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Abstract
In this paper, the authors investigate the existence and multiplicity of solutions for the
following fractional Hamiltonian system:

{
tDα∞(–∞Dα

t u(t)) + V(t)u(t) = λu(t) + b(t)|u(t)|q–2u(t) +μh(t), t ∈R,

u ∈ Hα (R,RN),

where α ∈ (1/2, 1), q > 2, b ∈ C(R, (0,∞)), h ∈ C(R,RN), N ≥ 1,λ,μ are parameters, and
V ∈ C(R,RN×N) is a positive definite symmetry matrix for all t ∈ R. By using the
variational method and with the help of the Nehari manifold, the existence results of
at least one or two nontrivial solutions to the above fractional Hamiltonian system are
obtained.

Keywords: Fractional Hamiltonian systems; Critical point; Variational method; Nehari
manifold

1 Introduction
A large number of studies have shown that fractional differential equations have many
applications in science and engineering [1–5]. Compared with integer differential equa-
tions, fractional differential equations can more effectively and accurately simulate various
natural phenomena, such as in neurons, economics, image processing, viscoelasticity, bio-
chemical processes, bioengineering, electromagnetic phenomena, etc. Because of the im-
portance of fractional equations in theory and application, in the past decade, researchers
dealing with fractional differential equations have achieved significant development. By
applying the fixed point theory, the topology theory, and the monotonically iterative tech-
niques, a lot of results on the existence and multiplicity of solutions have been established
[6–9]. In recent years, the study of fractional differential equations by variational methods
has attracted researchers’ great attention [10–31]. This is an interesting and new research
trend. Especially, for the fractional differential equations involving both the left and right
fractional derivatives, in general, the fixed point theory is not suitable for studying the ex-
istence to this kind of equations because it is not easy to convert this kind of fractional
equation into an equivalent integral equation and then transform it into some fixed point
problem of an operator. For the first time, Jiao and Zhou in [10] show that the variational
method is a very effective way to study such problems. By establishing some appropriate
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spaces and variational structure, the authors successfully apply the critical point theory to
the following problems of fractional differential equations:

⎧⎨
⎩tDα

T (0Dα
t u(t)) = ∇F(t, u(t)), a.e. t ∈ [0, T],

u(0) = u(T) = 0.
(1.1)

Under some suitable conditions, the existence results have been obtained.
Recently, in [24], motivated by the work in [10] mentioned above, Torres investigates a

kind of fractional Hamiltonian systems with the left and right fractional derivatives on R

as follows:

tDα
∞

(
–∞Dα

t u(t)
)

+ L(t)u(t) = ∇W
(
t, u(t)

)
, (1.2)

where α ∈ (1/2, 1), t ∈ R, u ∈ R
N , L ∈ C(R,RN×N ) is a symmetry matrix-valued function

satisfying the following condition:
(L1) L(t) is a positive definite symmetric matrix for all t ∈R, and there is l ∈ C(R, (0,∞))

such that l(t) → ∞ as t → ∞ as well as

(
L(t)x, x

) ≥ l(t)|x|2 for any t ∈ R, x ∈R
N .

Under condition (L1) and some other conditions, applying the mountain pass theorem,
the author obtained the existence result to problem (1.2).

For the above system (1.2), if α = 1, then it will reduce to the following second order
Hamiltonian system:

u′′ – L(t)u + ∇W (t, u) = 0. (1.3)

Poincare [32] was first to recognize the existence of homoclinic solutions of Hamiltonian
systems (1.3) and its importance for studying the behaving on dynamical systems. Follow-
ing this existence, one can infer the existence of chaos nearby or the bifurcation behavior
of periodic orbits. In the past two decades, variational methods and critical point theory
have been successfully applied to research the existence and multiplicity of homoclinic
solutions [33, 34].

Continuing the study in [24], Amado and Torres further investigate problem (1.2). Under
some weaker condition than (L1) as well as some conditions, the authors have obtained
infinitely many solutions to problems via the genus properties in the critical point theory
[25]. For more research on problem (1.2), the readers can refer to [26–29, 35, 36] and the
references therein.

Motivated by the works mentioned above, in this paper the authors consider the follow-
ing fractional Hamiltonian system:

⎧⎨
⎩tDα∞(–∞Dα

t u(t)) + V (t)u(t) = λu(t) + b(t)|u(t)|q–2u(t) + μh(t), t ∈R,

u ∈ Hα(R,RN ),
(1.4)

where α ∈ (1/2, 1), q > 2, N ≥ 1, b ∈ C(R, (0,∞)), h ∈ C(R,RN ),λ,μ are parameters, V ∈
C(R,RN×N ) is a positive definite symmetry matrix for all t ∈ R. Indeed, system (1.4) is a
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class of quite important fractional Hamiltonian systems with the perturbed terms λu and
μh. If α = 1, (1.4) reduces to the following classical second order Hamiltonian system:

⎧⎨
⎩u′′(t) + V (t)u(t) = λu(t) + b(t)|u(t)|q–2u(t) + μh(t), t ∈R,

u ∈ H1(R,RN ),
(1.5)

which is a prototype of many problems. For more information, readers can refer to [37].
Because the energy functional corresponding to system (1.4) is unbounded from below,

it is invalid to try finding a critical point by applying the direct method of minimization to
the energy functional. To overcome this difficulty, we introduce the Nehari manifold Nλ,μ

and split it into three parts N–
λ,μ, N+

λ,μ, and N0
λ,μ. By looking for minimizer of the energy

functional on N–
λ,μ and N+

λ,μ respectively and with the help of more analysis techniques, the
authors establish some results on the existence and multiplicity of solutions to problem
(1.4).

The remaining part of this paper is organized as follows. In Sect. 2, we give some neces-
sary definitions and suitable variational work frame for (1.4). Finally, we will establish the
results on the existence of solutions to (1.4) in Sect. 3.

