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Abstract
In this article, we study the existence result for a boundary value problem (BVP) of
hybrid fractional sequential integro-differential equations. A fixed point theorem
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1 Introduction
Fractional calculus is a branch of mathematics which investigates the properties of inte-
grals and derivatives of non-integer order. These integrals and derivatives of non-integer
order are called fractional integrals and derivatives. The potential of fractional calculus
has drawn the attention of applied scientists, engineers, and other researchers. Also the-
oretical scientists or researchers are interested in the field of fractional derivatives and
fractional integration. Chronologically, in [2] we can find different approaches of frac-
tional calculus proposed by Liouville, Euler, Fourier, Riemann, Abel, etc. We can find some
relevant work on fractional calculus in a series of papers [3–28].

In the area of fractional calculus, several researchers have studied hybrid fractional dif-
ferential equations, see [1, 29–32] and the references therein. Recently in [33], the authors
developed an existence result for a boundary value problem of hybrid fractional differen-
tial equations of the form

⎧
⎨

⎩

Dα( φ(t)–ψ(t,φ(t))
θ (t,φ(t)) ) = ϕ(t,φ(t)), t ∈ [0, 1],α ∈ (1, 2],

[ φ(t)–ψ(t,φ(t))
θ (t,φ(t)) ]|t=0 = 0, [ φ(t)–ψ(t,φ(t))

θ (t,φ(t)) ]|t=1 = 0,

where θ ∈ C(J×R,R \ {0}), ψ ,ϕ ∈ C(J×R,R).
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In [34], Sitho derived an existence result for an initial value problem of hybrid fractional
sequential integro-differential equations of the form

⎧
⎨

⎩

Dα[ Dωu(t)–
∑m

i=1 Iβi fi(t,u(t))
g(t,u(t)) ] = h(t, u(t), Iγ u(t)), t ∈ [0, T],

u(0) = 0, Dωu(0) = 0,
(1)

where Dα , Dω denote the Riemann–Liouville fractional derivatives of order α, ω respec-
tively and 0 < α,ω ≤ 1.

In this article, we study the existence result for the boundary value problem of hybrid
fractional sequential integro-differential equations involving Caputo derivatives given by

⎧
⎨

⎩

cDα[
cDωu(t)–

∑m
i=1 Iβi fi(t,u(t))

g(t,u(t)) ] = h(t, u(t), Iγ u(t)), t ∈ J = [0, 1],

u(0) = 0, Dωu(0) = 0, u(1) = δu(η), 0 < δ < 1, 0 < η < 1,
(2)

where cDα is the Caputo fractional derivative of order α, cDω is the Caputo fractional
derivative of order ω, 0 < α ≤ 1, 1 < ω ≤ 2, Iγ denotes the Riemann–Liouville fractional
integral of order γ > 0, Iβi denotes the Riemann–Liouville fractional sequential integrals
of order βi > 0, g ∈ C(J×R,R \ {0}), h ∈ C(J×R2,R) and fi ∈ C(J×R,R) with fi(0, 0) = 0,
i = 1, 2, . . . , m.

In comparison to problem (1), our considered BVP (2) is more general than the problem
studied in [34], as we consider a problem with three point boundary conditions, while
the authors in [34] investigated an initial value problem. Moreover, in our problem the
fractional orders of derivatives are 0 < α ≤ 1 and 1 < ω ≤ 2, whereas in problem (1) the
fractional orders are 0 < α,ω ≤ 1.

We obtain an existence result for the boundary value problem (2) in Sect. 3 by using
generalized Krasnoselskii’s fixed point theorem provided by Dhage in [1].

2 Preliminaries
This section provides some important definitions of fractional calculus [2, 35, 36] and
results of fixed point theory [1, 20, 21], which is base for the forthcoming sections.

Definition 1 The Caputo fractional derivative of positive real order ω > 0 of a function
u(t) is given by

cDωu(t) =
1

Γ (n – ω)

∫ t

0

u(n)(s)
(t – s)ω–n+1 ds, ω > 0,

provided that the integral on the right-hand side exists.

