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1 Introduction
Given T > 0. Forany O < k < 1, set

or(t)=1+kt forte[0,T]. (1.1)
Also, define the following non-cylindrical domains:

k= {(x,) e R%0 <x < ai(8), £ € [0, T}

n

s<n<n <1,

and forany O < m’ <m <

Q1 = |(x,0) € RL moy(t) < x < nay(t), ¢ € [0, T},

Q: = {0, 8) e REml () < x < o (0), £ € [0, T}
Let
(@) - [rer@| L L era@)

and we denote by [H'(Q1)]’ the dual space to H'(Qy), i.e, [H'(Q1)] = {g: H'(Q)) —
R; g is bounded linear}.
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In this paper, we consider the following control problem associated with the one-

dimensional wave equation:

Ut — Uy = By in @/},
u(0,t) = u(ax(t),t) =0 on (0, T), (1.2)

u(x,0) = u°, ur(x,0)=u! in (0,1),

where u is the state variable, (u°,u!) € L?(0,1) x H7(0,1) is any given initial value, v €
[H(Q,)] is the control variable, the constant k is called speed of the moving endpoint
and B € C*(Qk),

=0, (x,t)E/Q\]%\@,
B(x,t){ =1, (x,2) € Q1, (1.3)
€(0,1), () e\ Q.

By [1], it is easy to check that (1.2) has a unique weak solution
u € C([0, T1; L*(0,0x(2))) N C* ([0, TT; H7' (0, ax (2)) ).
The problem of exact controllability for (1.2) is formulated as follows.

Definition 1.1 (1.2) is called exactly controllable at the time 7 if for any initial value
(®,u') € L?(0,1) x H71(0,1) and any target (u3,u}) € L*(0,ax(T)) x H™1(0,4(T)), one
can always find a control v € [H 1(@ )]’ such that the corresponding weak solution u of
(1.2) satisfies

u(T) = ug, u(T) = ufi. (1.4)

The main goal of this article is to obtain the exact controllability of (1.2). In practical situ-
ations, many processes evolve in domains whose boundaries have moving parts. A simple
model, e.g., is interface of ice water mixture when the temperature rises. To study con-
trollability problem of wave equations with moving boundary or free boundary is very
meaningful. As we all know, there exist numerous literature works on the controllabil-
ity problems of wave equations in a cylindrical domain, see e.g. [2-7]. However, there are
only a few works on the exact controllability for wave equations defined in non-cylindrical
domains. We refer to [8—16] for some known results in this respect. In [8—13], boundary
controllability for wave equations with moving boundary was obtained. In [15], distributed
controllability of a wave equation with constant coefficients in a non-cylindrical domain
was established, when a control entered the system through the whole non-cylindrical do-
main. While in [16], locally distributed control of a one-dimensional wave equation in a
non-cylindrical domain was obtained when k € (0, k),0 < k < 1. Motivated by [13-16], we
extend the result in [16], and locally distributed control is obtained when k € (0,1). The
key point is to define directly the energy function of a wave equation in the non-cylindrical
domain and use the multiplier method to overcome these difficulties.

Our paper is divided into three sections. In Sect. 2, we state the principal result. In
Sect. 3, using the multiplier method, we consider the homogeneous wave equation and
establish observability inequality.
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2 Preliminaries and main results
Lemma 2.1 Let X be a Banach space, and let A : X — Y be a bounded linear operator.
Then the following properties are equivalent: (a) R(A) = Y, (b) A" has a continuous inverse

operator.
Set T} > 0 for the controllability time. The main result of this paper is stated as follows.

Theorem 2.1 Let0<k<1and T > T}, (1.2) is exactly controllable at time T in the sense
of Definition 1.1.

Remark 2.1 T} will be defined during the course of the later proof.

Remark 2.2 'We can obtain the same result as that in this paper for a more general function
ai(t) as long as it meets the condition 0 < a (¢) < 1.

Remark 2.3 We expect to obtain the same result in the forthcoming paper, when the con-
trol variable v € L2(0, T; w(t)), w(t) < (0, ok (£)).

To prove this, let u = £ + n, where £ and 7 satisfy the following systems:

& — 64 =0, (x,t) € ’Ql%’
£(0,1) = E(ax(t), ) =0, te(0,T), (2.1)
£(x,0) = u®, £(x,0)=u', xe(0,1),

Net = Nxx = BV, (x,8) € Qk,
n(0,%) = n(ax(),t) =0, te€(0,T), (2.2)
n(x,0)=n(x,0)=0, xe(0,1).