2 Preliminaries
In this section, we introduce some basic conceptions of fractional calculus and fractional
space.

Definition 2.1 ([3]) The left and right Liouville–Weyl fractional integrals of order 0 < α <
1 for function u are defined as

–∞Iα
t u(t) =

1
Γ (α)

∫ t

–∞
(t – s)α–1u(s) ds

and

tIα
∞u(t) =

1
Γ (α)

∫ ∞

t
(s – t)α–1u(s) ds,

respectively.

Definition 2.2 ([3]) The left and right Liouville–Weyl fractional derivatives of order 0 <
α < 1 for function u are defined as

–∞Dα
t u(t) =

d
dt –∞I1–α

t u(t)

and

tDα
∞u(t) = –

d
dt tI1–α

∞ u(t),

respectively.

On the Liouville–Weyl fractional derivative, we have the following relations:

–∞Dα
t u(t) =

α

Γ (1 – α)

∫ ∞

0

u(t) – u(t – s)
sα+1 ds,
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tDα
∞u(t) =

α

Γ (1 – α)

∫ ∞

0

u(t) – u(t + s)
sα+1 ds.

Moreover, we introduce the Fourier transform û(w) of u(t) as follows:

û(w) =
∫ ∞

–∞
e–iwtu(t) dt, w ∈R,

which satisfies

–∞ Îα
t u(t)(w) = (iw)–αû(w), t Îα∞u(t)(w) = (–iw)–αû(w),

–∞D̂α
t u(t)(w) = (iw)αû(w), tD̂α∞u(t)(w) = (–iw)αû(w).

Now, we introduce some fractional derivative space; for more details, refer to [38].
As usual, for 1 ≤ p < ∞, denote by LP(R,RN ) the Banach spaces of functions under

the norm ‖u‖LP = (
∫
R

|u(t)|P dt)
1
P . L∞(R,RN ) is the Banach spaces of essentially bounded

functions on the norm ‖u‖∞ = ess sup{|u(t)| : t ∈R}.
For α > 0, define the semi-norm |u|Iα–∞ = ‖–∞Dα

t u‖L2 and the norm

‖u‖Iα–∞ =
(|u|2Iα–∞ + ‖u‖2

L2
) 1

2 .

Let Iα
–∞ be the closure of space C∞

0 (R,RN ) on the norm ‖ · ‖Iα–∞ . Moreover, for 0 < α < 1,
define the semi-norm |u|α = ‖|w|αû‖L2 and the norm

‖u‖α =
(|u|2α + ‖u‖2

L2
) 1

2 .

Denote by Hα the closure of space C∞
0 (R,RN ) on the norm ‖ · ‖α .

Noting that a function u ∈ L2(R,RN ) belongs to Iα
–∞ if and only if |w|αû ∈ L2(R,RN ).

Moreover, |u|Iα–∞ = ‖|w|αû‖L2 , the spaces Hα and Iα
–∞ are equivalent on the corresponding

semi-norms as well as norms.
Denote by C(R,RN ) the space of continuous functions with norm ‖u‖∞ := supt∈R |u(t)|.

We have the following lemma.

Lemma 2.1 ([24]) If α > 1/2, then Hα ⊂ C(R,RN ) and there exists a constant Cα such that
‖u‖∞ ≤ Cα‖u‖α .

It follows from Lemma 2.1 that if α ∈ (1/2, 1), then Hα ⊂ Lp(R,RN ) for any p ∈ [2,∞],
noting that

∫
R

|u(t)|p dt ≤ ‖u‖p–2
∞ ‖u‖2

L2 .
We need to introduce some variational framework to investigate the existence of solu-

tions to problem (1.4).
First, we give a condition as follows.
(V0) For each t ∈ R, V (t) is a positive definite symmetric matrix. Moreover, there is a

function v0 ∈ C(R, (0,∞)) satisfying that v0(t) → ∞ as |t| → ∞ as well as

(
V (t)u, u

) ≥ v0(t)|u|2, for any t ∈R, u ∈R
N .
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We also need another fractional space. Let

Xα =
{

u ∈ Hα :
∫
R

[∣∣–∞Dα
t u(t)

∣∣2 +
(
V (t)u(t), u(t)

)]
dt < ∞

}
,

then by [24], Xα is a reflexive and separable Hilbert space with the inner product

〈u, v〉Xα =
∫
R

[(
–∞Dα

t u(t), –∞Dα
t v(t)

)
+

(
V (t)u(t), u(t)

)]
dt

and a Banach space with respect to the norm ‖u‖Xα =
√〈u, v〉Xα .

The following embedding theorem is important to seek some minimum point of a func-
tion on the Nehari manifold.

Lemma 2.2 ([24]) Under condition (V0), Xα is continuously embedded in Hα .

Remark 2.1 By Lemmas 2.1–2.2, there exists a constant C∞ > 0 such that ‖u‖∞ ≤
C∞‖u‖Xα for all u ∈ Xα .

Lemma 2.3 ([24]) Under condition (V0), the embedding of Xα in Lp(R,RN ) is continuous
for p ∈ [2,∞] and is compact for p ∈ [2,∞).