Definition 2 The Riemann–Liouville fractional derivative of positive real order ω > 0 of
a function u(t) is given by

Dωu(t) =
1

Γ (n – ω)
dn

dtn

∫ t

0

u(s)
(t – s)ω–n+1 ds, ω > 0,

provided that the integral on the right-hand side exists.
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Definition 3 The Riemann–Liouville fractional integral of positive real order ω > 0 of a
function u(t) is given by

Iωu(t) =
1

Γ (ω)

∫ t

0
(t – s)ω–1u(s) ds, ω > 0,

provided that the integral on the right-hand side exists.

Remark 1 For Definitions 1–3, n = [ω] + 1, [ω] is the greatest integer less than ω and Γ is
the gamma function defined by Γ (ω) =

∫ ∞
0 e–ssω–1 ds.

Property 1 ([36]) Let β ,ω > 0 and u(t) be a function, then the semi-group property for
the Riemann–Liouville fractional integrals of orders β and ω respectively is given by

Iβ
[
Iωu(t)

]
= Iβ+ωu(t).

Next we present two important results as lemmas which we need later.

Lemma 1 ([37]) For u ∈ C(0, T)∩L(0, T), the solution of the Caputo fractional differential
equation

cDωu(t) = g(t), n – 1 < ω < n,

is given by

u(t) = Iωg(t) +
n–1∑

i=0

kiti,

or

u(t) = Iωg(t) + k0 + k1t + · · · + kn–1t,

where n = [ω] + 1, [ω] is the greatest integer less than ω.

Let E = C(J,R) be the Banach space of continuous real-valued functions defined on J =
[0, 1]. We define a norm ‖·‖ and a multiplication in E by ‖u‖ = supt∈J |u(t)| and (uv)(t) =
u(t)v(t), ∀t ∈ J. Then clearly E is a Banach algebra with above defined supremum norm
and multiplication in it.

Lemma 2 ([1]) Let S be a nonempty, convex, closed, and bounded set such that S ⊆ E, and
let A : E → E and B : S → E be two operators which satisfy the following:

(c1) A is contraction,
(c2) B is compact, and
(c3) u = Au + Bv ∀v ∈ S 
⇒ u ∈ S.

Then there exists a solution of the operator equation u = Au + Bu.
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3 Solution existence of hybrid fractional sequential integro-differential
equations

In this section, we consider the hybrid fractional sequential integro-differential equation
boundary value problem (2). First we derive its solution and then discuss the existence of
solution using the above stated definitions and results of the preliminary section.

Lemma 3 Suppose that 0 < α ≤ 1, 1 < ω ≤ 2, γ > 0, and functions g , h, fi, i = 1, 2, . . . , m,
satisfy BVP (2). Then the unique solution of BVP (2) is given by

u(t) =
∫ t

0

(t – s)ω–1

Γ (ω)
g
(
s, u(s)

)
∫ s

0

(s – μ)α–1

Γ (α)
h
(
μ, u(μ), Iγ u(μ)

)
dμds

+
m∑

i=1

Iβi+ωfi
(
t, u(t)

)

+
t

δη – 1

[∫ 1

0

(1 – s)ω–1

Γ (ω)
g
(
s, u(s)

)
∫ s

0

(s – μ)ω–1

Γ (α)
h
(
μ, u(μ), Iγ u(μ)

)
dμds

+
m∑

i=1

Iβi+ωfi
(
1, u(1)

)

– δ

(∫ η

0

(η – s)ω–1

Γ (ω)
g
(
s, u(s)

)
∫ s

0

(s – μ)ω–1

Γ (α)
h
(
μ, u(μ), Iγ u(μ)

)
dμds

+
m∑

i=1

Iβi+ωfi
(
η, u(η)

)
)]

, (3)

where

Iβi+ωfi
(
t, u(t)

)
=

∫ t

0

(t – s)βi+ω–1

Γ (βi + ω)
fi
(
s, u(s)

)
ds,

Iβi+ωfi
(
1, u(1)

)
=

∫ 1

0

(1 – s)βi+ω–1

Γ (βi + ω)
fi
(
s, u(s)

)
ds,

and

Iβi+ωfi
(
η, u(η)

)
=

∫ η

0

(η – s)βi+ω–1

Γ (βi + ω)
fi
(
s, u(s)

)
ds.