Therefore, we only need to obtain internal controllability of (2.2).

Theorem 2.2 Let T > T}. Then, for any target (u3,u}) € L*(0,04(T)) x H(0,04(T)),
there exists a control v € [H 1(6\1)]/ such that the corresponding weak solution n of (2.2)

satisfies

() =uy — n(T) =uy.
Remark 2.4 If Theorem 2.2 holds, then Theorem 2.1 holds. In fact, for any («°,4!) €
L*(0,1) x H71(0,1) and any target (19, u}) € L*(0,0x(T)) x H™(0,ax(T)), (S - £(T), u}; -

£&,(T)) belongs to L2(0,ax(T)) x H™1(0,ax(T)), where £ is the solution of (2.1) associated
to (1, u*). By Theorem 2.2, we choose v € [H!(Q,)], then 7 satisfies

n(T)=uy—&(T),  n(T) = uy—E(T).
This implies that u = & + ) satisfies (1.2) and (1.4).

In the following, we prove Theorem 2.2. Let us introduce some notations. Write U =
[HY(Q))], F = L2(0,ax(T)) x H™ (0,4 (T)) and F' = H}(0,ax(T)) x L2(0,a(T)). Then we
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define the scalar products between F and F':

(Wi, T), we(x, T)), (2(%, T), 22, T)))F,F/

o (T) ax(T)
= / wi(x, Tz(x, T) dx — / wix, T)z:(x, T) dx,
0 0

where for any (w(x, T), w(x, T')) € F and any (z(x, T),z:(x, T)) € F'.

Define a linear operator A:

A:U—F,

Av=(n(x T),mx,T)) Vvel,
where we use 1 to denote the solution of (2.2) associated to v. Then A is surjective equiva-
lent to internal controllability of the wave equation (2.2). By Lemma 2.1, we only prove that

A’ has a continuous inverse operator. Now we define A’. A’ is associated with the following
homogeneous wave equation:

Zit — Zxx = 0, (xy t) € /Q\l;':
2(0,t) = z(ax(t),t) = 0, te(0,7), (2.3)
z(x, T) = 2°, z(x, T)=72", x€(0,ar(T)),

where (2°,z%) € H}(0,ax(T)) x L?(0,ax(T)) is any given initial value. (2.3) has a unique
weak solution

z € C([0, TT;Hy (0, aie(£))) N C*([0, T1; L* (0, i (2)) ).

Multiplying the first equation of (2.2) by z and integrating on akT, we have

otk(T) ak(T)
(Bv,z) = / ne(x, T)2° dx — / n(x, T)z' dx
0 0

= (0, T 1)), (2,21)
 {An, (2,2Y)).

Let B’ be the adjoint operator of Bin (1.3) and if v € [Hl(é\l)]’, then
B:H'(Qp) — H'(Q),

from which we have
(v,Bz)=(v,A'(",2")).

Hence A’ is defined as follows:

A(2°,2") = Bz(x,t) = z(x,8), (x,8) € @,V(zo,zl) eF,
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where z is the solution of (2.3). Therefore internal controllability of the wave equation (2.2)
is equivalent to the following inequality:

@ = €I(2)

- V(zo,zl) eF. (2.4)
In the sequel, we denote by C a positive constant depending only on T and k, which may
be different from one place to another.

3 Observability inequality of wave equations
In the following, we shall give proof of (2.4) by the multiplier method. The energy function
of system of (2.3) is defined as follows:

1 [ 5 N
E(t) = 3 [|zt(x, t)| + |zx(x, t)| ]dx fort >0,
0

where z is the solution of (2.3). In particular,

1 ()
- / (2@ + |26 dx.
0

By similar method, we obtain the following lemma about a growth estimate of the energy
function (see the detailed proof in [13]).

Lemma 3.1 Forany (z°,z') € H}(0,04(T)) x L*(0,ax(T)) and t € [0, T], the corresponding
solution z of (2.3) follows:

(-RelD) o 1 Ra(D)

LR R R PA T R (3.1)

Remark 3.1 From Lemma 3.1, we obtain that

1-k) 1+k)
T T =F0=aTg

ax(T)Er

and

(1 -k)or(T) 1+ k)ap(T)
Ak Er <E(0) < Ta-n Er.