By Lemma 2.3, there exists Cp > 0 such that ‖u‖Lp ≤ Cp‖u‖Xα , ∀u ∈ Xα for p ∈ [2,∞].
The following hypothesis will be used in the sequel.
(H1) b ∈ C(R, (0,∞)) ∩ L∞, h ∈ C(R,RN ) ∩ L1, 1/2 < α < 1, and q > 2.
In the following, we always assume that 1/2 < α < 1 and q > 2.
Now, we are going to establish a variational framework to investigate the existence of so-

lutions for (1.4) with the help of the Nehari manifold. To this end, we define the functional
Iλ,μ : Xα →R by

Iλ,μ(u) =
1
2
‖u‖2

Xα –
λ

2

∫
R

∣∣u(t)
∣∣2 dt –

1
q

∫
R

b(t)
∣∣u(t)

∣∣q dt – μ

∫
R

h(t) · u(t) dt. (2.1)

It is easy to verify that Iλ,u ∈ C1(Xα ,R) under conditions (V0) and (H1); moreover,

〈
I ′
λ,μ(u), v

〉
=

∫
R

[(
–∞Dα

t u(t), –∞Dα
t v(t)

)
+

(
V (t)u(t), v(t)

)]
dt – λ

∫
R

u(t) · v(t) dt

–
∫
R

b(t)
∣∣u(t)

∣∣q–2u(t) · v(t) dt – μ

∫
R

h(t) · v(t) dt (2.2)

for u, v ∈ Xα .
Owing to the fact that q > 2, the energy functional Iλ,μ is not bounded below on Xα . We

turn to considering the functional on the Nehari manifold

Nλ,μ :=
{

u ∈ Xα\{0}|〈I ′
λ,μ(u), u

〉
= 0

}
.

Obviously, u ∈ Nλ,μ if and only if u ∈ Xα satisfies

‖u‖2
Xα – λ

∫
R

|u|2 dt –
∫
R

b(t)|u|q dt – μ

∫
R

h(t) · u(t) dt = 0. (2.3)
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In order to seek a minimum point for Iλ,μ, the Nehari manifold Nλ,μ needs to be split into
three parts:

N+
λ,μ :=

{
u ∈ Nλ,μ|〈J ′

λ,μ(u), u
〉

> 0
}

,

N0
λ,μ :=

{
u ∈ Nλ,μ|〈J ′

λ,μ(u), u
〉

= 0
}

,

N–
λ,μ :=

{
u ∈ Nλ,μ|〈J ′

λ,μ(u), u
〉

< 0
}

,

where Jλ,μ(u) = 〈I ′
λ,μ(u), u〉. Precisely, we have

〈
J ′
λ,μ(u), u

〉
= 2‖u‖2

Xα – 2λ

∫
R

|u|2 dt – q
∫
R

b(t)|u|q dt – μ

∫
R

h(t) · u(t) dt. (2.4)

In view of Lemma 2.3, for p ∈ [2,∞], we write

Sp = inf
{

C > 0 : ‖u‖Lp ≤ C‖u‖Xα for all u ∈ Xα
}

. (2.5)

Let λ0 = 1/S2
2, b∞ = supt∈R b(t). For –∞ < λ < λ0, denote μλ as

μλ =
(
b∞Sq

q
) 1

2–q q – 2
‖h‖L1 S∞

(
1 – λS2

2
q – 1

) q–1
q–2

> 0. (2.6)

We have the following result.

Lemma 2.4 Assume that hypotheses (V0) and (H1) hold. If –∞ < λ < λ0, then Iλ,μ is coercive
and bounded below on Nλ,μ.

Proof For any u ∈ Nλ,μ, it follows from (2.3) that

∫
R

b(t)|u|q dt = ‖u‖2
Xα – λ

∫
R

|u|2 dt – μ

∫
R

h(t) · u(t) dt.

Therefore, by (2.1) and (2.5), we have

Iλ,u(u) =
(

1
2

–
1
q

)(
‖u‖2

Xα – λ

∫
R

|u|2 dt
)

– μ

(
1 –

1
q

)∫
R

h(t)u(t) dt

≥
(

1
2

–
1
q

)(
1 – λS2

2
)‖u‖2

Xα – μ

(
1 –

1
q

)∫
R

∣∣h(t)
∣∣∣∣u(t)

∣∣dt

≥
(

1
2

–
1
q

)(
1 – λS2

2
)‖u‖2

Xα – μ

(
1 –

1
q

)
‖h‖L1‖u‖∞

≥
(

1
2

–
1
q

)(
1 – λS2

2
)‖u‖2

Xα – μ

(
1 –

1
q

)
‖h‖L1 S∞‖u‖Xα .

Hence, owing to the fact that λ < λ0 and q > 2, Iλ,μ is coercive and therefore bounded below
on Nλ,μ. �

Lemma 2.5 Assume that hypotheses (V0) and (H1) hold. If u0 ∈ Nλ,μ is a local minimizer
of Iλ,μ on Nλ,μ with u0 /∈ N0

λ,μ, then u0 is a nontrivial solution to problem (1.4).
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Proof Because u0 ∈ Nλ,μ is a local minimizer of Iλ,μ on Nλ,μ, by Theorem 4.1.1 in [39],
there exists a number η such that

I ′
λ,μ(u0) = ηJ ′

λ,μ(u0), (2.7)

where Jλ,μ(u) = I ′
λ,μ(u)u. Thus, from u0 ∈ Nλ,μ it follows that

0 = I ′
λ,μ(u0)u0 = ηJ ′

λ,μ(u0)u0.

In view of u0 /∈ N0
λ,μ, we obtain J ′

λ,μ(u0)u0 �= 0, and therefore η = 0. Thus, I ′
λ,μ(u0) = 0 follows

from (2.7). It means that u0 is a nontrivial solution to problem (1.4). �

Lemma 2.6 Assume that hypotheses (V0) and (H1) hold. If h = 0, then N0
λ,μ = ∅; If h �= 0,

then N0
λ,μ = ∅ for –∞ < λ < λ0, 0 < μ < μλ, where μλ as in (2.6).

Proof In fact, if not, then there exists u0 ∈ N0
λ,μ with u0 �= 0. Then, by (2.3)–(2.4), we have

‖u0‖2
Xα – λ

∫
R

|u0|2 dt –
∫
R

b(t)|u0|q dt – μ

∫
R

h(t) · u0(t) dt = 0, (2.8)

2‖u0‖2
Xα – 2λ

∫
R

|u0|2 dt – q
∫
R

b(t)|u0|q dt – μ

∫
R

h(t) · u0(t) dt = 0. (2.9)

(i) If h = 0, then by (2.8)–(2.9), we obtain
∫
R

b(t)|u0|q dt = 0, which is a contradiction
noting that u0 �= 0 and b ∈ C(R, (0,∞)).