Proof Assigning the Riemann–Liouville fractional integral operator of order α to hybrid
fractional sequential integro-differential equations (2) and using Lemma 1, we have

cDωu(t) –
∑m

i=1 Iβi fi(t, u(t))
g(t, u(t))

= Iαh
(
t, u(t), Iγ u(t)

)
+ k0. (4)

In view of the initial conditions u(0) = 0, Dωu(0) = 0 of problem (2) with fi(0, 0) = 0, we
have k0 = 0, and then equation (4) takes the form

cDωu(t) = g
(
t, u(t)

)
∫ t

0

(t – s)α–1

Γ (α)
h
(
s, u(s), Iγ u(s)

)
ds +

m∑

i=1

Iβi fi
(
t, u(t)

)
. (5)
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Now assigning the Riemann–Liouville fractional integral operator of order ω to equation
(5) and using Lemma 1 with semi-group Property 1, we have

u(t) =
∫ t

0

(t – s)ω–1

Γ (ω)
g
(
s, u(s)

)
∫ s

0

(s – μ)α–1

Γ (α)
h
(
μ, u(μ), Iγ u(μ)

)
dμds

+
m∑

i=1

Iβi+ωfi
(
t, u(t)

)
+ k1 + k2t. (6)

The initial condition u(0) = 0 of problem (2) gives k1 = 0, for which equation (6) becomes

u(t) =
∫ t

0

(t – s)ω–1

Γ (ω)
g
(
s, u(s)

)
∫ s

0

(s – μ)α–1

Γ (α)
h
(
μ, u(μ), Iγ u(μ)

)
dμds

+
m∑

i=1

Iβi+ωfi
(
t, u(t)

)
+ k2t, (7)

and then the boundary condition u(1) = δu(η) of problem (2) gives

k2 =
1

δη – 1

[∫ 1

0

(1 – s)ω–1

Γ (ω)
g
(
s, u(s)

)
∫ s

0

(s – μ)ω–1

Γ (α)
h
(
μ, u(μ), Iγ u(μ)

)
dμds

+
m∑

i=1

Iβi+ωfi
(
1, u(1)

)

– δ

(∫ η

0

(η – s)ω–1

Γ (ω)
g
(
s, u(s)

)
∫ s

0

(s – μ)ω–1

Γ (α)
h
(
μ, u(μ), Iγ u(μ)

)
dμds

+
m∑

i=1

Iβi+ωfi
(
η, u(η)

)
)]

,

for which equation (7) takes the form

u(t) =
∫ t

0

(t – s)ω–1

Γ (ω)
g
(
s, u(s)

)
∫ s

0

(s – μ)α–1

Γ (α)
h
(
μ, u(μ), Iγ u(μ)

)
dμds

+
m∑

i=1

Iβi+ωfi
(
t, u(t)

)

+
t

δη – 1

[∫ 1

0

(1 – s)ω–1

Γ (ω)
g
(
s, u(s)

)
∫ s

0

(s – μ)ω–1

Γ (α)
h
(
μ, u(μ), Iγ u(μ)

)
dμds

+
m∑

i=1

Iβi+ωfi
(
1, u(1)

)

– δ

(∫ η

0

(η – s)ω–1

Γ (ω)
g
(
s, u(s)

)
∫ s

0

(s – μ)ω–1

Γ (α)
h
(
μ, u(μ), Iγ u(μ)

)
dμds

+
m∑

i=1

Iβi+ωfi
(
η, u(η)

)
)]

.

