e 3π i
2 ν+π iΓ (ν + 1)√

2π
,

δ4

δ3
=

√
2πe π i

2 (ν–1)

Γ (–ν)
, δ3 =

–i
√

h
d̃
√

h–1
ξ– 1

4 q– 1
2 C–1

0

1 – 2πe–π iν– 3
2 π i

Γ (–ν)Γ (ν+1)

. (95)

Substituting (86) and (95) into (78) yields

(Q)21 = –
√

2πe– 3π i
2 ν–π i

Γ (ν + 1)
22 dd̃ξ–1(qv)

1
2 B–1

0 C0

√
h – 1√

h

=
2– 1

4
√

πe– πβ
4

Γ ( 1
2 – i β

2 )
exp

(
iS +

i
2
ξ –

iβ
2

ln ξ –
iβ
2

ln 2 +
3π i

4

)(
1 + O

(
ξ–1)), (96)

where β = k2. This completes the proof of Lemma 1. �

3.2 Proof of Lemma 2
For the case of a < 1

π
, we apply the result [15] (A.44)

Φ ′(ξ , a) = 1 +
2r2

ξ
sin2(2S) + O

(
ξ–2), as ξ → ∞, (97)

where S = 1
2Φ(ξ , a) and a ∈ L, here L is defined as follows:

L =
{

a|Φ(x) = Φ(x, a) is increasing as x → ∞,∃x > 0,Φ(x, a) >
π

2

}
. (98)

By the same argument of approximating equation (36) in the last subsection, after a careful
calculation, we obtain that

d2φ

dη2 = –ξ 2F̃(ξ ,η)φ, (99)

where

F̃(ξ ,η) =
1

64

(
1 –

1
η2

)2

+
1
ξ

[
–

1
4η2

(
r2 –

i
η

)
+

i
8η

(
1 –

1
η2

)(
1
2

–
1

bη – 1

)]
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+ F2(η)O
(

1
ξ 2

)
, (100)

with b = i tan S, and F̃2(η) = 1 + 1
η2 + 1

η3 . We note that there are two coalescing turning
points near 1 and two close to –1. Here we will only consider the two turning points, say
η̂1 and η̂2, near 1. When η̂j approach to 1, by using (43), we get the asymptotic formulas
for the two turning points:

η̂–1
j = 1 ± 2ξ–1/2

√
r2 – i

(
1 + o(1)

)
, j = 1, 2, (101)

which coalesce to 1 when ξ → ∞, and the Stokes curves are defined by 	(ξ (η + 1
η

)) = 0.
Assume that ξ ∈ R

+, then the Stokes lines of the solution φ to (99) are the positive and the
negative real lines in the η plane. Similar to (50) and (51), if we define α̂ and ϑ(η) by

1
2
π iα̂2 =

∫ α̂

–α̂

(
τ 2 – α2)1/2 dτ =

∫ η̂2

η̂1

F1/2(ξ , s) ds (102)

and

∫ ϑ

α

(
τ 2 – α2)1/2 dτ =

∫ η

η2

F1/2(ξ , s) ds, (103)

respectively, then we have the following lemma which is similar to Lemma 3.

Lemma 6 There exist constants ĉ1, ĉ2 such that

φ(η, ξ ) =
(

ϑ2 – α2

F̃(ξ ,η)

) 1
4 {[

ĉ1 + o(1)
]
Dν

(
eπ i/4

√
2ξϑ

)

+
[
ĉ2 + o(1)

]
D–ν–1

(
e–π i/4

√
2ξϑ

)}
, (104)

as ξ → +∞ uniformly for η on the Stokes cures, where Dν(z) and D–ν–1(z) are solutions of
the parabolic cylinder equation, and ν is defined by ν = – 1

2 + 1
2 iξ α̂2.

Moreover, by an argument similar to the one used in Lemma 4, we obtain the asymptotic
behaviors of ϑ(η) as η → +∞ and η → 0 for large ξ , and we state those results as follows
without proof.

Lemma 7 For large ξ and η,

1
2
ϑ2 =

α2

2
lnϑ +

1
8

(
η +

1
η

)
–

1
4

+
i

4ξ
lnη +

i
2ξ

ln
(
1 – b–1) –

i
ξ

ln 2 + o
(
ξ–1), (105)

where b = i tan S, and

α̂2 =
r2 – i

ξ
+ o

(
1
ξ

)
as ξ → ∞. (106)
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Remark 2 By using of the definition of ν in Lemma 6 and (106), we get the approximate
value

ν =
ir2

2
+ o(1), as ξ → +∞ (107)

for the order of the parabolic cylinder function Dν(eπ i/4√2ξϑ) in (104).

Lemma 8 When η → 0, for large ξ such that ξη = o(1), the following holds:

1
2
ϑ2 =

ϑ2

2
lnϑ +

1
8

(
η +

1
η

)
–

1
4

–
i

4ξ
lnη +

i
2ξ

ln(1 – b)

–
i
ξ

ln 2 –
1
2
π iα2 + o

(
ξ–1). (108)

The proofs of those lemmas are analogous to those in Lemma 4 and will not be included
here. Now we are in a position to prove Lemma 2.

Proof of Lemma 2 Based on Lemmas 6, 7, and 8, by suitable modification to the proof of
Lemma 1, we can show that the entry (2, 1) of the connection matrix Q as ξ → +∞ for
a < 1

π
has the asymptotic behavior

(Q)21 =
ir2– 3

4
√

πe– π i
2 ν

Γ (ν + 1)
exp

(
–iS + i

1
2
ξ + ν ln ξ + ν ln 2

)
(
1 + O

(
ξ–1)). (109)

Substituting (107) into (109) and denoting β = r2, we obtain (29). This completes the proof
of Lemma 2. �
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