(ii) If h �= 0, then by subtracting (2.8) from (2.9), we have

‖u0‖2
Xα – λ

∫
R

|u0|2 dt – (q – 1)
∫
R

b(t)|u0|q dt = 0. (2.10)

Multiplying (2.8) by q and subtracting (2.9), we get

(q – 2)
(

‖u0‖2
Xα – λ

∫
R

|u0|2 dt
)

– μ(q – 1)
∫
R

h(t) · u0(t) dt = 0. (2.11)

Thus, by (2.10)–(2.11) together with (2.5), we have respectively

(
1 – λS2

2
)‖u0‖2

Xα ≤ (q – 1)b∞
∫
R

|u0|q dt ≤ (q – 1)b∞Sq
q‖u0‖q

Xα (2.12)

and

(q – 2)
(
1 – λS2

2
)‖u0‖2

Xα ≤ μ(q – 1)‖h‖L1‖u0‖∞ ≤ μ(q – 1)‖h‖L1 S∞‖u0‖Xα . (2.13)

Because u0 �= 0 and λ < λ0, from (2.12)–(2.13) it follows that μ ≥ μλ, which contradicts
the hypothesis 0 < μ < μλ. Thus, N0

λ,μ = ∅. �



Chai and Liu Boundary Value Problems         (2019) 2019:71 Page 8 of 17

3 Main result
In this section, we establish some existence results on solutions to problem (1.4). To this
end, we first establish several lemmas.

Lemma 3.1 Assume that hypotheses (V0) and (H1) hold. If h = 0, then N–
λ,μ �= ∅ for –∞ <

λ < λ0. If h �= 0, then N+
λ,μ �= ∅ and N–

λ,μ �= ∅ for –∞ < λ < λ0, 0 < μ < μλ, where μλ as in (2.6).

Proof (i) If h = 0, then for any u0 ∈ Xα\{0},

Iλ,μ(u0) =
1
2
‖u0‖2

Xα –
λ

2

∫
R

|u0|2 dt –
1
q

∫
R

b(t)|u0|q dt.

Let φu0 (s) = Iλ,μ(su0) = s2

2 ‖u0‖2
Xα – λs2

2
∫
R

|u0|2 dt – sq

q
∫
R

b(t)|u0|q dt, s ∈ [0,∞). Then

φ′
u0 (s) = s

(
‖u0‖2

Xα – λ

∫
R

|u0|2 dt
)

– sq–1
∫
R

b(t)|u0|q dt, s ∈ [0,∞). (3.1)

Write ψu0 (s) = φ′
u0 (s), s ∈ [0,∞). Due to that u0 �= 0, b(t) > 0, t ∈ R, q > 2, λ < λ0 and ob-

serving that

‖u0‖2
Xα – λ

∫
R

|u|2 dt ≥ (
1 – λS2

2
)‖u0‖2

Xα > 0,

we have that ψu0 (0) = 0, ψu0 (s) > 0 for small s > 0 and ψu0 (s) → –∞ as s → ∞. Thus there
exists unique s̄ > 0 such that

ψ ′
u0 (s̄) = 0, ψu0 (s̄) = max

s≥0
ψu0 (s) > 0, ψ ′

u0 (s) > 0 for s ∈ (0, s̄);

ψ ′
u0 (s) < 0 for s ∈ (s̄,∞).

In addition, it follows from (3.1) that

s̄ =
(‖u0‖2

Xα – λ
∫
R

|u0|2 dt
(q – 1)

∫
R

b(t)|u0|q dt

) 1
q–2

.

On the other hand, since ψu0 (s̄) > 0, ψ ′
u0 (s) < 0 for s ∈ (s̄,∞) and ψu0 (s) → –∞, there exists

unique s– > s̄ such that ψu(s–) = 0. Of course, ψ ′
u(s–) < 0. Thus, from

〈
J ′
λ,μ(su0), su0

〉
=

(
ψu0 (s)s

)′s = ψ ′
u0 (s)s2 + ψu0 (s)s, s ∈ [0,∞),

we immediately have

〈
J ′
λ,μ

(
s–u0

)
, s–u0

〉
= ψ ′

u0

(
s–)(

s–)2 + ψu0

(
s–)

s– = ψ ′
u0

(
s–)(

s–)2 < 0.

Hence,

s–u0 ∈ N–
λ,μ, φ′

u0

(
s–)

= 0, φ′′
u0

(
s–)

< 0 and φu0

(
s–)

= sup
s≥0

Iλ,μ(su0) (3.2)
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noting that φ′′
u0 = ψ ′

u0 . Thus, N–
λ,μ �= ∅.

(ii) If h �= 0, then, without loss of generality, we can say that h(t) = (h1, h2, . . . , hN ) satisfies
h1(t) > 0 for all t ∈ (t0 – r, t0 + r) for some t0 ∈ R and some r > 0. Take ū = (u1, u2, . . . , uN )
with uk = 0 for 2 ≤ k ≤ N , and u1(t) is given by

u1(t) =

⎧⎨
⎩e

(t–t0)2

(t–t0)2–r2 for |t – t0| < r,

0 for |t – t0| ≥ r.