Hence we obtain the unique solution of BVP (2). Thus the proof is completed. �
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For developing the existence result, we consider some assumptions which are the fol-
lowing.

(A1) The functions fi ∈ C(J × R,R), g ∈ C(J × R,R \ {0}), and h ∈ C(J × R2,R) are
continuous, and there exist positive functions λi(t), Θ(t), and ψ(t) with bounds ‖λi‖,
‖Θ‖, and ‖ψ‖ respectively such that

∣
∣fi

(
t, u(t)

)
– fi(t, v(t)

∣
∣ ≤ λi(t)

∣
∣u(t) – v(t)

∣
∣,

∣
∣g

(
t, u(t)

)
– g(t, v(t)

∣
∣ ≤ Θ(t)

∣
∣u(t) – v(t)

∣
∣,

and
∣
∣h

(
t, u(t), ū(t)

)
– h(t, v(t), v̄(t)

∣
∣ ≤ ψ(t)

(∣
∣u(t) – v(t)

∣
∣ +

∣
∣ū(t) – v̄(t)

∣
∣
)

for t ∈ J and u, v ∈R.
(A2) |fi(t, u)| ≤ φi(t), ∀(t, u) ∈ J × R, φi ∈ C(J,R+), i = 1, 2, 3, . . . , m, |h(t, u, v)| ≤ Ω(t),

∀(t, u, v) ∈ J×R×R, Ω ∈ C(J,R+), |g(t, u)| ≤ χ (t), ∀(t, u) ∈ J×R, χ ∈ C(J,R+).
(A3) There exists r > 0 such that

(

1 +
1 + δ

|δη – 1|
)[

‖χ‖‖Ω‖
Γ (α + 1)Γ (ω + 1)

+
m∑

i=1

‖φi‖
Γ (βi + ω + 1)

]

≤ r

and
(

1 +
1 + δ

|δη – 1|
)[‖Ω‖‖Θ‖ + ‖χ‖‖ψ‖

Γ (α + 1)Γ (ω + 1)
+

‖χ‖‖ψ‖
Γ (α + 1)Γ (ω + 1)Γ (γ + 1)

]

< 1. (8)

Our main existence result is based on generalized Krasnoselikii’s fixed point theorem by
Dhage [1], which we have provided in Lemma 2.

Theorem 2 Let assumptions (A1)–(A3) hold, then there exists at least one solution for BVP
(2) in J = [0, 1].

Proof First we set supt∈J |φi(t)| = ‖φi‖, supt∈J |λi(t)| = ‖λi‖, i = 1, 2, . . . , m, supt∈J |Θ(t)| =
‖Θ‖, supt∈J |ψ(t)| = ‖ψ‖, supt∈J |Ω(t)| = ‖Ω‖, and supt∈J |χ (t)| = ‖χ‖.

Now we consider E = C(J,R) and define S ⊆ E as

S =
{

u ∈ E : ‖u‖ ≤ r
}

.

Clearly S is a closed, convex, and bounded subset of the Banach space E. Let us define two
operators C : E −→ E and D : E −→ E such that

Cu(t) =
∫ t

0

(t – s)α–1

Γ (α)
h
(
s, u(s), Iγ u(t)

)
ds

and

Du(t) = g
(
t, u(t)

)
.

Then, using assumptions (A1), (A2) and proceeding with maximum over J, we have

∥
∥Cu(t) – Cv(t)

∥
∥ ≤ ‖ψ‖

Γ (α + 1)

(

1 +
1

Γ (γ + 1)

)

‖u – v‖, (9)



Jamil et al. Boundary Value Problems         (2019) 2019:77 Page 7 of 12

∥
∥Du(t) – Dv(t)

∥
∥ ≤ ‖Θ‖‖u – v‖, (10)

∥
∥Cu(t)

∥
∥ ≤ ‖Ω‖

Γ (α + 1)
(11)

and
∥
∥Du(t)