Forany 0 <¢ < T, let p € Lip[0, ()] and

—(n—m)x, x € [0, may(t)],
px,t) = { [1 = (n—m)lx — may(t), x € [mag(t), nox(t)], (3.2)

(n — m) a(t) - ], x € [nay(t), ok (2)].

Write

M%A max ’p(x,t)‘.
@)k
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In the following, we prove (2.4) by the multiplier p.
Multiplying the first equation of (2.3) by pz, and integrating on (0, ax(£)) x (0, T), we
obtain

T pag(t)
0= / / {2upzs — Zupzst dxdt = J1 + ).
0 0

We calculate the above two integrals J; (i = 1,2). By p(0,t) = p(ax(£),£) =0 on (0, T), we
find the expression

T o)
J1= / / ZuPZy dx dt
/ / { [szzt — PtZxZ¢ —prtzt} dxdt

ay(t) T T pog()
= [pzyz:] dx‘o - f / Pizyze dx dt
o Jo

0

T pu
+/ / pr=z> dxdt. (3.3)
o Jo 2

Further, we have

T pogl(t)
—// ZyxPZx AX AL
[ [l ]}M
/ Z2|ok dt+// —p zdxdt
0
ag(t) 1
:// —pxzidxdt. (3.4)
o Jo 2

Therefore, by (3.3) and (3.4), it follows that

T ro)q T pog(t) o (£) T
/ / —px(z; +22) dxdt = / / pizezs dxdt — [/ PZezs dx} ‘ . (3.5)
o Jo 2 0o Jo 0 0

By the definition of p, we deduce

1—(” ) / /nak |Z¢(x,t)|2+{Zx(x’t)|2]dxdt
moy (t)

n—m/ / [z O + |2ulx, £)|*] dx it
0 J(0,ax (O)\(moay (£),na (£))
T

T pog(t) ag(t)
= / / DiZxzy dx dt — [ / D%t dx}
o Jo 0 0

from which we obtain that

VlC{k 5 5
/ / ’zt(x,t)’ +‘zx(x,t)} ]dxdt
m()tk

’
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- m/ / [zt |zx x,t )|2]dxdt

ax(t) ax(t) T
+ / / P1Zx2 Ax dt — [ / PZxZs dx]‘ .
o Jo 0 0

Next, we estimate every term in the right-hand side of (3.6).

By (3.1) and (3.2), we have that

_ T po(t)
z 2'”/ /k [z 8) + |2, £)|] vt
0 0

T
=(n—m)/ E(t)dt,
0

DiZxZs Ax dt’
T
< max{mk, (n— m)k} / E(t)dt
0

T
< (n-mk / E(®)at.
0

Note that, for any ¢,

o (t)
/ Pzx2s Ax
0

< ME(t)
(1 + K)oy (T)

SM-————"Er
(1= k)o(2)
M(1 + K)o (T)
< ——£7.
1-k
It follows that
ok(t) T| 2M(1 + K)oy (T
‘/ (pzaz: dx]‘ ‘ < MET.
0 0 1- k

By (3.1), (3.6), (3.7), (3.8), and (3.9), we derive that

nay(t) 2 )
/ / [|ze@6)|" + |z, 8)| "] dx it
ma(t)

T
> (n-m)(1 —k)/o E(t)dt - M}E

1k T
(n—m)(1 - k)? 2M(1 + k)
" In(1+kT) - =——— =2 |a(T)Ey.
2[ ki AHAD == e DEr
2kM(1+k)
UT>T)= %, it holds that [T In(1+kT) -

T prn
%_/0 /;;1 [ak(t)|zt(x’t)|2+ﬂk(x't)|2x(x,t)i2]

i (T) > 0. Also,
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(3.7)

(3.8)

(3.10)
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(n-—m)(1 - k)2 2M(1 + k)
= [ k(1 + k) In(1 +&T) - ?]W(T)ET
(n—m)(1-k)* (1+k)
EC[ I I T]“k<T>(|Z°I25(O,1>+|z1|;<0,1)). (3.11)

Therefore (2.4) is proved.

Remark 3.2 1t is easy to check that
T° £ lim T; =2max{m,1 - n}.
k—0

It is well known that (1.2) in the cylindrical domain is internally controllable at any time
T > T°. However, T} is not sharp.
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