Then ū ∈ C∞
0 (R,RN ), and therefore, ū ∈ Xα with ū �= 0. Furthermore,

∫
R

h(t) · ū(t) dt > 0.
In the following, we make an argument similar to that in (i) above.
Let

φū(s) = Iλ,μ(sū)

=
s2

2
‖ū‖2

Xα –
λs2

2

∫
R

|ū|2 dt –
sq

q

∫
R

b(t)|ū|q dt

– sμ
∫
R

h(t) · ū(t) dt = 0, s ∈ [0,∞). (3.3)

Then

φ′
ū(s) = s

(
‖ū‖2

Xα – λ

∫
R

|ū|2 dt
)

– sq–1
∫
R

b(t)|ū|q dt – μ

∫
R

h(t) · ū(t) dt,

s ∈ [0,∞). (3.4)

Let ψū(s) = s(‖ū‖2
Xα – λ

∫
R

|ū|2 dt) – sq–1 ∫
R

b(t)|ū|q dt. Then

ψ ′
ū(s) = ‖ū‖2

Xα – λ

∫
R

|ū|2 dt – (q – 1)sq–2
∫
R

b(t)|ū|q dt, s ∈ [0,∞). (3.5)

Obviously, ψū(0) = 0, ψū(s) > 0 as s > 0 small enough, and ψū(s) → –∞ as s → ∞. Hence,
there exists unique s̄ > 0 such that

ψū(s̄) = max
s≥0

ψū(s) > 0, ψ ′
ū(s̄) = 0, (3.6)

ψ ′
ū(s) > 0 for s ∈ (0, s̄); ψ ′

ū(s) < 0 for s ∈ (s̄,∞). (3.7)

Moreover, by calculation, we get

ψū(s̄) =
q – 2
q – 1

( (‖ū‖2
Xα – λ

∫
R

|ū|2 dt)q–1

(q – 1)
∫
R

b(t)|ū|q dt

) 1
q–2

≥ q – 2
q – 1

(
((1 – λS2

2)‖ū‖2
Xα )q–1

(q – 1)b∞Sq
q‖ū‖q

Xα

) 1
q–2

=
q – 2
q – 1

(
(1 – λS2

2)q–1

(q – 1)b∞Sq
q

) 1
q–2 ‖ū‖Xα .
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Because 0 < μ
∫
R

h(t) · ū(t) dt ≤ μ‖h‖L1‖ū‖∞ ≤ μ‖h‖L1 S∞‖ū‖Xα , it is easy to verify that
0 < μ

∫
R

h(t) · ū(t) dt < ψū(s̄) as long as 0 < μ < μλ, where μλ is given by (2.6), and therefore,
φ′

ū(s̄) > 0 by (3.4).
Now, in terms of (3.4) together with the fact that φ′

ū(0) < 0, φ′
ū(s̄) > 0, it follows from

(3.6)–(3.7) that there exist unique 0 < s+ < s̄ and unique s–
2 > s̄ such that

φ′
ū
(
s+

1
)

= φ′
ū
(
s–

2
)

= 0, φ′′
ū
(
s+

1
)

> 0, φ′′
ū
(
s–

2
)

< 0; φ′′
ū(s) > 0, s ∈ (0, s̄);

φ′′
ū(s) < 0, s ∈ (s̄,∞)

(3.8)

observing that (3.7) together with the fact that φ′
ū(s) = ψū(s), φ′′

ū(s) = ψ ′
ū(s), s ∈ [0,∞).

Hence, from

〈
J ′
λ,μ(sū), sū

〉
=

(
φ′

ū(s)s
)′s = φ′′

ū(s)s2 + φ′
ū(s)s,

together with (3.8), we have respectively

〈
J ′
λ,μ

(
s+

1 ū
)
, s+

1 ū
〉

= φ′′
ū
(
s+

1
)(

s+
1
)2 + φ′

ū
(
s+

1
)
s+

1 = φ′′
ū
(
s+

1
)(

s+
1
)2 > 0

and

〈
J ′
λ,μ

(
s–

2 ū
)
, s–

2 ū
〉

= φ′′
ū
(
s–

2
)(

s–
2
)2 + φ′

ū
(
s–

2
)
s–

2 = φ′′
ū
(
s–

2
)(

s–
2
)2 < 0,

which means that

s+
1 ū ∈ N+

λ,μ, s–
2 ū ∈ N–

λ,μ, φū
(
s+

1
)

= min
0≤s≤s̄

φū(s), φū
(
s–

2
)

= max
s≥0

φu(s) (3.9)

noting that (3.8). �

Lemma 3.2 Assume that hypotheses (V0) and (H1) hold. If h �= 0, then –∞ < C+
λ,μ :=

infu∈N+
λ,μ

Iλ,μ < 0 for –∞ < λ < λ0, 0 < μ < μλ, where μλ as in (2.6).

Proof First, by Lemma 3.1, N+
λ,μ �= ∅. For any u ∈ N+

λ,μ, we have

0 = I ′
λ,μ(u)u = ‖u‖2

Xα – λ

∫
R

|u|2 dt –
∫
R

b(t)|u|q dt – μ

∫
R

h(t) · u(t) dt (3.10)

and

0 <
(
I ′
λ,μ(u)u

)′u

= 2‖u‖2
Xα – 2λ

∫
R

|u|2 dt – q
∫
R

b(t)|u|q dt – μ

∫
R

h(t) · u(t) dt. (3.11)

By (3.10)–(3.11), we have

(q – 1)
∫
R

b(t)|u|q dt < ‖u‖2
Xα – λ

∫
R

|u|2 dt. (3.12)
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On the other hand, by (2.1) together with (3.10) and (3.12), we have

Iλ,μ(u) = –
1
2

(
‖u‖2

Xα – λ

∫
R

|u|2 dt
)

+
q – 1

q

∫
R

b(t)|u|q dt

< –
1
2

(
‖u‖2

Xα – λ

∫
R

|u|2 dt
)

+
1
q

(
‖u‖2

Xα – λ

∫
R

|u|2 dt
)

=
(

1
q

–
1
2

)(
‖u‖2

Xα – λ

∫
R

|u|2 dt
)

< 0

noting that q > 2 and u �= 0. Hence, C+
λ,μ = infu∈N+

λ,μ
Iλ,μ(u) < 0.