∥
∥ ≤ ‖χ‖. (12)

Now we define two more operators A : E −→ E and B : S −→ E such that

Au(t) =
∫ t

0

(t – s)ω–1

Γ (ω)
Du(s)Cu(s) ds +

t
δη – 1

∫ 1

0

(1 – s)ω–1

Γ (ω)
Du(s)Cu(s) ds

–
δt

δη – 1

∫ η

0

(η – s)ω–1

Γ (ω)
Du(s)Cu(s) ds, t ∈ J (13)

and

Bu(t) =
m∑

i=1

Iβi+ωfi
(
t, u(t)

)
+

t
δη – 1

m∑

i=1

Iβi+ωfi
(
1, u(1)

)

–
δt

δη – 1

m∑

i=1

Iβi+ωfi
(
η, u(η)

)
, t ∈ J,

or

Bu(t) =
m∑

i=1

∫ t

0

(t – s)βi+ω–1

Γ (βi + ω)
fi
(
s, u(s)

)
ds +

t
δη – 1

m∑

i=1

∫ 1

0

(1 – s)βi+ω–1

Γ (βi + ω)
fi
(
s, u(s)

)
ds

–
δt

δη – 1

m∑

i=1

∫ η

0

(η – s)βi+ω–1

Γ (βi + ω)
fi
(
s, u(s)

)
ds, t ∈ J . (14)

Then the integral equation (3) can be written in the operator form as follows:

u(t) = Au(t) + Bu(t), t ∈ J . (15)

We show that the two operators A and B in (15) satisfy all the conditions of Lemma 2. This
can be achieved in the following steps.

Step 1. First we show that A is a contraction mapping. Let u(t), v(t) ∈ S, then we have

∣
∣Au(t) – Av(t)

∣
∣

≤
∫ t

0

(t – s)ω–1

Γ (ω)
∣
∣Du(s)Cu(s) – Dv(s)Cv(s)

∣
∣ds

+
t

|δη – 1|
∫ 1

0

(1 – s)ω–1

Γ (ω)
∣
∣Du(s)Cu(s) – Dv(s)Cv(s)

∣
∣ds

+
δt

|δη – 1|
∫ η

0

(η – s)ω–1

Γ (ω)
∣
∣Du(s)Cu(s) – Dv(s)Cv(s)

∣
∣ds

≤
(

1 +
1

|δη – 1| +
δ

|δη – 1|
)∫ 1

0

(1 – s)ω–1

Γ (ω)
∣
∣Du(s)Cu(s) – Dv(s)Cv(s)

∣
∣ds

≤
(

1 +
1 + δ

|δη – 1|
)[∫ 1

0

(1 – s)ω–1

Γ (ω)
∣
∣Du(s)Cu(s) – Cu(s)Dv(s)
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+ Cu(s)Dv(s) – Dv(s)Cv(s)
∣
∣ds

]

≤
(

1 +
1 + δ

|δη – 1|
)[∫ 1

0

(1 – s)ω–1

Γ (ω)
∣
∣Cu(s)

∣
∣
∣
∣Du(s) – Dv(s)

∣
∣ds

+
∫ 1

0

(1 – s)ω–1

Γ (ω)
∣
∣Dv(s)

∣
∣
∣
∣Cu(s) – Cv(s)

∣
∣ds

]

,

which gives

∥
∥Au(t) – Av(t)

∥
∥ ≤

(

1 +
1 + δ

|δη – 1|
)[‖Ω‖‖Θ‖ + ‖χ‖‖ψ‖

Γ (α + 1)Γ (ω + 1)

+
‖χ‖‖ψ‖

Γ (α + 1)Γ (ω + 1)Γ (γ + 1)

]

‖u – v‖.