On the other hand, in terms of Lemma 2.4 and the fact that Iλ,μ is bounded below, we
obtain that C+

λ,μ > –∞. �

Lemma 3.3 Assume that hypotheses (V0) and (H1) hold. In addition, if
(i) h = 0, then C–

λ,μ := infu∈N–
λ,μ

Iλ,μ(u) > 0 for –∞ < λ < λ0;
(ii) h �= 0, then C–

λ,μ := infu∈N–
λ,μ

Iλ,μ(u) > 0 for –∞ < λ < λ0, 0 < μ < μλ/2, where μλ as in
(2.6).

Proof First, by Lemma 3.1, whether case (i) or case (ii), we always have N–
λ,μ �= ∅. For any

u ∈ N–
λ,μ, by I ′

λ,μ(u)u = 0, we have

μ

∫
R

h(t) · u(t) dt = ‖u‖2
Xα – λ

∫
R

|u|2 dt –
∫
R

b(t)|u|q dt. (3.13)

Thus, by ((I ′
λ,μu)u)′u < 0, it follows from (3.13) that

0 > 2‖u‖2
Xα – 2λ

∫
R

|u|2 dt – q
∫
R

b(t)|u|q dt – μ

∫
R

h(t) · u(t) dt

= ‖u‖2
Xα – λ

∫
R

|u|2 dt – (q – 1)
∫
R

b(t)|u|q dt,

and therefore,

(
1 – λS2

2
)‖u‖2

Xα ≤ ‖u‖2
Xα – λ

∫
R

|u|2 dt < (q – 1)
∫
R

b(t)|u|q dt ≤ (q – 1)b∞Sq
q‖u‖q

Xα .

Thus,

‖u‖Xα >
(

(1 – λS2
2)

(q – 1)b∞Sq
q

) 1
q–2

:= d0 > 0. (3.14)

On the other hand, by (2.1) together with (3.13) as well as (2.5), we have

Iλ,μ(u) =
(

1
2

–
1
q

)(
‖u‖2

Xα – λ

∫
R

|u|2 dt
)

– μ

(
1 –

1
q

)∫
R

h(t) · u(t) dt

≥
(

1
2

–
1
q

)(
1 – λS2

2
)‖u‖2

Xα – μ

(
1 –

1
q

)
S∞‖h‖L1‖u‖Xα

=
[(

1
2

–
1
q

)(
1 – λS2

2
)‖u‖Xα – μ

(
1 –

1
q

)
S∞‖h‖L1

]
‖u‖Xα . (3.15)
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(i) If h = 0, then by (3.14)–(3.15), we obtain

Iλ,μ(u) ≥
(

1
2

–
1
q

)(
1 – λS2

2
)
d2

0 > 0,

and therefore,

inf
u∈N–

λ,μ
Iλ,μ(u) ≥

(
1
2

–
1
q

)(
1 – λS2

2
)
d2

0 > 0.

(ii) If h �= 0, then ‖h‖L1 > 0. For 0 < μ < μλ/2, by calculation, we can obtain

(
1
2

–
1
q

)(
1 – λS2

2
)‖u‖Xα – μ

(
1 –

1
q

)
S∞‖h‖L1

≥
(

1
2

–
1
q

)(
1 – λS2

2
)
d0 – μ

(
1 –

1
q

)
S∞‖h‖L1 > 0,

and therefore,

Iλ,μ(u) ≥
[(

1
2

–
1
q

)(
1 – λS2

2
)
d0 – μ

(
1 –

1
q

)
S∞‖h‖L1

]
d0 := d1 > 0.

Consequently, infu∈N–
λ,μ

Iλ,μ(u) ≥ d1 > 0. �

Lemma 3.4 Assume that (V0), (H1) hold. If h �= 0, then for –∞ < λ < λ0, 0 < μ < μλ (where
μλ as in (2.6)), Iλ,μ achieves its minimum at some ū ∈ N+

λ,μ on N+
λ,μ. That is,

Iλ,μ(ū) = inf
u∈N+

λ,μ
Iλ,μ(u) := C+

λ,μ.

Proof First, under conditions (V0), (H1) and h �= 0, for λ < λ0, 0 < μ < μλ, by Lemmas 3.1–
3.2, we know that N+

λ,μ �= ∅, and –∞ < C+
λ,μ < 0. Let {un} ⊂ N+

λ,μ be a minimizing sequence
for Iλ,μ on N+

λ,μ. That is, limn→∞ Iλ,μ(un) = C+
λ,μ. Again, it follows from Lemma 2.4 that {un}

is bounded in Xα . Thus, by the reflexivity of Xα , there exists a subsequence, still denoted
by {un}, such that un ⇀ ū in Xα . Thus, by Lemma 2.3, we have

un → ū in Lq(R), p ∈ [2,∞), un(t) → ū(t), a.e. t ∈R. (3.16)

Again, because {un} is bounded in Xα , there is a constant M > 0 such that ‖un‖Xα ≤ M,
n ≥ 1, and therefore, it follows from (2.5) that

∣∣h(t) · un(t)
∣∣ ≤ ∣∣h(t)

∣∣‖un‖∞ ≤ ∣∣h(t)
∣∣S∞‖un‖Xα ≤ ∣∣h(t)

∣∣S∞M ∈ L1(R).

Thus, by applying the dominated convergence theorem, we have

lim
n→∞

∫
R

h(t) · un(t) dt =
∫
R

h(t) · ū(t) dt. (3.17)

Similarly, we also have

lim
n→∞

∫
R

b(t)
∣∣un(t)

∣∣q dt =
∫
R

b(t)
∣∣ū(t)

∣∣q dt. (3.18)
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Now, we show that limn→∞ ‖un‖Xα = ‖ū‖Xα .
In fact, if not, then by the weak lower semi-continuity on norm, we have

‖ū‖Xα < lim
n→∞

‖un‖Xα . (3.19)

We immediately have

Iλ,μ(ū) < lim
n→∞ Iλ,μ(un) (3.20)

by (3.17)–(3.19).
On the other hand, by un ∈ N+

λ,μ, we have

0 = I ′
λ,μ(un)un = ‖un‖2

Xα – λ

∫
R

|un|2 dt –
∫
R

b(t)|un|q dt – μ

∫
R

h(t) · un(t) dt, (3.21)

0 <
(
I ′
λ,μ(un)un

)′un

= 2‖un‖2
Xα – 2λ

∫
R

|un|2 dt – q
∫
R

b(t)|un|q dt – μ

∫
R

h(t) · un(t) dt. (3.22)

By (3.21)–(3.22), we have

(q – 1)μ
∫
R

h(t) · un(t) dt > (q – 2)
(

‖un‖2
Xα – λ

∫
R

|un|2 dt
)

≥ (q – 2)
(
1 – λS2

2
)‖un‖2

Xα > 0. (3.23)

Passing to the limit as n → ∞ on the above inequality, by (3.17) and (3.19), we get

(q – 1)μ
∫
R

h(t) · ū(t) dt ≥ (q – 2)
(
1 – λS2

2
)

lim
n→∞

‖un‖2
Xα > (q – 2)

(
1 – λS2

2
)‖ū‖2

Xα .

Hence,
∫
R

h(t) · ū(t) dt > 0, and therefore, by proof (ii) in Lemma 3.1 and with a derivation
similar to (3.8) and (3.9), for φū(s) = Iλ,μ(sū), s ∈ [0,∞), we know that there exist unique
0 < s+

1 < s̄ < s–
2 such that

φ′
ū
(
s+

1
)

= φ′
ū
(
s–

2
)

= 0, s+
1 ū ∈ N+

λ,μ, s–
2 ū ∈ N–

λ,μ,

φū
(
s+

1
)

= inf
0≤s≤s̄

φū(s), φū
(
s–

2
)

= sup
s≥0

φū(s).
(3.24)

Similarly, let φun (s) = Iλ,μ(sun). Then, by the same reason as (3.8) and (3.9) together with
(3.23), from

∫
R

h(t) · un(t) dt > 0, we know that there exist unique s+
n < s̄n < s–

n such that

φ′
un

(
s+

n
)

= φ′
un

(
s–

n
)

= 0, φ′′
un (s) > 0, s ∈ (0, s̄n); φ′′

un (s) < 0, s ∈ (s̄n,∞)

as well as

s+
nun ∈ N+

λ,μ, s–
nun ∈ N–

λ,μ.

Now, the fact that un ∈ N+
λ,μ and the uniqueness for s+

n imply that s+
n = 1. Thus, s̄n > 1.
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Now, the fact that φ′′
un (s) > 0, s ∈ (0, s̄n) yields that φ′

un (s) is strongly increasing. Combin-
ing with φ′

un (1) = 0 and 1 < s̄n, we immediately obtain that φ′
un (s) ≤ 0, s ∈ [0, 1], namely,

s‖un‖2
Xα – λs

∫
R

|un|2 dt – sq–1
∫
R

b(t)|un|q dt – μ

∫
R

h(t) · un(t) dt ≤ 0, s ∈ [0, 1].

Passing to the limit on the above inequality and taking into account (3.17)–(3.19), we get

φ′
ū(s) = s‖ū‖2

Xα – λs
∫
R

|ū|2 dt – sq–1
∫
R

b(t)|ū|q dt – μ

∫
R

h(t) · ū(t) dt < 0,

s ∈ (0, 1]. (3.25)

On the other hand, by (3.24), φ′
ū(s+

1 ) = 0, which combined with (3.25) implies that s+
1 > 1.

Consequently, s̄ > s+
1 > 1. Again, in terms of (3.24) and (3.20), we have

C+
λ,μ = inf

u∈N+
λ,μ

Iλ,μ(u) ≤ Iλ,μ
(
s+

1 ū
)

= inf
0≤s≤s̄

φū(s) ≤ φū(1) = Iλ,μ(ū) < lim
n→∞ Iλ,μ(un) = C+

λ,μ,

which is a contradiction. Thus, limn→∞ ‖un‖Xα = ‖ū‖Xα , which yields that un → ū in Xα

because Xα is a Hilbert space taking into account that un ⇀ u in Xα .
Now, by (3.17)–(3.18), it is easy to see that

Iλ,μ(ū) = lim
n→∞ Iλ,μ(un) = C+

λ,μ.

On the other hand, from I ′
λ,μ(un)un = 0 and (I ′

λ,μ(un)un)′(un) > 0 together with un → ū in
Xα , we immediately have

I ′
λ,μ(ū)ū = 0,

(
I ′
λ,μ(ū)ū

)′ū ≥ 0.

Again, by Lemma 3.2, Iλ,μ(ū) = C+
λ,μ < 0, and therefore, ū �= 0. By Lemma 2.6, N0

λ,μ = ∅.
Hence, (I ′

λ,μ(ū)ū)′ū > 0. This means that ū ∈ N+
λ,μ. Hence, Iλ,μ arrives at its minimum in

ū ∈ N+
λ,μ on N+

λ,μ. �

Lemma 3.5 Assume that hypotheses (V0) and (H1) hold. In addition,
1. if h = 0, then Iλ,μ achieves its minimum at some ū ∈ N–

λ,μ on N–
λ,μ for –∞ < λ < λ0.

2. if h �= 0, then Iλ,μ achieves its minimum at some ū ∈ N–
λ,μ on N–

λ,μ for –∞ < λ < λ0,
0 < μ < μλ/2.

Proof First, by Lemma 3.3, C–
λ,μ > 0. Now, we are going to make an argument similar to

that in Lemma 3.4. Let {un} ⊂ N–
λ,μ be a minimizing sequence of Iλ,μ on N–

λ,μ, namely,
limn→∞ Iλ,μ(un) = infu∈N–

λ,μ
Iλ,μ(u) := C–

λ,μ. Moreover, {un} is bounded in Xα , and therefore,
there exists ū ∈ Xα such that un ⇀ ū in Xα . The same reason as in Lemma 3.4 implies that
(3.17)–(3.18) still hold.