Hence by (8) the operator A is a contraction mapping.
Step 2. Next we show that the operator B satisfies condition (c2) of Lemma 2, that is,

the operator B is compact on S. Therefore first we show that the operator B is continuous
on S. Let {un(t)} be a sequence of functions in S converging to a function u(t) ∈ S. Then,
by the Lebesgue dominant convergence theorem, ∀t ∈ J, we have

lim
n→∞ Bun(t) = lim

n→∞

[ m∑

i=1

∫ t

0

(t – s)βi+ω–1

Γ (βi + ω)
fi
(
s, un(s)

)
ds

+
t

δη – 1

m∑

i=1

∫ 1

0

(1 – s)βi+ω–1

Γ (βi + ω)
fi
(
s, un(s)

)
ds

–
δt

δη – 1

m∑

i=1

∫ η

0

(η – s)βi+ω–1

Γ (βi + ω)
fi
(
s, un(s)

)
ds

]

=
m∑

i=1

∫ t

0

(t – s)βi+ω–1

Γ (βi + ω)
lim

n→∞ fi
(
s, un(s)

)
ds

+
t

δη – 1

m∑

i=1

∫ 1

0

(1 – s)βi+ω–1

Γ (βi + ω)
lim

n→∞ fi
(
s, un(s)

)
ds

–
δt

δη – 1

m∑

i=1

∫ η

0

(η – s)βi+ω–1

Γ (βi + ω)
lim

n→∞ fi
(
s, un(s)

)
ds

=
m∑

i=1

∫ t

0

(t – s)βi+ω–1

Γ (βi + ω)
fi
(
s, u(s)

)
ds

+
t

δη – 1

m∑

i=1

∫ 1

0

(1 – s)βi+ω–1

Γ (βi + ω)
fi
(
s, u(s)

)
ds

–
δt

δη – 1

m∑

i=1

∫ η

0

(η – s)βi+ω–1

Γ (βi + ω)
fi
(
s, u(s)

)
ds.

Hence limn→∞ Bun(t) = Bu(t). Thus B is a continuous operator on S. Further, we show that
the operator B is uniformly bounded on S. For any u ∈ S, we have

∣
∣Bu(t)

∣
∣ ≤

m∑

i=1

∫ t

0

(t – s)βi+ω–1

Γ (βi + ω)
∣
∣fi

(
s, u(s)

)∣
∣ds
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+
t

|δη – 1|
m∑

i=1

∫ 1

0

(1 – s)βi+ω–1

Γ (βi + ω)
∣
∣fi

(
s, u(s)

)∣
∣ds

+
δt

|δη – 1|
m∑

i=1

∫ η

0

(η – s)βi+ω–1

Γ (βi + ω)
∣
∣fi

(
s, u(s)

)∣
∣ds

≤
(

1 +
1 + δ

|δη – 1|
) m∑

i=1

‖φi‖
Γ (βi + ω + 1)

:= M.

Therefore ‖Bu(t)‖ ≤ M, ∀t ∈ J, which shows that B is uniformly bounded on S. Now, we
show that the operator B is equi-continuous. Let t1, t2 ∈ J with t1 < t2 and u(t) ∈ S. Then
we have

∣
∣Bu(t2) – Bu(t1)

∣
∣ ≤

∣
∣
∣
∣
∣

m∑

i=1

∫ t2

0

(t2 – s)βi+ω–1

Γ (βi + ω)
fi
(
s, u(s)

)
ds

–
m∑

i=1

∫ t1

0

(t1 – s)βi+ω–1

Γ (βi + ω)
fi
(
s, u(s)

)
ds

+
t2 – t1

δη – 1

m∑

i=1

∫ 1

0

(1 – s)βi+ω–1

Γ (βi + ω)
fi
(
s, u(s)

)
ds

–
δ(t2 – t1)
δη – 1

m∑

i=1

∫ η

0

(η – s)βi+ω–1

Γ (βi + ω)
fi
(
s, u(s)

)
ds

∣
∣
∣
∣
∣

≤
m∑

i=1

‖φi‖
Γ (βi + ω)