Now, we show that limn→∞ ‖un‖Xα = ‖ū‖Xα . In fact, if not, then

‖ū‖Xα < lim
n→∞

‖un‖Xα . (3.26)
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We claim that ū �= 0. In fact, by un ∈ Nλ,μ, it follows from (2.1) and (2.3) that

Iλ,μ(un) = –
1
2

(
‖un‖2

Xα – λ

∫
R

|un|2 dt
)

+
(

1 –
1
q

)∫
R

b(t)|un|q dt.

Hence,

(
1 –

1
q

)∫
R

b(t)|un|q dt = Iλ,μ(un) +
1
2

(
‖un‖ – λ

∫
R

|un|2 dt
)

≥ C–
λ,μ +

1
2
(
1 – λS2

2
)‖un‖Xα .

Passing to the limit on the above inequality as n → ∞ and in view of (3.18), (3.26), we have

(
1 –

1
q

)∫
R

b(t)|ū|q dt > C–
λ,μ +

1
2
(
1 – λS2

2
)‖ū‖Xα .

From C–
λ,μ > 0, it follows that

∫
R

b(t)|ū|q dt > 0, and therefore, ū �= 0.
Now, by the proof of Lemma 3.4 and with an argument similar to (3.2) and (3.9), we

know that there exists unique s– > 0 such that

s–ū ∈ N–
λ,μ, Iλ,μ

(
s–ū

)
= sup

s≥0
Iλ,μ(sū). (3.27)

Similarly, owing to un ∈ N–
λ,μ, we also have that Iλ,μ(un) = sups≥0 Iλ,μ(sun), and therefore,

Iλ,μ
(
s–un

) ≤ Iλ,μ(un). (3.28)

Once again, (3.17)–(3.18) and (3.26) imply that

Iλ,μ
(
s–ū

)
< lim

n→∞ Iλ,μ
(
s–un

)
. (3.29)

Hence, by (3.27)–(3.29), we immediately have

C–
λ,μ = inf

u∈N–
λ,μ

Iλ,μ(u) ≤ Iλ,μ
(
s–ū

)
< lim

n→∞ Iλ,μ
(
s–un

) ≤ lim
n→∞ Iλ,μ(un) = C–

λ,μ,

a contradiction. Hence, limn→∞ ‖un‖Xα = ‖ū‖Xα . By an argument similar to that in the
proof of Lemma 3.4, we obtain that Iλ,μ achieves its minimum at ū on N–

λ,μ. �

Now, we are in a position to show our first result on the existence of solution to (1.4).

Theorem 3.1 Assume that hypotheses (V0) and (H1) hold. If h = 0, then problem (1.4) has
at least one nontrivial weak solution for –∞ < λ < λ0.

Proof Under the conditions assumed in this theorem, by Lemma 2.6, Lemma 3.1,
Lemma 3.3, and Lemma 3.5, we know that N0

λ,μ = ∅, N–
λ,μ �= ∅, and Iλ,μ achieves its mini-

mum at some ū ∈ N–
λ,μ. Precisely, Iλ,μ(ū) = infu∈N–

λ,μ
Iλ,μ(u) = C–

λ,μ > 0. Because N–
λ,μ is an
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open subset in Nλ,μ and ū ∈ N–
λ,μ, there exists a ball B(ū, r) centered at ū with radius r

satisfying B(ū, r) ∩ Nλ,μ ⊂ N–
λ,μ. Thus

Iλ,μ(ū) = inf
u∈N–

λ,μ
Iλ,μ(u) = inf

u∈N–
λ,μ∩B(ū,r)

Iλ,μ(u) = inf
u∈Nλ,μ∩B(ū,r)

Iλ,μ(u).

Hence, by Lemma 2.5 and taking account of the fact that N0
λ,μ = ∅, we immediately obtain

that ū is a nontrivial weak solution of (1.4). This completes the proof. �

We give another result on the multiplicity of solutions to (1.4).

Theorem 3.2 Assume that hypotheses (V0) and (H1) hold. If h �= 0, then problem (1.4) has
at least two nontrivial weak solutions for –∞ < λ < λ0, 0 < μ < μλ/2.

Proof Under these conditions, by Lemma 2.6 and Lemmas 3.1–3.5, we know that N0
λ,μ =

∅, N–
λ,μ �= ∅, N+

λ,μ �= ∅. Moreover, there exist ū1 ∈ N–
λ,μ, ū2 ∈ N+

λ,μ such that

Iλ,μ(ū1) = inf
u∈N–

λ,μ
Iλ,μ(u) > 0, Iλ,μ(ū2) = inf

u∈N+
λ,μ

Iλ,μ(u) < 0.

Because N+
λ,μ, N–

λ,μ are two open subsets in Nλ,μ with N+
λ,μ ∩ N–

λ,μ = ∅ and N0
λ,μ = ∅, making

an argument similar to that in the proof of Theorem 3.1, we can deduce that ū1, ū2 are two
nontrivial solutions of problem (1.4). The proof is complete. �

4 Conclusion
In this paper, the authors investigate the existence and multiplicity of solutions for frac-
tional Hamiltonian systems (1.4). Because the energy functional corresponding to system
(1.4) is unbounded from below, it is invalid to try finding a critical point by applying the
direct method of minimization to the energy functional. To overcome this difficulty, we
introduce the Nehari manifold Nλ,μ and split it into three parts N–

λ,μ, N+
λ,μ, and N0

λ,μ. By
looking for minimizer of the energy functional on N–

λ,μ and N+
λ,μ respectively and with the

help of more analysis techniques, the authors establish some results on the existence and
multiplicity of solutions to the above problem.
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