∣
∣
∣
∣
∣

∫ t1

0

[
(t2 – s)βi+ω–1 – (t1 – s)βi+ω–1]ds

+
∫ t2

t1

(t2 – s)βi+ω–1 ds +
t2 – t1

δη – 1

m∑

i=1

∫ 1

0
(1 – s)βi+ω–1 ds

–
δ(t2 – t1)
δη – 1

m∑

i=1

∫ η

0
(η – s)βi+ω–1 ds

∣
∣
∣
∣
∣

≤
m∑

i=1

‖φi‖
Γ (βi + ω + 1)

∣
∣
∣
∣t

βi+ω
2 – tβi+ω

1 + (t2 – t1)βi+ω

+
t2 – t1

δη – 1
–

δηβi+ω(t2 – t1)
δη – 1

∣
∣
∣
∣.

Now as t2 – t1 −→ 0, so the right-hand side tends to zero. Thus B is equi-continuous.
Therefore, it follows from the Arzelá–Ascoli theorem that B is a compact operator on S.

Step 3. Condition (c3) of Lemma 2 holds. So, for any v ∈ S, we have

∣
∣u(t)

∣
∣ =

∣
∣Au(t) + Bv(t)

∣
∣

≤ ∣
∣Au(t)

∣
∣ +

∣
∣Bv(t)

∣
∣

≤
∣
∣
∣
∣

∫ t

0

(t – s)ω–1

Γ (ω)
Du(s)Cu(s) ds +

t
δη – 1

∫ 1

0

(1 – s)ω–1

Γ (ω)
Du(s)Cu(s) ds

–
δt

δη – 1

∫ η

0

(η – s)ω–1

Γ (ω)
Du(s)Cu(s) ds

∣
∣
∣
∣ +

∣
∣
∣
∣
∣

m∑

i=1

∫ t

0

(t – s)βi+ω–1

Γ (βi + ω)
fi
(
s, v(s)

)
ds
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+
t

δη – 1

m∑

i=1

∫ 1

0

(1 – s)βi+ω–1

Γ (βi + ω)
fi
(
s, v(s)

)
ds

–
δt

δη – 1

m∑

i=1

∫ η

0

(η – s)βi+ω–1

Γ (βi + ω)
fi
(
s, v(s)

)
ds

∣
∣
∣
∣
∣

≤
(

1 +
1 + δ

|δη – 1|
)[

‖χ‖‖Ω‖
Γ (α + 1)Γ (ω + 1)

+
m∑

i=1

‖φi‖
Γ (βi + ω + 1)

]

≤ r,

which implies ‖u‖ ≤ r, and so u ∈ S. Hence all the conditions of Lemma 2 are satisfied.
Therefore, the operator equation u(t) = Au(t) + Bu(t) has at least one solution in S. Con-
sequently, there exists a solution of BVP (2) in J = [0, 1]. Thus the proof is completed. �

4 Example
We present an example of the BVP of hybrid fractional sequential integro-differential
equations to test our main result.

Example 1

⎧
⎪⎨

⎪⎩

cD
3
5 [

cD
3
2 u(t)–

∑3
i=1 Iβi fi(t,u(t))

1
4 t2 sec( π t

3 )( |u(t)|+1
|u(t)|+2 )

] = 2
5 cos( t

6 )( |u(t)|
|u(t)|+1 + I 5

2 u(t)), t ∈ J ,

u(0) = 0, Dωu(0) = 0, u(1) = δu(η), 0 < δ < 1, 0 < η < 1,
(16)

where

3∑

i=1

Iβi fi
(
t, u(t)

)
= I

1
3

(

cos

(
t
3

)( |u(t)|
1 + |u(t)|

)

+ et sin t
)

+ I
4
3

(√
t sin t|u(t)|
|u(t)| + 1

+
2

3 – t2

)

+ I
3
5

( |u(t)| tan(
√

t
2 )

|u(t) + 2| +
t

1 + et

)

. (17)

From equations (16) and (17), we have α = 3
5 , ω = 3

2 , m = 3, β1 = 1
3 , β2 = 4

3 , β3 = 3
5 , γ = 5

2 ,

f1(t, u(t)) = cos( t
3 )( |u(t)|

1+|u(t)| )+et sin t, f2(t, u(t)) =
√

t sin t|u(t)|
|u(t)|+1 + 2

3–t2 , f3(t, u(t)) = |u(t)| tan(
√

t
2 )

|u(t)+2| + t
1+et ,

g(t, u(t)) = 1
4 t2 sec( π t

3 )( |u(t)|+1
|u(t)|+2 ), and h(t, u(t), Iγ u(t)) = 2

5 cos( t
6 )( |u(t)|

|u(t)|+1 + I 5
2 u(t)). It is easy to

show that

∣
∣f1

(
t, u(t)

)
– f1(t, v(t)

∣
∣ ≤ cos

(
t
3

)
∣
∣u(t) – v(t)

∣
∣,

∣
∣f2

(
t, u(t)

)
– f2(t, v(t)

∣
∣ ≤ √

t sin t
∣
∣u(t) – v(t)

∣
∣,

∣
∣f3

(
t, u(t)

)
– f3(t, v(t)

∣
∣ ≤ tan

(√
t

2

)
∣
∣u(t) – v(t)

∣
∣,

∣
∣g

(
t, u(t)

)
– g(t, v(t)

∣
∣ ≤ 1

4
t2 sec

(
π t
3

)
∣
∣u(t) – v(t)

∣
∣,

and
∣
∣h

(
t, u(t), ū(t)

)
– h(t, v(t), v̄(t)

∣
∣ ≤ 2

5
cos

(
t
6

)
(∣
∣u(t) – v(t)

∣
∣ +

∣
∣ū(t) – v̄(t)

∣
∣
)
.
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Therefore, we can choose

λ1(t) = cos

(
t
3

)

, λ2(t) =
√

t sin t, λ3(t) = tan

(√
t

2

)

,

Θ(t) =
1
4

t2 sec

(
π t
3

)

, ψ(t) =
2
5

cos

(
t
6

)

.

Also the functions g(t, u(t)), h(t, u(t), Iγ u(t)), and fi(t, u(t)), i = 1, 2, 3, are bounded by the
positive functions as follows:

∣
∣f1

(
t, u(t)

)∣
∣ ≤ cos

(
t
3

)

+ et sin t = φ1(t),

∣
∣f2

(
t, u(t)

)∣
∣ ≤ √

t sin t +
2

3 – t2 = φ2(t),

∣
∣f3

(
t, u(t)

)∣
∣ ≤ tan

(√
t

2

)

+
t

1 + et = φ3(t),

∣
∣g

(
t, u(t)

)∣
∣ ≤ 1

4
t2 sec

(
π t
3

)

= χ (t),

and
∣
∣h

(
t, u(t), v(t)

)∣
∣ ≤ 2

5
cos

(
t
6

)

= Ω(t).

Choosing δ = 0.1, η = 0.9 and putting ‖Ω‖ = ‖ψ‖ = 0.4, ‖χ‖ = ‖Θ‖ = 0.5 in (8), we have

(

1 +
1 + δ

|δη – 1|
)[‖Ω‖‖Θ‖ + ‖χ‖‖ψ‖

Γ (α + 1)Γ (ω + 1)
+

‖χ‖‖ψ‖
Γ (α + 1)Γ (ω + 1)Γ (γ + 1)

]

≈ 0.8594 < 1.

Hence all the conditions of Theorem 2 hold. Thus the boundary value problem (16) has
at least one solution in J = [0, 1].

5 Conclusion
In consequence to generalized Krasnoselskii’s fixed point theorem provided by Dhage [1],
we developed an existence result for the aforementioned boundary value problem (2) of
hybrid fractional sequential integro-differential equations. The respective result has been
tested by providing an illustrative example.
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